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Abstract: A titania-free heterostructure based on CuS/SnO,/WOs3; was obtained by a three-step
sol-gel method followed by spray deposition on the glass substrate. The samples exhibit crystalline
structures and homogenous composition. The WO3 single-component sample morphology consists
of fibers that serve as the substrate for SnO, development. The CuS/SnO,/WO3 heterostructure
is characterized by a dense granular morphology. Photocatalytic activity was evaluated under
UV-Vis radiation and indicates that the WOj3 single-component sample is able to remove 41.1% of
acetaldehyde (64.9 ppm) and 52.5% of formaldehyde (81.4 ppm). However, the CuS/SnO,/WO;
exhibits a superior photocatalytic activity due to a larger light spectrum absorption and lower charge
carrier recombination rate, allowing the removal of 69.2% of acetaldehyde and 78.5% of formaldehyde.
The reusability tests indicate that the samples have a stable photocatalytic activity after three cycle
(12 h/cycle) assessments. During light irradiation, the heterostructure acted as a Z-scheme mechanism
using the redox ability of the CuS conduction band electrons and the SnO, /WO3 valence band holes
to generate the oxidative species required for VOC removal.

Keywords: air decontamination; photocatalysis; semiconductors; acetaldehyde; formaldehyde

1. Introduction

Air contaminants such as nitric oxide (NO) and nitrogen dioxide (NO,), originating
mainly from industrial and transportation activities (incomplete fossil fuel combustion or
vehicle exhaust emissions), cause significant problems related to ozone layer reduction, acid
rain production, chemical smog appearance, and particle pollution [1-3]. However, indoor
air is equally essential for human health, considering that more than 80% of our time is spent
in closed spaces (homes, offices, halls, malls, libraries, etc.). Volatile organic compounds
(VOCs) are the main indoor air pollutants that directly impact human health [4,5]. VOCs
are composed of aromatics, alcohols, halocarbons, and aldehydes, which are essential
components of building materials, furniture, and electronic equipment. Several studies
indicate that long-term exposure to VOCs can induce acute and chronic health problems.
The risk of inhaling VOCs in indoor spaces is higher compared to outdoors, causing
symptoms such as allergies, dizziness, nausea, wheezing, coughing, and headaches [6-8].

The removal of these pollutants from indoor spaces is urgent considering that access
to VOC sources, such as electronic equipment and furniture, is more affordable in many
countries due to economic expansion. Traditional VOC removal technologies, such as
adsorption, biodegradation, and thermal catalysis, are expensive and release toxic by-
products [9,10]. The absorption method for VOCs exhibits insufficient storage capacity,
requires frequent replacement, and produces easy desorption when heating [11,12]. Ther-
mal catalysis and biodegradation also present some disadvantages, including a low catalyst
efficiency, high operating temperatures, and high costs [13].

Photocatalysis represents a modern alternative to the traditional routes requiring low
energy to operate, safer conditions, and is cost-effective. This method requires the use of
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photoactive materials and a corresponding light source to generate the super-oxidative
species involved in the VOC decomposition [14-16]. Its main advantage is complete on-site
pollutant mineralization without requiring additional storage equipment. The use of single-
component photocatalysts such as TiO, [17,18], SnO, [19], CuO [20,21], and Ag,O [22,23],
induce limitations in terms of light absorbance spectrum or chemical stability. Studies have
shown that heterostructures such as TiO, /MnQO, [24], Cu,O/TiO, [25], TiO, /SiO, [26,27],
AgrO/TiO; [28], and ZnO/WOs [29] are able to efficiently separate the charge carriers in
order to reduce recombination, increase charge mobility and use an extended light spectrum.
However, the chemical stability and photocatalytic activity are drastically influenced by
the working environment (pH, corrosive agents, etc.). Several papers indicate the use of
g-C3Ny [30,31], g-C4Ng [32,33], and r-GO [34-36] in order to increase the specific active
surface and, consequently, the photocatalytic efficiency.

This work presents the photocatalytic activity of titania-free material composed of
CuS/Sn0O, /WO; obtained by a three-step sol-gel method followed by spray deposition on
the glass substrate. Acetaldehyde and formaldehyde were chosen as target VOC molecules
due to their persistence in closed spaces and their negative impacts on human health.
Both pollutants are considered to have carcinogenic potential with a direct impact on
the kidneys and respiratory system. This work includes a comparative analysis between
mono-component and multi-component samples in order to outline the synergic effect of
semiconductor-based heterostructures. The correspondence between crystalline composi-
tion, morphology, and photocatalytic activity is also presented. The BET analysis indicates
that the CuS/SnO,/WOs heterostructure has a superior active surface compared with bare
WOj3 and SnO,/WOs;. The reusability tests show high photocatalytic efficiency for both
pollutant molecules, which recommends this material as a sustainable alternative to the
traditional methods.

2. Results and Discussion
2.1. Composition and Morphology

The X-ray diffraction analysis indicates the formation of stoichiometric compounds
with a monoclinic structure for WO3 (ICCD 83-0951), tetragonal structure for SnO, (cas-
siterite, ICCD 41-1445), and hexagonal structure for CuS (ICCD 03-1090), as presented
in Figure 1. There are no indications regarding the formations of mixed oxides or non-
stoichiometric forms of the heterostructure components. However, the presence of amor-
phous compounds, as well as element diffusion during the thermal treatment, cannot be
excluded [37,38]. The insertion of metal oxides in the heterostructure precursors serves as
the substrate for developing the following components. Based on previous reports [39,40],
the metal oxide powder will facilitate the formation of the crystallization nucleus on the
higher energy surface sites. It must be underlined that the CuS formation was stabilized
in this form based on the step-by-step sulfur atmospheric treatment, which reduces the
probability of oxygen insertion and allows an improved process control. The formation of
CuS plays an important role in improving the Vis light absorption of the heterostructure
assembly [41].

The crystallite sizes were evaluated using the Scherrer formula, Equation (1), [42]:

092
~ Bcosf

M

where B is the measured angular width at half maximum intensity (FWHM) of the peak, 6
is the Braggs angle, and A is the X-ray wavelength (1.5406 A for CuK ;). The evaluation
was performed on the most significant plane relative to the line intensity for each compo-
nent. Considering that the heterostructure semiconductors are used as the substrate, the
crystallite size may influence the development of the following component. The results (see
Table 1) indicate that similar crystal sizes for the metal oxide (WO3 and SnO,) compounds
were subjected to relatively similar annealing temperatures (400 °C for WO3 and 380 °C
for SnO,). The crystalline size of the metal oxides exhibits negligible changes after the
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inclusion in the following component precursor. Lower crystallite sizes were recorded
for CuS, where the synthesis conditions are more restrictive in terms of the atmospheric
conditions and temperature.
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Figure 1. X-ray diffraction patterns of the samples.

Table 1. Crystallite sizes of the photocatalysts components.

Samples Crystallite Size (A)
WO, SnO, CuS

WO, 84.2 -
SnO,/WO; 83.7 78.1 -
CuS/SnO, /W05 83.4 77.7 515

The SEM analyses indicate the formation of a fiber-like WO3 morphology (Figure 2a)
of around 1 pm diameter and variable length. As presented in Figure 2b, the SnO, will
develop on the WOj fibers, which are completely covered at the end of the second synthesis
step. The heterostructure morphology changes from fiber to granular (Figure 2c) after
the CuS deposition, and the grains have various shapes and sizes. These changes are a
consequence of the uniform surface coverage of the substrate obtained after each synthesis
step. The porous morphology will be beneficial to the photocatalytic efficiency, allowing the
formation of a larger liquid—solid interface, where the oxidation processes are developed [43—45].
The N, adsorption—-desorption isotherm (Figure 3) indicates that the CuS/SnO,/WOs3
heterostructure exhibits a higher Brunauer—-Emmett-Teller (BET) surface area (83.4 m?2/ g
and 0.023 cm®/g pore volume) compared with WOj; (34.1 m?/g and 0.011 cm®/g pore
volume) and SnO, /WOj3 (65.7 m? /g and 0.016 cm®/g pore volume).

The elemental composition of the samples was evaluated by EDX analysis (Table 2) in
order to observe if the ratio of the components was preserved. The analysis was conducted
at different points, and the results indicate similar values, which confirm the homogeneity of
the samples. Additionally, the results were compared with the theoretical values calculated
based on the stoichiometry of each compound. The results indicate the presence of excess
oxygen in both metal oxide components due to the long annealing periods at elevated
temperatures [46,47]. After each deposition step, the W ratio decreases in relation to the
other components (Sn and Cu). As expected, the CuS component exhibits a sulfur deficit
due to the final thermal treatment conducted after the film deposition.
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Figure 2. SEM pictures of the photocatalysts: (a) WO3, (b) SnO,/WOj3 and (c) CuS/SnO,/WOs (inset
EDX spectra).
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Figure 3. N2 adsorption—desorption isotherm.

Table 2. Elemental composition of the photocatalysts.

Samples Elemental Composition [% at.]
w Sn Cu o O ! S Sen !
WO; 24.6 754 73.8
SnO, /WOj3 11.2 16.4 724 66.2
CuS/Sn0O, /WO3 9.7 11.8 13.5 54.8 52.7 10.2 13.5

1 Stoichiometric theoretical content.
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2.2. Indoor Air Photocatalytic Treatment

Acetaldehyde and formaldehyde were chosen as the reference VOCs based on their
toxicity and resilience in households and indoor office air. These compounds are released
into the air by different building materials, electronic devices, and cleaning products. Ac-
etaldehyde and formaldehyde can cause eye irritation, respiratory diseases, and damage to
the central nervous system [48-50]. Long-term exposures to acetaldehyde and formalde-
hyde may have carcinogenic effects, and the concentration of VOCs in indoor air should
be drastically reduced [51,52]. The photocatalytic activity of all samples was evaluated
under the same conditions of light radiation, catalyst dosage, irradiation period, and
pollutant concentration.

2.2.1. VOCs Degradation Efficiency and Kinetics

The photocatalytic evaluation (Figure 4) indicates that all samples are able to develop
the oxidative species (-OH, -O, ™) required for VOC degradation. However, the heterostruc-
ture mechanism can only use the charge carriers with enough potential to generate these
oxidative species. The photogenerated electrons with a potential higher than —0.33 eV, as
well as the photogenerated holes with a potential higher than +1.99 eV, are unable to pro-
mote the formation of oxidative species. The lowest photocatalytic efficiency (Figure 4a,b)
corresponds to the WOj3 single-component sample, which was able to remove 49.8 ppm
(31.5%) of acetaldehyde and 63.2 ppm (40.7%) of formaldehyde. Even if the light radiation
contains both UV and Vis spectra, the WO;3 has a band gap of 3.3 eV, which limits the ab-
sorption range in the UV region. The synergic effect of coupled SnO, /WO3 semiconductors
induces lower charge carrier recombination and increases the number of photogenerated
charges [53,54]. The photocatalytic efficiency of the SnO,/WO3 sample is superior to that
of the WOj3 single-component sample and attempts 41.1% for acetaldehyde (64.9 ppm) and
52.5% for formaldehyde (81.4 ppm). The highest photocatalytic activity corresponds to
CuS/Sn0O; /WOj heterostructure, where the CuS insertion with 1.8 eV band gap energy
will extend the light absorption in the Vis region. The CuS/SnO,/WO3 heterostructure
will benefit from a higher charge carrier concentration and mobility able to contribute to
oxidative species development [55,56]. Consequently, the heterostructure photocatalytic
efficiency was 69.2% for acetaldehyde and 78.5% for formaldehyde. The CO; evolution
(Figure 4c,d) follows the same pattern as VOC removal, which indicates acetaldehyde and
formaldehyde conversion by mineralization. Compared with other reported results (see
Table 3), the photocatalytic efficiencies are competitive and could be considered for future
applications. TiO,-based photocatalysts may exhibit a higher efficiency function in these
testing conditions and for this pollutant type. Small quantities of by-products cannot be
excluded as intermediary compounds formed during photocatalysis [56].

The mechanism of VOC photodegradation considers the following steps in Equations (2)—(5):

Heterostructure +hv — e~ +h™ (2)

It (Heterostructure) + HyO — HO- + H* 3)

Oy + e~ (Heterostructure) — -Oy— 4)
CH3CHO/HyCO + HO- + -05 — xCOy + yH,0 ®)

The kinetic evaluation was performed using the simplified Langmuir-Hinshelwood
mathematical Equation (6), [64]:
C
In — = —kt
ires (6)
The results (Figure 5) show that the photocatalytic activity of CuS/SnO,/WOs het-
erostructure was 3x faster than that of WO3; and 2x faster than SnO,/WO3 for ac-
etaldehyde removal. Similar results were observed for formaldehyde removal, where
the CuS/SnO, /WOj3; photocatalytic activity was 2.9 x faster than that of the WOj3 single-
component sample and 1.8 x faster than that of the SnO, /WOj3; sample. The small difference
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between the constant rates of the VOCs removal may be influenced by the chemical com-
patibility with the photocatalysts interface as well as oxidative species development during
the irradiation. The R? factor is equal to or higher than 0.99, confirming that the model is

representative regardless of the photocatalyst or pollutant molecule.
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Figure 4. Photocatalytic removal of (a) acetaldehyde and (b) formaldehyde, and CO, evolution from
(c) acetaldehyde and (d) formaldehyde degradation.
Table 3. Photocatalytic efficiency comparative results on VOC removal.
. Pollutant Type and Radiation Type Photocatalytic Efficiency
Materials Concentration and Intensity and Degradation Time Ref.
. Acetaldehyde, 25 ppm . 42%, 160 min
(rGO}-TiO; o-xylene, 25 ppm Vis, 200 W 54%, 160 min (571
Ag@TiO, Acetaldehyde, 500 ppm UV, 260 W 72%, 4.8 min [58]
Carbon quantum dots/TiO; Acetaldehyde, 500 ppm Vis, 400 W 30%, 120 min [59]
Rutile TiO, Acetaldehyde, 50 ppm Vis, 260 W 65%, 65 min [60]
Sn-CaSn(OH)g(m) Formaldehyde, 100 ppm UV, 300 W 30%, 60 min [61]
Doped TiO, Formaldehyde, 37% LED, 25.7 W/m? 43%, 120 min [62]
Bi;M0QOg4-TiO/diatomite Formaldehyde, 35 mg/ m? Vis, 300 W 50%, 300 min [63]
CuS/Sn0O, /WO3 Acetaldehyde, 170 ppm . 69.2%, 720 min This
Formaldehyde, 170 ppm UV-Vis, 300W 78.5%, 720 min work

The reusability evaluation was undertaken in three cycle assessments (Figure 6) using
the same testing conditions. The starting point of each cycle can present small variations
due to the differences in reaching the absorption—-desorption equilibrium. The results
indicate a negligible variation of the photocatalytic activity (less than 2% abatement) for
both acetaldehyde and formaldehyde removal. The stability of the photocatalytic activity
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indicates that the samples can be used in long-term photocatalytic applications without
significant changes in the pollutant removal efficiency.
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Figure 5. Kinetics of (a) acetaldehyde and (b) formaldehyde photodegradation.
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Figure 6. Reusability evaluation of the photocatalytic activity in three cycle assessments for
(a) acetaldehyde and (b) formaldehyde removal.

2.2.2. Heterostructure Photocatalytic Mechanism

Understanding photogeneration and mobility mechanism of the charge carriers inside
the CuS/Sn0O, /WO3 heterostructure will help to optimize and improve photocatalytic ac-
tivity. The band energy diagram (Figure 7a) was obtained by considering the experimental
values of the heterostructure band gap energy components (Figure 7b—d) and estimated
based on the Wood and Tauc model. The band gap may submit a minor shift during the
heterostructure development. The current methodology follows the description in the liter-
ature [65-67] and considers the band gap changes in the heterostructures internal energy
field developed during the irradiation. The diagram includes the energy band position
based on Equations (7)—(10), which consider several key parameters: E,—represents the free
electron energy vs. hydrogen; x i (€V)—represents the absolute cationic electronegativ-
ity; Xcation (P.u.)—represents the cationic specific electronegativity where P.u. corresponds
to the Pauling units; E;—represents the band gap energy; and Xsemiconductor—Trepresents the
electronegativity of each semiconductor:

EvB = Xsemiconductor — Ee + 0~5Eg (7)

Ecp = Evp — Eq (8)
Xsemiconductor (eV) =0.45 x Xcation (EV) +3.36 (9)
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Figure 7. Heterostructure mechanism and absorption (a), and components band gap values (b—d).

The diagram can be described as a Z-scheme charge carrier transfer mechanism where
the photogenerated electrons from the CuS conduction band (—0.41 eV) will temporarily
migrate to the SnO, conduction band in order to be transferred to the WO3; conduction
band (+0.16 eV). Due to their potential, the electrons generated from the tin oxide and
tungsten oxide conduction bands during irradiation cannot participate in the production
of super-oxidative species (-O, ). In the same way, the holes from the CuS valence band
(+1.39 eV) generated during irradiation are not involved in the formation of oxidative
species (-OH). The major parts of these charges will recombine without influencing the
photocatalytic process [68,69]. However, the electrons from the CuS conduction band, and
the holes from the SnO; (+2.51 eV) and WOj3 (3.46 eV) valence bands generated during
the light irradiation, have stronger redox abilities and are able to avoid recombination
due to the electric field present in the charged separation area. The mobility of the charge
carriers through the heterostructure is sustained by the interface of good semiconductors
developed during their synthesis, causing a combined drift and diffusion effect.

3. Materials and Methods
3.1. Materials Synthesis and Heterostructure Deposition
3.1.1. Heterostructure Powder Synthesis

A three-step sol-gel method was used to develop the heterostructure, followed by
thermal treatments corresponding to each component (Figure 8).

Step 1. WO3 powder was synthesized using a precursor based on 0.9 mol hydrated
tungsten hexachloride (WCly.2H,0O, 98.6%, AcrosOrganics, Gell, Germany) dissolved in
a mixed solvent of 4.6 mol absolute methanol (CH4O, 100%, Sigma Aldrich, Munich,
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Germany) and 3.2 mol of 2-propanol (C3HgO, 100%, Sigma Aldrich, Munich, Germany).
A yellow, homogenous solution was formed after 280 min of magnetic stirring. A slow
addition of 0.31 mol sodium hydroxide (NaOH, 99.98%, Honeywell, Charlotte, NC, USA)
was used to induce gel development. The relative pH of 11.5 was obtained during the
NaOH addition, which works as a reducing agent and promotes condensation to form the
gel. Adding too much NaOH stabilized the anions, and the formed gel may be redissolved.
The gel was then preserved in the dark for 16 h, and the yellow precipitate (Figure 8—Step 1)
was centrifuged. The final powder was thermally treated at 400 °C for 3.5 h.
¥/

1 4

Figure 8. Powder and film samples.

Step 2. SnO,/WO3; powder was obtained by dispersing the previously obtained
WO3 powder into a precursor composed of 0.9 mol tin tetrachloride (SnCly, 99.8%, Sigma
Aldrich, Munich, Germany) dissolved in 3.8 mol of 2-propanol (C3HgO, 100%, Sigma
Aldrich, Munich, Germany). The mixture was covered and magnetically stirred for 240 min
to ensure the WOj particles were uniformly dispersed into the SnO, precursor. Then,
0.20 mol of sodium hydroxide (NaOH, 99.98%, Honeywell, Charlotte, NC, USA) was added
drop by drop until a yellowish-white precipitate was obtained. The relative pH of the sol-
gel was 11.3, where NaOH works as a reducing agent. The precipitate (Figure 8—Step 2)
was centrifuged and annealed at 380 °C for 6 h.

Step 3. CuS/SnO, /WOs heterostructure was developed by inserting the previously
obtained SnO,/WO; powder into a solution containing 0.27 mol of copper nitrate (99.7%,
Cu(NOs3),, Scharlau, Barcelona, Spain), 0.6 mol of sodium thiosulfate (99.8%, NayS,03,
Scharlau, Barcelona, Spain) and deionized water. After 50 min of magnetic stirring, the
obtained gel was preserved in a dark room for 5.5 h until complete precipitation was
achieved. After centrifugation, the brown powder still contained intermediary products
(CuS,03 and Cu;5,03) and was heated at 130 °C in a ceramic-based capsule containing
a sulfur (sulfur, 99%, Sigma Aldrich, Munich, Germany) atmosphere. The dark powder
(Figure 8—Step 3) was cooled at a rate of 5 °C/h until it reached room temperature.

3.1.2. Film Deposition

The heterostructure films (Figure 8—Step 4) were developed using the cold spray
deposition technique. The spray precursor was obtained by dispersing 40 mg of powder
(WO3, SnOy/WO3 and CuS/SnO,/WO3) in a 40 mL mixture of absolute ethanol by an
ultra-sound bath. Triton X was added (0.1 mL) into the precursor, and the mixture was
stirred for 60 min. The microscope glass substrate (2 x 2 cm? pieces) was firstly degreased
with surfactants. Then, the substrates were cleaned by successive immersion in ethanol and
acetone. The clean substrates were pre-heated at 40 °C for 100 min, and then the precursor
was sprayed at 0.35 bars. Breaks of 15 min were observed between each deposition sequence
in order to allow solvent evaporation. For each microscope glass substrate, 0.02 g of powder
was used to obtain the coating.
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3.2. Photocatatalytic Experiments

The photocatalytic experiments were conducted in a cylindrical quart air-proof reactor.
The UV-Vis light irradiance was provided at 300 W Xenon lamp intensity. The distance
between the lamp and the sample was 5 cm, and the irradiance on the sample surface was
28 mW/cm?. A heterostructure sample of 2 x 2 cm? was inserted into the reactor, and
dry air was used to purge the reactor chamber at a continuous flow rate for 35 min. When
the reactor was closed, the acetaldehyde or formaldehyde was injected (170 ppm), and
the system was kept in the dark for 2 h to reach the absorption—-desorption equilibrium.
Then, the samples were continuously exposed to light irradiation for 12 h, and the gas
concentration was evaluated hourly using gas chromatography.

3.3. Materials Characterization

The presence of crystalline structures was evaluated with an X-ray diffractome-
ter (Rigaku, Miniflex X-ray diffractometer, Tokyo, Japan) using a 40 kV CuK« source
(I=1.54 A, 100 mA). The morphology of the samples was investigated at an accelerated
voltage of 10 kV in a high-vacuum regime using scanning electron microscopy (SEM, 5-3400
N-type 121 II Hitachi model, Tokyo, Japan). Field-emission scanning electron microscopy
(FESEM, SU8010, Fukuoka, Japan) was also involved in the morphological investigations.
The active surface area and pore size were evaluated by N, adsorption—desorption isotherm
analysis (Tristar II Plus, Micromeritics, Georgia, GA, USA) with a porosimeter. The het-
erostructure components band gap was investigated using UV-Vis spectrometry (Lambda
950, Perkin Elmer, Waltham, MA, USA). The VOCs (acetaldehyde and formaldehyde)
and CO; concentrations were measured by gas chromatography (GC-2014, Shimadzu,
Maryland, CO, USA).

4. Conclusions

A Z-scheme heterostructure based on CuS/SnO,/WO3; was developed in three sol-gel
steps, using the metal oxides as nucleation sites for the following components. The final
powder was used to prepare the precursor required for film deposition by spray deposition.
The metal oxide samples exhibit crystalline structures and relatively similar crystallite
sizes without any evidence of non-stoichiometric compounds. The WOj3 single-component
sample morphology consists of fibers that serve as the substrate for SnO, development.
The CuS/Sn0,/WOj3 heterostructure possesses the highest active surface (83.4 m?/g) and
is characterized by a dense morphology with grains of various shapes and sizes.

The photocatalytic activity evaluation indicates that the WOj3 single-component sam-
ple is able to remove 41.1% of acetaldehyde (64.9 ppm) and 52.5% of formaldehyde
(81.4 ppm). However, the CuS/SnO,/WOs3 heterostructure exhibits a superior photo-
catalytic activity compared with other reported values, due to larger light spectrum ab-
sorption and a lower charge carrier recombination rate, enabling the removal of 69.2% of
acetaldehyde and 78.5% of formaldehyde. The reusability evaluation shows a negligible
variation of the photocatalytic activity after three cycle assessments for both acetaldehyde
and formaldehyde removal. During light irradiation, the heterostructure benefits from the
redox ability of the CuS conduction band electron and the SnO, /WOs3 valence band holes,
which can generate the oxidative species required for the removal of VOCs. Optimizing
the heterostructure photocatalytic efficiency toward the VOCs is necessary and requires
intrinsic changes to improve the photogeneration and mobility of charge carriers.
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