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Abstract: Regulatory processes in biology can be re-conceptualized in terms of logic gates, analogous
to those in computer science. Frequently, biological systems need to respond to multiple, sometimes
conflicting, inputs to provide the correct output. The language of logic gates can then be used to
model complex signal transduction and metabolic processes. Advances in synthetic biology in turn
can be used to construct new logic gates, which find a variety of biotechnology applications including
in the production of high value chemicals, biosensing, and drug delivery. In this review, we focus on
advances in the construction of logic gates that take advantage of biological catalysts, including both
protein-based and nucleic acid-based enzymes. These catalyst-based biomolecular logic gates can
read a variety of molecular inputs and provide chemical, optical, and electrical outputs, allowing
them to interface with other types of biomolecular logic gates or even extend to inorganic systems.
Continued advances in molecular modeling and engineering will facilitate the construction of new
logic gates, further expanding the utility of biomolecular computing.

Keywords: logic gate; allostery; enzyme computing; DNA computing; protein engineering; metabolic
engineering; enzyme cascade

1. Introduction

Organisms have evolved a variety of mechanisms to respond, communicate, and
adapt to their environments. For example, fundamental cellular processes including
transcription and translation are highly regulated. Protein function, especially enzyme
function, is often modulated by the concentrations of metabolites and signaling molecules.
The activity of many enzymes depends not just on the concentration of the substrate, but
on other metabolites that bind to allosteric sites, allowing for more complex regulation.
The interconnected web of the reactions and regulation involved in metabolism can be
conceptualized as a circuit of logic gates, analogous to a computer, where each individual
reaction is a logic gate that produces output molecules in response to input molecules. In the
case of an enzyme allosterically regulated by metabolites, the “decision” to produce more
or less of a given metabolite depends on the concentration of the metabolites that control
the activity of the enzyme. As such, biological regulation can be re-conceptualized in terms
of logic gates, which then have a wide variety of biotechnology applications, including
in synthetic biology for the optimized production of high value chemicals (e.g., [1,2]), for
engineering of biosensors that sense multiple analytes (e.g., [3–5]), and for the programmed
delivery of therapeutics based on biomarkers (e.g., [6,7]). In these applications, synthetic
biological logic gates are often designed to interface with the existing biochemical logic gates
in the cell. Here we provide some historical background for understanding biomolecular
logic gates, outline recent work conceptualizing allosteric enzymes as logic gates, describe
how enzymes (and their associated chemical reactions) can be engineered to behave as
logic gates in response to biological inputs, and finally expand the discussion to nucleic
acid-based logic gates, where allosterically regulated DNA-based enzymes (DNAzymes)
can play important roles.
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1.1. Fundamentals of Logic Gates

Logic gates are the basic building blocks of computers. In electronic Boolean logic gates,
a low voltage/current is 0 and a high voltage/current is 1. This concept can be expanded
to chemical reactions, where a low signal is 0 and a high signal is 1. Although the inputs
and outputs of a molecular logic gate are not truly binary, molecular circuits have been
designed to behave closer to binary logic gates with a sigmoidal response to inputs [8–12],
though such behavior is difficult to apply generally. In living cells, biomolecules sense
and transmit signals, behaving as complex circuits made of logic gates [13,14]. It has
been shown theoretically that a series of chemical reactions occurring in solution without
compartmentalization can be used to create logic circuits of arbitrary complexity [15]
enabling mathematical operations to be carried out [16], although for multi-component
systems noise reduction techniques may be necessary [17,18]. While our focus in this review
is on idealized binary biomolecular logic gates, logic circuits in synthetic biology can be
more generally understood using the theoretical framework of analog circuits to take into
account the noise and leakiness that occur in real molecular systems [19,20].

A logic gate returns an output based on one or more inputs (Table 1). The simplest
logic gate is the YES (or identity (ID)) gate, where the output is the same as the input. The
YES gate is trivial to implement on its own but can be used as part of more complex logic
operations. The NOT gate is the inverse of the YES gate, where the output is the opposite
of the input. The YES and NOT gates can be implemented in biomolecular systems when a
signal based on the product of a chemical reaction depends on the presence or absence of
a reactant. The AND gate results in an output of 1 only if both inputs are 1. The OR gate
results in an output of 1 if one or both inputs are 1. The AND and OR gates are the most
commonly used biomolecular logic gates because of their relative simplicity. The NAND
and NOR gates are the same as the AND and OR gates but with the output inverted. The
XOR gate has an output of 1 only if one of the inputs, but not both, is 1. The NXOR gate
is an XOR gate with inverted output. The NAND and NOR logic gates, while difficult to
implement using biomolecules, are functionally complete operations, meaning they can be
combined to produce any other logic operation. The inhibit gate (INH) describes a system
in which the output is 1 when input A is 1, but is 0 when input B is 1. For example, if
input A is the substrate for an enzyme and the output is the reaction product, input B is an
inhibitor of the enzyme. The imply gate (IMP) is an INH gate with the output reversed. A
summary of the fundamental logic gates and biomolecular examples is provided in [21].

Table 1. Fundamental Boolean logic gates.

Input Values Output Values

A B AND OR INH XOR NAND NOR IMP XNOR

0 0 0 0 0 0 1 1 1 1
0 1 0 1 0 1 1 0 1 0
1 0 0 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0 1 1

1.2. Early History of Biomolecular Logic Gates

A formal conception of chemical reactions as logic gates was published in 1961 [22].
Molecular logic gates have been developed for small molecules, but we will not focus on
that work here and refer readers to other reviews in this area (e.g., [23–27]). In a biolog-
ical context, the concept of molecular logic gates was initially applied to transcriptional
regulation of enzyme activity [28,29]. In the 1980s, Okamoto and co-workers [30,31] ap-
plied the previously developed mathematical framework [32] directly to enzyme-catalyzed
reactions. A decade later, the switching between metabolic pathways involving glucose
was conceptualized by logic gates, and the dependence of the sharpness of transition
between logical states on enzyme kinetic parameters was analyzed [33]. In one of the first
experimental demonstrations of an enzyme-based logic gate, an AND gate was created



Catalysts 2022, 12, 712 3 of 21

by conformational switching of enzyme-conjugated azobenzene derivatives by light and
oxidation/reduction of an inhibitor to control α-chymotrypsin activity [27,34]. In another
experimental example, an XOR gate was realized via the Ca2+ and Mg2+ dependence of
malate dehydrogenase activity [35]. Willner and colleagues [36,37] developed a half-adder
and half-subtractor from parallel XOR and AND gates using horseradish peroxidase, glu-
cose dehydrogenase, glucose oxidase, and catalase in the presence of reduced (NADH)
and oxidized (NAD+) forms of nicotinamide adenine dinucleotide. The first experimental
demonstration of consecutive enzyme-based logic gates was in 2006, where a system of
acetylcholine esterase, choline oxidase, microperoxidase-11, and glucose dehydrogenase
was used to create logic circuits composed of concatenated AND, OR, and XOR gates [38].
In most examples of enzyme-based logic gates, output signals have been observed by spec-
trophotometry, although other forms of output are possible, including detecting changes in
pH as an electrical signal [39,40] and interfacing to DNA computers [41]. Other methods for
sensing outputs and additional examples are provided in [42]. We note that there are many
strategies for designing biomolecular logic gates and circuits, including modulation of
protein–protein interactions or dimerization [43,44] and regulation of transcription [45,46]
including distributed computing across populations of cells [47,48]; however, in this review,
we will focus primarily on catalyst-based logic gates that feature protein enzymes, nucleic
acid enzymes, and catalytic DNA strands.

2. Protein-Based Logic Gates
2.1. Allosteric Enzymes as Logic Gates

In this review, we focus on recent work using biological catalysts to create biomolec-
ular logic gates. Our own work has focused on understanding allostery and conforma-
tional dynamics of enzymes (e.g., [49–52]), which has implications in the development of
biomolecular logic gates. Allosteric regulation can allow enzymes to behave as biomolecu-
lar logic gates [33]. For example, pyruvate kinase from Mycobacterium tuberculosis that uses
adenosine monophosphate (AMP) and glucose-6-phosphate (G6P) as synergistic allosteric
activators has been conceptualized as acting as an OR gate to regulate energy and glucose
metabolism [53]. Binding of AMP and G6P induces similar allosteric pathways that likely
help to regulate the active site. The sigmoidal response of enzymes that are allosterically
activated by substrate binding can be useful for reducing noise [54]. Allosteric enzymes
that follow the Monod–Wyman–Changeux (MWC) model of allostery, in which concerted
conformational transitions occur across enzyme subunits, have been analyzed as logic gates
and single-output molecules with two inputs have been found to be capable of producing
YES, NOT, AND, OR, NOR, or NAND gates depending on the system [55,56] (Figure 1).

2.2. Engineered Protein Logic Gates

Chimeric proteins have been created to act as logic gates. Ostermeier’s group has designed
fusions of β-lactamase (BLA) and maltose-binding protein (MBP) that rely on a large confor-
mational change induced by the binding of maltodextrins to activate β-lactamase [57–59]. The
sequence for BLA was randomly divided and these two parts were inserted around a MBP
sequence to mimic genetic recombination and proteins with reversible maltose-dependent
BLA activity were identified [57]. This MBP-BLA fusion protein can be conceptualized
as a variety of logic gates depending on the input. It functions as a YES gate for maltose,
as BLA activity occurs in the presence of maltose but not in its absence. It is an OR gate
for maltose and maltotriose, as either maltodextrin activates BLA activity. It is an IMP
gate for maltose and β-cyclodextrin because β-cyclodextrin binding results in only a small
conformational change that does not confer BLA activity [60] (Figure 2). They subsequently
used directed evolution to select for sucrose-dependent BLA activity, creating an OR gate
with sucrose and maltose as inputs [58]. They then engineered disulfide bonds into the
MBP-BLA fusion to lock it in either the active/closed or inactive/open state in the absence
of a reducing agent. With disulfide bonds to lock MBP-BLA in the closed/active state, the
protein behaves as an IMP gate with maltose and the reducing agent as inputs; that is, in
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the absence of a reducing agent this variant is active, but in the presence of a reducing
agent maltose is required for activity. With disulfide bonds to lock the protein in the
open/inactive state, the protein acts as an AND gate for maltose and the reducing agent i.e.,
protein only has a chance to be in the active state in the presence of a reducing agent and
needs maltose to be activated. With disulfide bonds in the hinge region and mutations that
destabilize the open/inactive state, the BLA activity is regulated by a reducing agent but
not maltose, converting it from a YES gate for maltose to a YES gate for the reducing agent.
If an oxidizing agent is used as an input instead of a reducing agent, the IMP gate becomes
an OR gate and the AND gate becomes an INH gate [60]. In general, using a reducing
agent as an input for enzymatic logic gates may be useful for therapeutics by activating or
inactivating enzymes upon entry to the cytosol.
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highest activity, which could be conceptualized as an AND gate. However, binding of Y alone leads 
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with permission from Gorman, S.D. and Boehr, D.D. 2019. Energy and enzyme activity landscapes 
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4069. Copyright 2019 American Chemical Society [49]. 
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Figure 1. Allosteric enzymes as logic gates. (a) Binding of different allosteric modulators (L1 and
L2) can result in different functional output (i.e., 0 for no or low enzyme activity; 1 for high enzyme
activity). This panel is reprinted with permission from Galstyan, V., Funk, L., Einav, T., and Phillips,
R. 2019. Combinatorial control through allostery. J. Phys. Chem. B., 123, 2792–2800. Copyright 2019
American Chemical Society [56]. (b) The functional landscape of Saccharomyces cerevisiae chorismate
mutase (ScCM) is dependent on the concentration of the allosteric modulators tryptophan (W) and
tyrosine (Y). ScCM is a homodimer in which the allosteric site binds W or Y (i.e., binding is mutually
exclusive at each site). When ScCM binds Y at one site and W at the other site, ScCM displays the
highest activity, which could be conceptualized as an AND gate. However, binding of Y alone leads
to allosteric inhibition, providing complexity beyond the binary logic gates. This panel is reprinted
with permission from Gorman, S.D. and Boehr, D.D. 2019. Energy and enzyme activity landscapes of
yeast chorismate mutase at cellular concentrations of allosteric effectors. Biochemistry, 58, 4058–4069.
Copyright 2019 American Chemical Society [49].
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Figure 2. Redesign of logic gates using engineered disulfide bridges. The activity of BLA (blue) is
dependent on the ability of MBP (red) to bind to maltose. In the AND gate design, a disulfide bond
(green) holds the MBP domain in an open conformation, preventing the conformational change in
MBP necessary to activate BLA. Addition of the DTT reducing agent breaks the disulfide bond to
allow the MBP conformational change and BLA activation to occur. In the IMP gate design, the
engineered disulfide bond now holds MBP in the closed conformation, such that BLA is always
activated unless DTT is present and maltose is absent. This figure is adapted and reprinted with
permission from Choi, J.H. and Ostermeier, M. 2015. Rational design of a fusion protein to exhibit
disulfide-mediated logic gate behavior. ACS Synthetic Biology, 4, 400–406. Copyright 2015 American
Chemical Society.

Another clever system that has been engineered to behave as a logic gate is pyrrolo-
quinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) fusion proteins, in
which PQQ-GDH is fused to a reporter domain that binds a given ligand. GDH activity is
allosterically regulated by ligand binding to the reporter domain. An advantage of using
PQQ-GDH is that PQQ-GDH catalyzes a redox reaction, allowing the signal to be easily
incorporated into an electronic circuit. Guo and colleagues [61] converted PQQ-GDH into
an allosteric enzyme regulated by peptide binding by inserting calmodulin (CaM) at a loop
by the glucose binding site, reducing GDH activity in the absence of peptide (Figure 3).
To prevent activation at low peptide concentrations, they engineered calmodulin binding
peptide (CaM-BP) to have a lower affinity for CaM and fused it with the FRB protein.
They then fused the GDH-CaM to FK506 binding protein (FKBP), which binds FRB in the
presence of rapamycin. By increasing rapamycin concentration, FKBP binds FRB, which
then causes the local concentration of CaM-BP to increase, activating GDH. In this way,
they were able to regulate the activity of GDH by adjusting the rapamycin concentration.
They also showed that a variety of both ligands and reporters can be used. For example,
they fused CaM-BP with different antibody domains to detect the proteins α-amylase,
thrombin-activatable fibrinolysis inhibitor, clostridium TcdaA toxin, and interleukin-23.
To demonstrate that different reporters can be used, instead of GDH activity they also
used dihydrofolate reductase, green fluorescent protein (EGFP), and Nanoluciferase as
reporters. Using the synthetic peptide receptor Clamp instead of CaM resulted in ligand
binding turning off enzyme activity instead of turning it on. A further layer of regulation
can be added to the CaM fusion system by adding a calmodulin domain to the CaM-BP to
sequester CaM-BP that can be removed by protease cleavage to activate calmodulin [62].
The CaM fusion systems described here can be considered as four-input logic gates with
analyte, substrate, cofactor, and Ca2+ as inputs [63], although for biosensing applications
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the substrate, cofactor, and Ca2+ are always present so it effectively behaves as a YES gate
for the analyte.
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Figure 3. Calmodulin-glucose dehydrogenase (CaM-GDH) fusion protein that acts as an AND gate
with rapamycin and glucose as inputs. Upon rapamycin binding, calmodulin binds calmodulin-
binding peptide (CaM-BP). Binding of CaM-BP results in a conformational change in GDH, activating
the enzyme and allowing it to catalyze the oxidation of glucose and produce an electrical signal as
output. The electrical signal is produced only in the presence of both rapamycin and glucose.

Subsequent work by the Katz group [64] used the electrochemical signal generated by
the PQQ-GDH-Clamp enzyme’s reduction of glucose to release molecules into solution.
They set up an IMP logic gate using Clamp’s peptide and a PQQ-GDH without Clamp
as input. In this system, PQQ-GDH-Clamp, glucose substrate, and cofactor were always
present in the solution. Because GDH-Clamp is inhibited by peptide, but the GDH without
Clamp can still reduce glucose in the presence of substrate, the reaction occurred for all
cases except when both peptide and PQQ-GDH were absent. A current was produced by
either conjugating the two PQQ-GDH enzymes to carbon nanotube buckypaper electrodes
via an ester linker that both reacts with protein lysine residues and binds to the nanotubes
or mediating electron transfer from the solution via 2,6-dichlorophenolindophenol (DCPIP)
and phenazine methosulfate (PMS) [65]. This current was then used to drive the release
of a molecule into the solution. The current generated by the reduction of glucose was
coupled with the reduction of water catalyzed by bilirubin oxidase, which resulted in a
local pH increase leading to the hydrolysis of an ester. The cleavage of the ester released
the molecule into the solution. While they released a fluorescent dye, in principle any
molecule that can be conjugated to the carbon nanotube could be released. Combined
with the customizable GDH-CaM fusion proteins, the ability to release molecules via an
enzyme-catalyzed reduction reaction can be used to release molecules or detect electric
current in response to a wide variety of analytes.

Dokholyan’s group constructed an OR gate in live cells by engineering focal adhesion
kinase (FAK) to respond to chemical and optical inputs [66]. FAK is a kinase involved in
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cytoskeletal regulation and is allosterically regulated by the binding of regulatory proteins
in its FERM domain. They inserted a previously constructed regulatory domain that allows
for control of FAK activity via the binding of rapamycin [67], with the enzyme in an open
active conformation in the presence of rapamycin. To regulate the enzyme by optical
irradiation, they inserted a Light Oxygen Voltage 2 (LOV2) domain, which undergoes a
conformational change in response to blue light, into a loop in the regulatory FERM domain
determined to allosterically couple to the active site by computational analysis [68]. Upon
irradiation, the kinase switches to an inactive closed conformation. First, constructs with
the rapamycin-binding domain and LOV2 domain inserted separately were tested in HeLa
cells and found to undergo regulation as expected. Because FAK activity results in the
formation of large focal adhesions, the size of focal adhesions was used as the output for the
logic gate. Then, light- and dark-stabilized variants of FAK with both allosteric regulatory
domains inserted were used to test the logic gate behavior (due to phototoxicity, it was not
possible to apply different combinations of rapamycin and light inputs at the same time.).
In the dark, FAK was always active independent of rapamycin concentration. In the light,
FAK was activated by addition of rapamycin. Therefore, when the rapamycin and absence
of blue light are considered inputs and FAK activity is the output, the system behaves as an
OR gate.

Ostermeier’s group [69] used a pH-sensitive variant of the membrane protein listeri-
olysin O, which forms pores at low pH, to selectively release molecules from liposomes. By
conjugating a designed ankyrin repeat protein (DARPin)-based inhibitor to the membrane,
they controlled pore formation by releasing the inhibitor in response to either a reducing
agent or protease cleavage. With pH, protease, and reducing agent as inputs, the system can
be conceptualized as an AND-OR gate, where low pH in combination with either a protease
or reducing agent results in pore formation. Under these conditions, the fluorescent probe
calcein was released from the vesicles. It is noted that the enzyme serves as an input here,
rather than as a gate itself.

2.3. Biosensors Based on Enzymatic Logic Gates

The chemical reactions catalyzed by a series of different enzymes can also be con-
structed to act as logic gates (e.g., see Figure 4). For example, Katz and Privman [70]
used the controlled release of hydrogen peroxide (H2O2) in response to a logic gate made
of a four-level enzyme cascade to release molecules from an Fe3+ cross-linked alginate
hydrogel. Prior to this work, only two enzymatic reactions were able to be carried out in
sequence with the enzymes immobilized on the hydrogel [71]. Their system consisted of
four enzymes deposited on the interface of the alginate hydrogel film and the solution,
which could be conceptualized as a series of interconnected AND gates where the inputs
are the reactants in different steps of the cascade that are not products of a previous step.
The first enzyme in the cascade was amyloglucosidase (AMG), which catalyzes the hydrol-
ysis of maltose to two glucose molecules. The next enzyme was glucose dehydrogenase
(GDH), which oxidizes glucose and reduces NAD+ to NADH. The next enzyme was lactate
dehydrogenase (LDH), which catalyzes the reduction of pyruvate into lactate with NADH
as a cofactor. The final enzyme was lactate oxidase (LOx), which catalyzes the oxidation of
lactate by O2 to produce pyruvate and H2O2. The hydrogen peroxide then diffuses into
the hydrogel and destroys it via a free radical mechanism, releasing the reporter molecule.
The reporter molecule used was a fluorescent DNA, which in principle could be used as an
input to DNA logic gates (e.g., see below) or could be a small molecule drug or input for
downstream enzymatic reactions.

Katz’s group also created a reversible CNOT logic gate using two enzymatic reactions,
resulting in pH changes in opposite directions [72]. First, a XOR gate was created using two
enzymes, urease and esterase, conjugated to the surface of a sensitive pH detector. Urease
catalyzes the hydrolysis of urea, resulting in the production of ammonia and an increase in
pH, while esterase catalyzes the hydrolysis of ethyl butyrate, resulting in the production of
butyric acid and a decrease in pH. In the presence of either urea or ethyl butyrate, the pH
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at the surface of the detector changes drastically and a large absolute value of pH change is
considered an output of 1. However, when urea and ethyl butyrate are present together,
a weak acid and weak base are produced simultaneously, resulting in only a small pH
change and an output of 0. In this way, an XOR gate was created. A similar XOR gate
was also constructed using urease and penicillinase immobilized on a pH-sensing device,
with urea and penicillin as inputs [73]. This XOR gate was run in parallel with a separate
detector with only esterase conjugated to it. When the esterase-only detector senses a large
pH change, ethyl butyrate is present, resulting in a YES gate. When considered in parallel
with the XOR gate, the combined logic circuit has two inputs and two outputs, with each
combination of outputs corresponding to a unique combination of inputs; hence, the logic
gate is reversible. They also constructed a XNOR gate, where the output is 1 only when
both inputs have the same value, by using pH as an input [74]. They used glucose oxidation
by PQQ-GDH as the gate, with the enzymatic activity depending on the pH. After mapping
the enzyme activity as a function of pH and pH as a function of acetic acid and ammonia
concentration, they were able to define thresholds to convert the enzyme activity into a
binary output. By controlling the pH via concentration of the input molecules, the XNOR
gate was made. Together, logic gates that use pH as an output and input can be combined
to construct multi-layered enzyme logic circuits.
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Figure 4. An enzyme cascade to model an XOR gate. When both inputs are provided (EtOH/ATP
and Glc/NAD+), the required substrate and cofactor are available for the ADH and HK enzymes,
resulting in the removal of the required substrate for the second series of enzymes, AOx and GOx, and
no production of H2O2. However, if only one of the inputs is provided, the EtOH or Glc substrates
for AOx or GOx, respectively, will be available for H2O2 production. The figure was adapted with
permission from [75].

Katz’s group created two other enzyme-based XOR gates. The first system consisted of
two sets of enzymes, with the second set of enzymes added after the first set of reactions was
given enough time to reach completion [75] (Figure 4). The first set of enzymes consisted
of alcohol dehydrogenase (ADH) and hexokinase (HK). ADH consumes ethanol (EtOH)
only in the presence of NAD+ and HK consumes glucose only in the presence of ATP. The
second set of enzymes consisted of alcohol oxidase (AOx) and glucose oxidase (GOx). AOx
uses EtOH to produce H2O2 and GOx uses glucose to produce H2O2. The production
of H2O2 is considered the output, as it is used by horseradish peroxidase to produce a
spectrophotometric signal. The system used two inputs: (1) EtOH and ATP and (2) glucose
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and NAD+. The key concept is that in the presence of both inputs, EtOH and glucose are
both fully consumed by the first enzyme set so that no H2O2 is produced after addition of
the second enzyme set. When only one input is added, the enzyme that would consume
either EtOH or glucose in the first set does not have its cofactor and so the EtOH or glucose
will be present in solution for the second enzyme set to use to produce H2O2. In the absence
of both inputs, there is no glucose or EtOH so no H2O2 is produced.

In a later work, Katz’ group constructed a different XOR gate to release nanoparticles
from an alginate hydrogel by the production of H2O2 [76]. Two enzymes, GOx and L-
glutamate oxidase (GluOx), were immobilized on the hydrogel surface. The solution
contained two more enzymes: PQQ-GDH and glutamate dehydrogenase (GluDH). The
two inputs to the XOR gate were (1) PMS (cofactor for GDH) and glutamate (substrate for
GluDH and GOx) and (2) NAD+ (cofactor for GluDH) and glucose (substrate for GDH
and GluDH). If H2O2 is produced at the surface of the hydrogel i.e., by GOx or GluOx,
the H2O2 decomposes the hydrogel to release a nanoparticle. In the absence of any input,
the nanoparticle is not released from the hydrogel because no H2O2 is formed. When just
NAD+ and glucose were present, the glucose could not be reduced by GDH without PMS,
so it was oxidized by GOx, producing H2O2 and releasing the nanoparticle. When just
PMS and glutamate were present, glutamate was oxidized by GluOx, again resulting in
the production of H2O2 and nanoparticle release. When both inputs were present (all four
molecules), glucose was reduced by the GDH in solution before it could be oxidized by
GOx on the hydrogel surface, preventing the production of H2O2. Similarly, the glutamate
was reduced by GluDH before it could be oxidized by GluOx, preventing the production of
H2O2. This system is a notable advancement over previous work, as the time-dependent
addition of enzyme is not required. The nanoparticle released from this system can in
principle be used for colorimetric sensing, as an input for further logic circuits, or for
targeted drug delivery.

2.4. Protease-Based Logic Gates

A number of biomolecular logic circuits have made use of proteases to control protein–
protein interactions and transcription. As these systems have been extensively reviewed in
recent articles [77–79], we will focus here on two strategies for constructing protease-based
cellular logic gates that rely on protein–protein interactions. Elowitz’ group developed
an elegant system of logic gates with viral proteases as inputs, called circuits of hacked
orthogonal modular proteases (CHOMP) [80]. The output comes from a target protein that
is activated or inactivated upon cleavage by a protease. The target protein is regulated by
being linked with a protease cleavage site to a degron so that in the absence of protease the
target is degraded. They created an AND gate by linking the target protein and degron by
two sequential protease cleavage sites for two separate proteases. They created an OR gate
by using two degrons with separate cleavage sites at the N- and C-termini of the target
protein so that either protease will lead to the degradation of the target. Negation was
achieved by using protease cleavage to reveal the degrons instead of removing them. To
achieve more complex regulation, the protease itself was split in half, constituted by two
leucine zipper domains that can be cleaved by a different, secondary protease. Moving
beyond binary logic gates, they created a bandpass circuit where target protein activity
increased over a period of hours before returning to the baseline over a day. The bandpass
circuit was constructed by using both activator and repressor proteases (cleaving one
degron, revealing another) and setting a threshold for the repressor protease by inactivating
it with a third protease. They applied the CHOMP system to develop a proof of concept
for a programmable therapeutic device by activating caspase-3 in cells with high levels of
active Ras. By fusing half of the split protease to Ras and the other half to a domain that
binds to activated Ras, they were able to reconstitute active protease in the presence of
active Ras. The protease then cleaved an engineered variant of caspase-3 that is localized to
the plasma membrane so that it is near the now Ras-associated protease, resulting in cell
death.
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Similar to the CHOMP system, split-protease-cleavable orthogonal-coiled-coil (SPOC)-
based logic circuits were developed, in which split proteases are reconstituted in human
cells by the formation of coiled-coils regulated by orthogonal proteases. In the absence
of protease, an autoinhibitory coil is covalently linked to a target coil that is linked to the
protein of interest (either a reporter or half of a split protease). Adding protease to cleave
off the autoinhibitory coil allows for a different coiled-coil to displace the autoinhibitory
coil. When this displacing coil contains the other half of a split protease, the protease
is reconstituted and can be used to cleave the linker of another coil, allowing for logic
cascades. Previously, this framework was used to construct an AND gate in an in vitro
translation system by using a protease to cleave between the target and autoinhibitory
helices [81] (Figure 5). Fink et al. expanded on this work by using human cell lines,
inducing dimerization of the coiled-coils by the addition of small molecules, and allowing
for negation by introducing cleavage sites between the split protease and the target coil.
They constructed a three-layer logic cascade using three orthogonal proteases, which in
principle could be extended with the addition of more orthogonal proteases or different
small molecules for inducing coiled-coil dimerization. Compared to other methods such as
CHOMP (Gao 2018) and transcription-based systems [82], SPOC is much faster, producing
the output within 5 min rather than hours.
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Figure 5. Split protein activation following protease addition. Here the firefly luciferase is separated
into a C-terminal (CFluc) and N-terminal half (NFluc), both containing additional helices that can
form a coiled-coil to bring both halves together to reconstitute the luciferase. This interaction can
only occur when the autoinhibiting coil is released through addition of the tobacco etch virus (TEV)
protease. Other reporter proteins can be similarly broken into two halves, including other proteases
to generate extended logic cascades. Reprinted with permission from Shekhawat, S.S., Porter, J.R.,
Sriprasad A., and Ghosh, I. 2009. An autoinhibited coiled-coil design strategy for split-protein
protease sensors. J. Am. Chem. Soc., 131, 15284–15290 [81].

3. Nucleic Acid-Based Logic Gates
3.1. Catalytic (Entropy-Driven) Toehold-Mediated Strand Displacement

While most catalysts in biological systems are protein enzymes, nucleic acids can also
catalyze reactions and undergo allosteric regulation, allowing for the construction of logic
gates. A common foundation for constructing logic gates with molecules of DNA in bulk
solution is toehold-mediated strand displacement. In this method, signals are carried by
single-stranded DNA with two recognition domains that can hybridize with the two strands
of the gate that the signal is associated with. Each gate consists of double-stranded DNA,
with one strand having a short overhang called a toehold in addition to the displacement
domain. Both domains are complimentary to an input strand. The input strand is single-
stranded DNA that is complimentary to the toehold and the displacement domain. It will
preferentially displace one of the strands of the gate by first hybridizing with the toehold
before proceeding by branch migration. After hybridizing with the toehold, the input
strand hybridizes with the displacement domain, displacing the other strand that was
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initially part of the double-stranded gate. The displaced strand, which contains a sequence
complementary to a different toehold than the displacing input strand, then proceeds as an
input for the next strand displacement reaction at the next gate in the circuit. Two-input
AND gates can be created by using the displacement of a strand by the first input to reveal a
toehold that the second input can use to displace the output strand (Figure 6). OR gates can
be created by having multiple single-input gates with the same output [83]. The outputs
from strand displacement cascades can be reported by the displacement of a DNA strand
with a fluorophore from its complement containing a quencher [84].
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Figure 6. Schematic of a toehold-mediated strand displacement AND gate. Input strands A and B
displace the complementary strands from the AND gate on either side of the output strand. The
output strand is released only when both input strands hybridize with the gate.

An extension of the toehold-mediated strand displacement method is the use of
toehold exchange and “Seesaw” gates (Figure 7). “Seesaw” gates rely on a “fuel” strand
that allows the input strand to be regenerated at the end of each cycle so that only a
low concentration of input strand is required to release all of the output strands from a
gate. After the input strand hybridizes with the gate, the “fuel” strand displaces the input
strand, allowing it to react with another gate and amplifying the input. Because the overall
reaction for toehold exchange does not include the input strand, the input strand can be
thought of as a catalyst for the displacement of the output strand by the fuel strand [85,86].
Double-stranded DNA that is complimentary to the input, called a threshold, can prevent
hybridization of the input with the gate until a given concentration of input has been
reached. Using thresholds and fuel together ensures that no output strands will be released
(i.e., the output is 0) until a minimum number of input strands have been displaced. For
any number of input strands above the threshold, the maximum number of output strands
will be released (i.e., the output is 1), allowing for binary behavior. Without any thresholds
or fuel, an integrating gate can be created where the output is simply the sum of any
number of inputs, where each input has a sequence complementary to the integrating
gate. AND and OR gates can then be constructed by placing an amplifying gate after
an integrating gate and setting the threshold appropriately, with an AND gate having
the threshold set above the maximum possible amount of one input. These logic gates
can be chained together to form circuits of arbitrary complexity using dual-rail logic to
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construct complex logic functions from only AND and OR gates, with NOT gates realized
by swapping the two wires of an input and output signal [87–89]. DNA logic gates can
be constructed in the solution phase or with the gates immobilized on a surface [90–93],
and can even output signals on a timer [94,95]. Huang and colleagues [96] expanded the
catalytic strand displacement mechanism described above to create complex logic circuits,
including three-input AND-AND and AND-AND-NOT gates as well as the first DNA-only
two-output comparator and Feynman gates.
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Figure 7. Schematic of toehold-mediated strand displacement using a seesaw gate. Different DNA
sequences are shown in different colors, with black representing regions that do not form base pairs.
Shades of the same color represent complementary sequences. First, the input strand hybridizes with
the toehold (pink). The input strand further hybridizes to the gate via branch migration and displaces
the initial complementary strand (black-blue-red). The fuel strand displaces both the output strand
and input strand. The input strand can then continue the cycle with another molecule of gate DNA.
The output strand can act as an input strand for a different gate.

3.2. Using DNAzymes as Part of Logic Gates

Instead of the toehold-mediated strand displacement mechanism described above,
logic gates can also be constructed by using strand displacement to allosterically regulate
the catalytic activity of DNAzymes [97–99] (Figure 8). Early work with DNAzymes used
the E6 DNAzyme, which cleaves a fluorogenic RNA substrate. The E6 DNAzyme can
have its catalytic site either blocked or revealed upon the binding of complimentary DNA
to a regulatory stem loop, with logic gates created by using multiple stem loops around
each catalytic site [83,100,101]. Multiple inputs and different fluorophores can be used,
allowing for more complicated circuits [101–110]. By using allosterically regulated DNA-
based ligases, the output of a logic gate can be oligonucleotides that can act as an input
for another logic gate, allowing circuits to be constructed from layers of logic gates [111].
Similar systems using RNA-based inputs or catalysts and DNA substrates have also been
developed [112–114], including systems that use substrate release to activate a downstream
DNAzyme by strand displacement [115,116] and systems that release small molecules [117].
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Figure 8. Schematic of a DNAzyme-based AND gate. Different DNA sequences are shown in different
colors, with black representing regions that do not form base pairs. Shades of the same color represent
complementary sequences. In the absence of input strands, the regulatory loops prevent the substrate
strand from binding to the active site (represented by a star) and being cleaved. Binding of both input
strands allows the substrate to bind at the active site, resulting in cleavage of the substrate strand.

3.3. Catalytic G-Quadruplexes for Visualizing the Output of DNA Logic Gates

G-quadruplexes, stacks of four planar guanine bases associated by Hoogsteen base
pairing stabilized by a metal ion that are found in G-rich sequences of nucleic acids, have
also been used as the basis for DNA-based logic gates. There is a large body of work
on using G-quadruplexes that respond to input DNA oligonucleotides [110,118–121] or
chemical conditions [122,123] by detecting the G-quadruplex via fluorescence, but our
focus in this review is on the use of catalytically active G-quadruplexes that form in
response to aptamer binding as part of logic gates. In these systems, a G-quadruplex
intercalates hemin to catalyze the reduction of H2O2, oxidizing a substrate to produce a
colored product or chemiluminescence analogous to horseradish peroxidase [124]. These
catalytic G-quadruplexes have been used for the detection of metal ions [125–127], small
molecules [128], and specific single-stranded DNA sequences. Catalytic G-quadruplexes
are particularly well-suited to determine the output of a DNA logic circuit because the
output can be detected visually without the need for potentially expensive equipment
and G-quadruplexes can be formed in multiple ways. G-quadruplexes can be released
from a duplex or triplex by strand displacement [129] or formed from two separate strands
in response to strand displacement [110,118] or input oligonucleotides [130]. A notable
example of a DNA-based logic gate for detection can be found in [131] (Figure 9). Yu
et al. used DNA aptamers that recognize protein biomarkers at the surface of extracellular
vesicles. The aptamers had an exposed toehold for hybridization with another strand of
DNA upon binding the proteins. After hybridizing, DNA is cleaved by an endonuclease,
releasing the DNA and allowing for signal amplification. One of the released DNA strands
hybridized with DNA conjugated to a gold electrode and the other hybridized with the
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first strand and formed a G-quadruplex with peroxidase activity, resulting in an electrical
signal only when both protein analytes were present.
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4. Discussion

The logic gates presented here that depend on protein-level regulation can be com-
pared against those that regulate at the level of transcription. In general, logic gates that
depend on protein-level regulation are faster than transcription-based logic gates, occurring
on the timescale of minutes rather than hours to days [46,132]. This is a major advantage
because biological processes such as glucose metabolism occur too quickly for efficient
regulation at the transcriptional level [132]. However, an advantage of transcription-based
approaches is that when the final output of the logic operations is the regulation of tran-
scription, a wider range of outputs are available. For example, in the cellular logic circuits
reviewed in this article, the outputs of the circuits were limited to fluorescence, activation
of a specific kinase that could be engineered to respond to light, and cleavage of an engi-
neered caspase. In contrast, transcription-based approaches can use proteases to release
transcription factors for virtually any gene [44,133].

Logic gates that rely on the detection of specific molecules, such as those presented
in Section 2.3, will not be as useful for performing logic operations in cells because they
are not based on generalizable principles and would experience interference from cellular
metabolites. The GHD-CaM fusion system presented in Section 2.2, however, can poten-
tially be very useful for biosensing applications because it can be used with antibodies for
the detection of virtually any protein of interest. Similarly, the protease-based methods
described in Section 2.4 are able to be modified to perform logic operators on a variety
of protein targets. The detection of protein can in principle be coupled with drug release,
although coupling the output of the logic gates with drug release in the manner described
in Section 2.3 would be challenging to achieve in a biological system.

Some of the logic circuits in this review ultimately release molecules from hydrogels
by the production of H2O2. These logic circuits could be combined with H2O2-releasing
hydrogels that have been developed for therapeutic applications such as wound heal-
ing [134,135]. Currently, the H2O2-releasing hydrogels release H2O2 from the oxidation
of glucose catalyzed by glucose oxidase. By using protein-based logic gates to regulate
glucose oxidase activity, such as in the work described in Section 2.3, the formation and
release of hydrogels can be regulated by logic gates. Similarly, catalytic G-quadruplexes
that catalyze the production of H2O2 could be used as alternatives to glucose oxidase in
these systems.
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DNA-based logic gates have several advantages over protein enzyme-based logic
gates for in vitro computations. One advantage is that they are easier to scale up due to the
relative simplicity of Watson–Crick base pairing, as complimentary DNA sequences with
well-understood displacement kinetics can be designed and synthesized much more easily
than allosterically regulated proteins or protein–protein interaction interfaces [136]. An
impressive example is reported in Cherry et al., where a DNA strand displacement-based
logic circuit was used to distinguish between two handwritten numbers on a 10 × 10 pixel
grid using 104 different DNA molecules [137]. A major disadvantage of using DNA for
molecular logic circuits over proteins is speed—the image recognition circuit took hours to
produce a result, on a similar timescale to transcription-based logic. Another disadvantage,
not unique to DNA, is that scaling up to more complex logic circuits is challenging due to
the large numbers of unique molecules needed and the extra time required to carry out the
calculations.

While there are many examples of protein-based enzymatic logic gates that have been
implemented in living cells [66,79,80,132], applications for DNA-based circuits integrated
into cells have been more limited. DNAzymes have been introduced into cells for gene
silencing and biosensing [138,139]. One of the major limitations is that DNA introduced
into cells is susceptible to cleavage by nucleases. One strategy for improving the stability
of DNAzymes, aptamers, and so on is to evolve the sequence with the desired activity in
biological fluids [138], but this is not feasible for complex DNA logic circuits where the
sequences must be carefully designed. There are many recent examples of DNA-based
biosensors where fluorescence outputs are used to detect multiple types of molecules
at the same time, including RNA and proteins at the cell surface [140–146]. Because
the output is fluorescence, these biosensors have not been used for downstream logic
processing. Chang et al. designed a DNA aptamer-based biosensor that forms a toehold
when both analytes are present at the cell surface, allowing for downstream biomolecular
logic processing [147]. Systems that use DNA logic circuits for delivery of therapeutics have
been proposed or supported by in vitro experiments, but have not yet been implemented
in cells. For example, a molecular device based on DNAzymes allosterically regulated by
glucose has been proposed for the management of diabetes [148], but such a device has not
been experimentally realized. In another example, an RNA-cleaving DNAzyme that can
cleave RNA to prevent the transcription of cancer-associated mRNA in response to high
concentrations of cancer marker RNA has been demonstrated to work in vitro [149] but
not yet in living cells.

Biomolecular logic gates are likely most useful for diagnostics, while therapeutic
applications are more challenging. For DNA-based biosensors, a logic circuit with inputs
based on aptamer binding and an electronic output that relies on G-quadruplex formation
as the output similar to that used by Yu et al. [131] is the most promising for diagnostics
based on cell surface markers. While logic gates are not strictly necessary for the detection
of multiple analytes, as different fluorescent signals can be used, DNA logic circuits can
be useful for simplifying the output when different combinations of analytes are detected.
We think the most promising protein-based logic gate biosensors are those that can be
conjugated to antibodies for the detection of different proteins, such as the GDH-CaM
system from Guo et al. described in Section 2.2 [61]. For protein enzyme therapeutics
where a rapid response to changing conditions is required, the protease-based logic circuits
that rely on the degradation or activation of protease are likely to be the most useful of the
systems discussed in this article, as they have already been demonstrated to work inside
cells.

5. Conclusions

The logic gate framework can be used to conceptualize, and in some cases simplify,
complex regulatory networks in biology. In metabolic engineering, this framework can
then be used to optimize the production of high value chemicals [1,2]. Advancements in
biomolecular engineering will provide additional protein- and nucleic acid-based logic
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gates [43,150]. Protein- and nucleic acid-based logic gates can then be programmed to
interact with each other [151], and catalyst-based logic gates can similarly interact with
non-catalyst-based logic gates (e.g., transcription factors [152,153]). These logic gates have
the potential to integrate multiple signals and thus make intelligent decisions in therapeutic
and diagnostic applications. Several applications have already been realized, including in
the detection and treatment of cancer (e.g., [140]) and the detection of various metabolic
diseases (e.g., [154]).
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