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Abstract: The iridium(Ir) (triNHC = tri-N-heterocyclic carbene)-catalyzed transfer hydrogenation
of glycerol carbonate (GC) is described in the absence of additional hydride sources. The described
reduction provides a sustainable route to produce industrially-valuable formate and lactate with
high turnover numbers (TONs). The bimetallic Ir(I) involving triNHC carbene ligands exhibits high
TONs, and the reaction mechanism, including the bimetallic Ir(triNHC) catalyst, is proposed based
on mechanistic studies.
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1. Introduction

An indirect reduction in carbon dioxide (CO2) via hydrogenation and transfer hy-
drogenation of organic carbonates is a practical and eco-friendly strategy that addresses
global warming, plastic pollution, and energy problems by reducing the concentration
of CO2 in the air, recycling polycarbonate-based plastics, and producing valuable fuels
and chemical feedstocks (formic acid, methanol, and diols) [1–5]. Thus, various transi-
tion metal-catalyzed reductions in organic carbonates have been studied, although or-
ganic carbonates are not highly susceptible to reduction. Ruthenium catalysts modified
with tridentate ligands such as phosphorous-nitrogen-nitrogen (PNN) [6,7], phosphorous-
nitrogen-phosphorous(PNP) [8,9], and carbon-nitrogen-carbon (CNC) [10], manganese
catalysts involving PNN [11,12] and PNP [13] ligands, and cobalt catalysts containing
nitrogen-oxygen coordinating ligands [14] are used to hydrogenate organic carbonates.

Although the transition metal-catalyzed hydrogenation of carbonates exhibits accept-
able yields and catalytic activities, high pressure of H2 (30–60 bar) should be applied, and
the reactions must be run in the pressurized equipment. Thus, the isopropanol (IPA)-
mediated reduction in organic carbonates, called transfer hydrogenation, is investigated.
Ru(PNP) [15], Fe(PNP) [16], and Co(NO) [14] complexes have been used to reduce organic
carbonates. In addition to transition metal-catalyzed hydrogenation and transfer hydro-
genation, boron- and silane-mediated reduction in carbonates were reported in the presence
of MgBu2 [17], halide anions [18], and B(C6F5)3 [19] catalysts.

For the transfer hydrogenation of organic carbonates, alcohols such as IPA and glycerol
are required. IPA is a hydrogen source delivering hydrides to carbonates, generating
reduced products (formic acid) and byproducts (acetone) formed from IPA [20]. Biomass-
derived glycerol has been recently used for transfer hydrogenation with the environmental
advantages of sustainable hydrogen sources. However, glycerol has not been employed to
reduce organic carbonates [21,22]. Given that our research group has been studying glycerol-
mediated transfer hydrogenation [23–25], the reaction of glycerol carbonate (GC) derived
from CO2 and glycerol has drawn our interest [26,27], where the additional reductants may
not be required due to the glycerol moiety in GC.

As illustrated in Scheme 1, GC involves both C1 and C3 sources in the molecule.
With a judicious choice of catalysts, GC plays C1 and C3 sources along with hydride
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sources. The transfer hydrogenation of GC produces formate (C1 product) and lactate (C3
product), considered essential sustainable energy sources and bioplastic raw materials,
respectively [28–31]. In this study, we report the first Ir(triNHC)-catalyzed transfer hydro-
genation of GC in the absence of exogenous hydrides. The reaction mechanism is probed
based on control experiments, and the origin of the high catalytic activity of bimetallic
Ir(triNHC) was speculated based on the proposed reaction mechanism.
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2. Results and Discussion

The reaction optimization results of transfer hydrogenation of GC are presented in
Table 1. The reactions of GC, bases, and iridium catalysts were conducted in N-methyl-2-
pyrrolidone (NMP) at 200 ◦C for 20 h. Catalysts A–D are reported [23,32–34], and catalysts
E and F are newly synthesized. The optimization begins with different loadings of catalyst
A and CsOH·H2O (2 equiv.), showing turnover numbers (TONs) of 6500 (formate) and 9600
(lactate) with catalyst A (2.5 × 10−3 mol%) (entries 1–3). The TONs of formate and lactate
were calculated by 1H NMR spectroscopy in D2O using isonicotinic acid as an internal
standard (see Supplementary Materials Figure S5). Changing the solvent to H2O dimin-
ished the catalytic activity (entry 4). Both NMP and water are commonly used solvents in
the reactions of glycerol. Depending on the catalytic system, the optimized solvent was
varied, and our catalytic system exhibited higher TONs in NMP. Although NMP can be
converted to 4-N-methylaminobutanoate in the presence of bases, it has been known that
4-N-methylaminobutanoate does not affect the catalytic reaction of glycerol [35]. Different
bases (KOH and NaOH) exhibit inferior results in terms of TONs of each product (entries
5 and 6). Increasing the amounts of CsOH·H2O did not improve TONs (entry 7). In the
absence of bases or catalysts, no product was observed (entries 8 and 9). The monometallic
Ir catalysts B–D exhibit slightly lower TONs compared to bimetallic catalyst A (entry
10–13). The catalyst loadings of monometallic catalysts B–D were determined to maintain
the same mole numbers of iridium ions of bimetallic catalyst A. Analogous to catalyst
A, monometallic catalyst B showed increased TONs with lower catalyst loadings (entries
10 and 11). Ir(III) catalysts E and F involving the carbene, pyridine, and pentamethylcy-
clopentadiene (Cp*) show much lower TONs compared to Ir(I) catalysts A–D modified
with carbene ligands (entries 14 and 15). The reactions of ethylene carbonate and propylene
carbonate formed formate with TONs of 580 and 415, respectively, under the conditions of
entry 2 (Table 1) (see Supplementary Materials Figures S6 and S7). Thus, the presence of
a hydroxy group in GC is critical for high TONs. The stability of Ir(triNHC) (catalyst A)
was evaluated by accumulation experiments, showing a slight decrease in TONs of each
product in the second reaction (see Supplementary Materials Scheme S3).

The mixture of catalysts, glycerol carbonate (10.6 mmol), and base in NMP (10 mL)
was heated at 200 ◦C for 20 h. Catalysts A and E have two iridium ions in the molecule.
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Table 1. Transfer hydrogenation of GC.
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1 A (2.5 × 10−3) CsOH·H2O (2) NMP 6500 9600
2 A (5.0 × 10−3) CsOH·H2O (2) NMP 3600 5300
3 A (1.0 × 10−2) CsOH·H2O (2) NMP 980 1900
4 A (5.0 × 10−3) CsOH·H2O (2) H2O 21 89
5 A (5.0 × 10−3) KOH (2) NMP 12 65
6 A (5.0 × 10−3) NaOH (2) NMP 160 130
7 A (5.0 × 10−3) CsOH·H2O (3) NMP 930 4800
8 A (5.0 × 10−3) – NMP – –
9 – CsOH·H2O (2) NMP – –

10 B (1.0 × 10−2) CsOH·H2O (2) NMP 2400 3600
11 B (5.0 × 10−3) CsOH·H2O (2) NMP 5200 7400
12 C (1.0 × 10−2) CsOH·H2O (2) NMP 2600 4200
13 D (1.0 × 10−2) CsOH·H2O (2) NMP 2100 3400
14 E (5.0 × 10−3) CsOH·H2O (2) NMP 580 2400
15 F (1.0 × 10−2) CsOH·H2O (2) NMP 310 1700
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Control experiments were conducted to examine the transfer hydrogenation mech-
anism of GC (Schemes 2 and 3). Because GC might be dissociated to form glycerol and
carbonates (CO3

2−) in the presence of CsOH, the reactions of Cs2CO3 with glycerol were
performed with catalyst A (Scheme 2). Compared to TONs of the GC reaction (FA = 3600,
LA = 5300, entry 2 of Table 1), the reaction of Cs2CO3 with glycerol produces products
with slightly lower TONs (FA = 3000 and LA = 4300). Thus, the reaction mechanism may
involve the dissociation of GC into carbonate anions and glycerol.
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The reactions of GC with additional alcohols (IPA and glycerol) were implemented
with the assumption that an additional hydrogen source may increase the yields of formate
and lactate. As depicted in Equation (1) of Scheme 3, the addition of IPA reduced the
TONs of each product, and additional glycerol also slightly reduced the TONs of products.
Because the additional alcohols reacted with catalysts and OH− to induce dehydrogenation,
glycerol carbonate reacted with reduced amounts of catalysts and bases, resulting in lower
TONs of formate and lactate. An isotope labeling experiment using deuterated glycerol
was conducted (Equation (2) of Scheme 3), forming small amounts of deuterated formate
(approximately less than 10% by mass spectrometry analysis, see Supplementary Materials
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Figure S8). Accordingly, most hydrogen atoms in the formate were derived from GC, and
approximately 10% of external hydrogens were incorporated in the formate.
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The gas analysis of the reaction mixture was conducted to monitor the generation
of CO2 and H2 from GC (Figure 1). Briefly, gaseous products were sampled from the
headspace of the reactor at reaction times of 3 h and 20 h and then analyzed using gas
chromatography. The number of moles of each product was determined from the area of
the corresponding peak in the measured chromatogram. As depicted in Figure 1, H2 gas
(0.06 mmol) is generated at 3 h and 0.58 mmol at 20 h. The generated CO2 was very low
(as illustrated in the inset graph), where 0.53 and 0.31 µmol of CO2 were observed at 3
and 20 h, respectively. During the reaction of GC, simple dehydrogenation forming H2
gas is not a significant route based on the amount of generated H2 (0.58 mmol) and used
GC (10.6 mmol). The dissociation of CO2 from GC rarely occurs based on the amount of
liberated CO2. We exclude the hydrogenation of CO2 as the main route of the mechanism
because significant amounts of H2 and CO2 were not generated for the hydrogenation
mechanism based on control experiments and gas analysis.
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We proposed a catalytic cycle of Ir(triNHC)-catalyzed transfer hydrogenation of GC
(Scheme 4). Catalyst A releases cyclooctadiene (COD) and coordinates to the glycerol
alkoxide and bicarbonate [23]. Glycerol alkoxides and bicarbonates are formed from GC
and OH− based on 13C NMR of the mixture of GC and OH− (see Supplementary Materials
Figure S9). Intermediate I undergoes β-hydrogen elimination to produce intermediate
II. Dihydroxyacetone (DHA) dissociated from intermediate II is converted to lactate via
dehydration and Cannizzaro reaction [36]. The elimination of CsOH from intermediate III
affords CO2-bound intermediate IV. The co-operative interaction of two iridium ions in
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intermediate III promotes the elimination of CsOH via intermediates III’ and III” [37,38].
The hydrometallation of CO2 produces formic acid. GC and CsOH enter the catalytic cycle
after releasing formates. The bimetallic catalysts showed higher TONs than monometallic
catalysts; catalyst A vs. catalysts B–D. The efficient reaction of Ir-H with CO2 might
be promoted by the co-operative action of two iridium ions in the bimetallic catalyst’s
reaction sphere.
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3. Conclusions

We report the first transfer hydrogenation of GC without additional hydrogen sources
to the best of our knowledge. The control experiments and gas analysis confirm the re-
duction route induced by Ir(triNHC) catalysts. The reaction results of GC with deuterated
glycerol imply that dissociated bicarbonates and glycerol alkoxides from GC are readily re-
acted before the participation of the external hydride sources in the reaction. The bimetallic
catalysts are favored in coordinating both reactants (bicarbonates and glycerol alkoxides)
inside the reaction sphere, as illustrated in the proposed reaction mechanism.
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and (d) the mixture of glycerol carbonate (1 equiv), CsOH (2 equiv), catalyst A (0.5 equiv) (black).
References [23,33,34] have been in the Supplementary Materials.
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