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Abstract: Selective catalytic reduction of NO with CO (CO-SCR) has been suggested as an attractive
and promising technology for removing NO and CO simultaneously from flue gas. Manganese-
copper spinels are a promising CO−SCR material because of the high stability and redox properties
of the spinel structure. Here, we synthesized CuxMn3−xO4 spinel by a citrate-based modified pechini
method combining CuO and MnOx, controlling the molar Cu/Mn concentrations. All the samples
were characterized by SEM, EDX, XRD, TEM, H2−TPR, XPS and nitrogen adsorption measurements.
The Cu1.5Mn1.5O4 catalyst exhibits 100% NO conversion and 53.3% CO conversion at 200 ◦C. The
CuxMn3−xO4 catalyst with Cu-O-Mn structure has a high content of high valence Mn, and the high
mass transfer characteristics of the foam-like structure together promoted the reaction performance.
The CO-SCR catalytic performance of Cu was related to the spinel structure with the high ratio
of Mn4+/Mn, the synergistic effect between the two kinds of metal oxides and the multistage
porous structure.

Keywords: low-temperature; CO-SCR; Cu-Mn oxide spinels

1. Introduction

Currently, environmental protection is more stringent than ever before. The large
quantities of nitrogen oxides (NOx) produced by the burning of fossil fuels are a major
cause of atmospheric pollutants. Carbon monoxide (CO) is another atmospheric pollutant
in flue gases. Thus, the reduction of NO by the CO produced by incomplete combustion in
the flue gas can remove toxic CO and NO simultaneously and economically (CO-SCR) [1–3].
However, the high price and low catalytic activity at low temperature (more than 50% NO
conversion below 250 ◦C) of efficient noble metal catalysts seriously limit their further
application. Therefore, it is necessary to develop catalysts with low temperature, high
performance, low cost and that are green [4].

For the CO-SCR reaction, the ideal catalyst should not only be economical, easy to
prepare, long-term stable and so on. In addition, a low reaction temperature [5,6], high
selectivity [7,8] and NO conversion rate [9] are required. Noble metals are frequently used
in CO-SCR reactions to prepare noble-metal catalysts. However, the scarce resources, high
price and high temperature instability limit its large-scale application. As a result, many
studies have focused on the development of nonprecious metals. NO reduction occurs
through a redox reaction mechanism. Therefore, the reducibility and oxygen migration
ability of the catalyst are two key factors that determine the catalytic performance of the
catalyst for NO removal. At present, metal oxides have become a hotspot of heterogeneous
catalysis research because of their low price and large reserves, such as CoOx [10,11],
CuOx [12–14], MnOx [15,16] and CeO2 [17]. Among them, copper oxides and manganese
oxides have attracted much attention due to their good redox properties. Manganese oxides
show a variety of valences (Mn2+, Mn3+, Mn4+) and abundant reactive oxygen species
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(vacancy oxygen and adsorbed oxygen), which imply their potential in low-temperature
CO-SCR catalysis [18–20].

In related reports, the reducibility and oxygen migration ability of MnOx could be
improved by proper cation doping. These include MnCe [21], MnCu [22–24], MnCo [25],
MnNi [26,27] and MnFe [28]. Because of its excellent oxidation–reduction performance and
strong synergistic effect between binary metal oxides, doping copper into the catalyst can
effectively improve the removal rate of the catalyst. Wan et al. [29] found that the Mn2O3-
modified CuO/γ−Al2O3 catalyst showed significant catalytic efficiency, and they attributed
the increase in activity to the establishment of a Cu2+ + Mn3+ � Cu+ + Mn4+ oxidation–
reduction cycle. In addition, the addition of Cu to Mn-based catalysts is beneficial to the
dispersion of MnOx. The performance of copper oxides is affected by many factors in the
NO + CO reaction. Ivanka Spassova [24] reported that CuCo2O4 and Cu1.5Mn1.5O4 mixed
oxides supported on DFS were responsible for enhancing activity. The results showed that
Liu [30] suggested that copper-modified manganites had higher catalytic activity for CO
oxidation and selective catalytic reduction of NO than pure MnOx. Therefore, it is further
expected that CuO and MnOx form a strong coupling at the nanointerface, which will lead
to a change in the Mn4+ octahedral environment, thereby further improving the CO−SCR
performance of MnOx.

This article reports that foam-like CuxMn3−xO4 spinels were prepared by using a
citrate-based modified pechini method and applied to the CO-SCR reaction in the temper-
ature range of 100–400 ◦C. It was characterized by scanning electron microscopy (SEM),
transmission electron microscopy (TEM), X-ray diffraction (XRD), BET surface area (BET),
H2 temperature programmed reduction (H2−TPR) and X–ray photoelectron spectroscopy
(XPS). The structure-activity relationship between the physical chemistry properties and
the catalytic performance of the CuxMn3−xO4 catalyst with different concentrations of
Mn4+ was studied. The purpose of this work is to investigate the relationship between the
active phase of spinel and the bulk properties of CuxMn3−xO4 (x = 0, 1, 1.5, 2, 3) catalysts
prepared with different CuO/MnOx contents.

2. Results and Discussion
2.1. XRD Analysis of Catalysts

XRD patterns were tested to identify the crystal structure of Mn2O3, CuO and syn-
thesized CuxMn3−xO4 spinels. As shown in Figure 1a, for the Mn2O3 sample, (200), (211),
(222), (123), and (440) planes of Mn2O3 (JCPDS#01-076-0150) could be observed at 18.5◦,
23.1◦, 33.0◦, 35.7◦ and 55.0◦, respectively. The diffraction peaks of 32.5◦, 35.5◦, 38.6◦, 48.9◦,
53.4◦, 58.2◦, 61.5◦, 66.3◦, 67.7◦, 68.0◦, 72.3◦ and 82.6◦ were assigned to the (110), (−111),
(111), (−202), (020), (202), (−113), (−311), (113), (220), (311) and (−313) planes of cubic
phase CuO (JCPDS#01-080-0076). A CuxMn3−xO4 mixed oxide with a spinel structure
was found in the Cu1Mn2O4 (JCPDS#01-074-2422), Cu1.5Mn1.5O4 (JCPDS#01-070-0260) and
Cu2Mn1O4 catalysts. XRD patterns show that the diffraction peak (I peak) can match spinel
Cu1.5Mn1.5O4 (Figure 1b). Compared with other samples, the intensity of the “I” diffraction
peak of the Cu1.5Mn1.5O4 sample is the strongest, indicating that the Cu1.5Mn1.5O4 sample
contains a spinel active structure (Cu-O-Mn) [30,31]. As for Cu1Mn2O4 and Cu1.5Mn1.5O4,
they showed identical diffraction patterns to Mn2O3 but only with a slight shift in the peak
position of Mn2O3 toward high values, implying the insertion of Cu atoms with smaller
radius than Mn atoms into the lattice of Mn2O3. It is also noticed that the crystallinity
of Cu1.5Mn1.5O4 becomes higher in comparison with that of Cu1Mn2O4 and Cu2Mn1O4,
implying that excessive Cu doping is not conducive to the formation of Cu-O-Mn structure
(Table 1). The lattice parameters of the synthesized CuxMn3−xO4 catalyst were calculated
by XRD, as shown in Table 1. Compared to CuxMn3−xO4 spinels, the lattice parameters
of CuxMn3−xO4 spinels became smaller after doping with increased copper contents. The
results also prove the above conclusions.
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Figure 1. XRD patterns (a), local enlargement of (I) in XRD (b) of the as-synthesized
CuxMn3−xO4 samples.

Table 1. Crystal sizes, lattice parameters, actual molar ratios of Cu to Mn and BET surface areas
of CuxMn3−xO4.

Sample Crystal Size
nm

Lattice Parameter a

nm

Actual Molar
Ratios of
Cu:Mn b

BET Surface
Area

m2 g−1 c

Mn2O3 63.07 a = b = c = 0.9423 - 18.2
Cu1Mn2O4 42.69 a = b = c = 0.8290 0.93:2.05 18.9

Cu1.5Mn1.5O4 31.79 a = b = c = 0.8284 1.46:1.54 19.7
Cu2Mn1O4 31.76 a = b = c = 0.8282 1.97:1.02 18.7

CuO 42.43 a = 0.4687, b = 0.3427,
c = 0.5135 - 28.9

a Calculated 2θ = 33.0◦ by the XRD patterns using the Debye–Scherrer equation. b Obtained by the ICP results.
c Surface area derived from the BET equation.

2.2. N2 Sorption Analysis of Catalysts

Figure 2 illustrates the obtained N2 adsorption-desorption isotherm and pore size
distribution of all the catalysts. The CuxMn3−xO4 samples have type IV isotherms, which
also proves that the samples possess a mesopores and significant macropores structure, and
that the results of mesopores or macroporous foamy network structure are consistent with
that of SEM. The low-pressure part of the near-linear middle part of the isotherm curve can
be attributed to the unsaturated adsorption of single or multilayers, which also proves the
existence of a macroporous structure. However, the hysteresis loops in the high p/p0 range
are related to capillary condensation in the mesopores, indicating that there are mesopores
on the wall of the macropores. In addition, the corresponding Barrett–Joyner–Halenda
(BJH) pore-size distribution curves in Figure 2b show that the CuxMn3−xO4 samples have
mesoporous and macroporous structures with a large distribution range of pore [32]. It
should be pointed out that of the Cu1.5Mn1.5O4 catalyst own the largest BET surface area
and most mesoporous among the CuxMn3−xO4 catalysts, Cu doping leads to the formation
of more Cu1.5Mn1.5O4 spinel structures, resulting in irregular changes in grain size. The
specific surface areas of Cu−Mn spinel oxides with different Cu/Mn ratios are recorded in
Table 1. The corresponding results conform to the XRD analysis of the catalysts.
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Figure 2. N2 adsorption-desorption isotherms (a) and pore size distributions (b) of the as-synthesized
CuxMn3−xO4 samples.

2.3. SEM and TEM Observation

The morphology and structural characteristics of the as-prepared catalysts at different
molar ratios of Cu/Mn were characterized, as shown in Figure 3. Figure 3a,b show SEM
images of pure Mn2O3 at different magnifications. The Mn2O3 sample is mainly composed
of a foam structure with a diameter of 5–20 µm. The magnified SEM image further revealed
that the surface of these particles had a hierarchical porous structure. In addition, with
increasing Cu doping content, the surface of CuxMn3−xO4 catalyst particles becomes
irregular, and the foam-like particles are broken into a uniform particle structure with
a smaller particle size in Figure 3c–j. The mapping of CuxMn3−xO4 sample images is
displayed in Figure 3k1–k4. It can be clearly observed that copper and manganese elements
are uniformly dispersed on the entire catalyst surface.

Figure 4 shows the morphologies and microstructures of the Cu1.5Mn1.5O4 catalyst
at different magnifications. Combined with the SEM results, spherical nanoparticles with
particle sizes ranging from 20 to 40 nm were formed in the Cu1.5Mn1.5O4 sample. According
to the equipped Cu1.5Mn1.5O4 standard card (JCPDS#01-070-0260), the 0.48 and 0.25 nm
lattice fringes can be matched to the (111) and (311) crystal planes of the Cu1.5Mn1.5O4
spinel structure, respectively. It is worth noting that there was a strong synergistic in-
teraction between Cu and Mn oxides in the active components of the spinel structure.
Compared with Cu2Mn1O4 spinel, Cu1.5Mn1.5O4 has low crystallinity and can provide
more oxygen vacancies, which may improve the catalytic performance of Cu-Mn catalysts
in CO-SCR [30].

2.4. H2-TPR Analysis

The H2−TPR data of CuxMn3−xO4 samples are exhibited in Figure 5. Four peaks
were observed on the Mn2O3 sample at 385, 466, 524 and 651 ◦C, respectively. The rela-
tively weak reduction peak at low temperature is due to the existence of surface species
that can be easily reduced, that is, Mn2O3 is reduced to Mn3O4. The strong reduction
peak at high temperature can be attributed to the reduction of Mn3O4 to MnO, which is
attributed to the manganese in the spinel phase. Mn3O4 is generally considered to consist
of Mn2+ and Mn3+. However, Mn4+ appears in the samples due to the equilibrium state of
2Mn3+ � Mn4+ + Mn2+. This phenomenon shows that the valence state of the Mn cation
was complex in the Mn3O4 spinel, which may be of significance and be responsible for
the completion of the catalytic cycle. For the Cu1Mn2O4 spinel in Figure 5, there are only
two well-defined reduction peaks at 298 and 351 ◦C. The first reduction peak at 298 ◦C was
attributed to the reduction of Cu2+ to Cu+, and the second reduction peak at 351 ◦C corre-
sponded to the three reduction processes: the reduction of Mn4+ →Mn3+, Mn3+ →Mn2+

and Cu+ → Cu0. The changes in the reduction peak number, reduction temperature and
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peak intensity showed that there is electron transfer between Cu ions and Mn ions in the
spinel lattice (Mn3+ + Cu2+ � Mn4+ + Cu+), and the presence of the strong interaction
between Cu and Mn could play a synergistic role in the reducibility of the catalysts, leading
to the enhancement of the catalytic cycle in CO-SCR [29].
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For the Cu1.5Mn1.5O4 sample, the low-temperature reduction peak reaches the same
temperature (298 ◦C), and the high-temperature reduction peak moves to a lower temper-
ature (342 ◦C). This phenomenon can be explained by the reduction in lattice distortion
and the strong interaction between copper and manganese. Compared with Cu2Mn1O4,
the two reduction peaks of Cu2Mn1O4 (at 299 and 328 ◦C) have shifted to lower values.
It is noteworthy that as the Cu doping content increased, the low-temperature reduction
peaks of all catalysts became stronger. These results indicate that the interaction between
Cu and Mn is enhanced, and that the redox property is improved with an increasing Cu
doping amount.
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2.5. XPS Analysis

XPS was obtained on the CuxMn3−xO4 sample, and the spectra of Cu 2p, Mn 2p
and O 1 s scans, as well as C from the reference, are shown in Figure 6a. The Cu 2p 3/2
spectra could be divided into two characteristic peaks attributed to Cu+ (931.0 eV) and Cu2+

(934.1 eV) by performing peak-fitting deconvolutions, we can also see that accompanied by
two distinct satellite peaks (marked by Sat.) at 938.2–945.9 and 959.7–964.7 eV in Figure 6b,
which confirms the presence of Cu2+. The content of Cu+/0 of Cu1.5Mn1.5O4 is the highest
among the CuxMn3−xO4. This result validated the existence of electron transfer between
Cu ions and Mn ions (Mn3+ + Cu2+ � Mn4+ + Cu+) in the Cu1.5Mn1.5O4 spinel (Table 2).
The spectra recorded from the Cu1.5Mn1.5O4 sample consist of a broad spin-orbit double
peak, indicating the presence of more than one Mn contribution. An obvious feature of
this spectrum is that the high binding energy side of the main peaks 2p3/2 and 2p1/2
are obviously the Mn 2p3/2 spectra, and could be divided into three characteristic peaks
attributed to Mn2+ (640.7 eV), Mn3+ (641.8 eV), and Mn4+ (643.9 eV), respectively (Figure 6c).
The results show that the Cu1.5Mn1.5O4 sample contains the highest content of Mn4+ ions
(54.4%), which indicates that Cu replaces the low valence Mn cations and significantly
promotes the formation of high valence Mn cations. This result support the TPR results. In
other words, due to the strong interaction between manganese and copper oxide (Cu), there
are some electronic interactions between Mn4+ and Cu+ (Cu−O−Mn bridge). To study the
different O species on the surface of the CuxMn3−xO4 samples, the O 1 s photoelectron
spectra were obtained, as shown in Figure 6d. The deconvoluted peaks indicate that there
are two different kinds of O species on the surface of the catalyst. The split peak at a lower
binding energy of approximately 531.4 eV corresponds to lattice oxygen (denoted as Oα),
and the other peak at approximately 529.5 eV is assigned to surface chemisorbed oxygen,
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potentially including the chemisorbed oxygen O2
2− or defective O− (denoted as Oβ). The

doping of Cu leads to the partial substitution of Cu atoms for Mn atoms in the −O−Mn−
structure (O−Cu), which enhances the instability of O species and forms more active O
species. This result is similar to the conclusion in the reported literature [30].

Catalysts 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

ions and Mn ions (Mn3+ + Cu2+ ⇄ Mn4+ + Cu+) in the Cu1.5Mn1.5O4 spinel (Table 2). The spec-

tra recorded from the Cu1.5Mn1.5O4 sample consist of a broad spin-orbit double peak, indi-

cating the presence of more than one Mn contribution. An obvious feature of this spec-

trum is that the high binding energy side of the main peaks 2p3/2 and 2p1/2 are obviously 

the Mn 2p3/2 spectra, and could be divided into three characteristic peaks attributed to 

Mn2+ (640.7 eV), Mn3+ (641.8 eV), and Mn4+ (643.9 eV), respectively (Figure 6c). The results 

show that the Cu1.5Mn1.5O4 sample contains the highest content of Mn4+ ions (54.4%), which 

indicates that Cu replaces the low valence Mn cations and significantly promotes the for-

mation of high valence Mn cations. This result support the TPR results. In other words, 

due to the strong interaction between manganese and copper oxide (Cu), there are some 

electronic interactions between Mn4+ and Cu+ (Cu−O−Mn bridge). To study the different 

O species on the surface of the CuxMn3−xO4 samples, the O 1 s photoelectron spectra were 

obtained, as shown in Figure 6d. The deconvoluted peaks indicate that there are two dif-

ferent kinds of O species on the surface of the catalyst. The split peak at a lower binding 

energy of approximately 531.4 eV corresponds to lattice oxygen (denoted as Oα), and the 

other peak at approximately 529.5 eV is assigned to surface chemisorbed oxygen, poten-

tially including the chemisorbed oxygen O22− or defective O− (denoted as Oβ). The doping 

of Cu leads to the partial substitution of Cu atoms for Mn atoms in the −O−Mn− structure 

(O−Cu), which enhances the instability of O species and forms more active O species. This 

result is similar to the conclusion in the reported literature [30]. 

  

  

Figure 6. Survey spectra (a), Cu 2p (b), Mn 2p (c) and O 1 s, (d) XPS spectra of CuxMn3−xO4 cata-

lysts. 

1000 800 600 400 200

Mn2O3

C

O

Mn

Cu

Binding Energy (eV)

In
te

n
si

ty
 (

a
.u

.)
a

Cu1Mn2O4

Cu1.5Mn1.5O4

Cu2Mn1O4

CuO

CuO

Cu2Mn1O4

Cu1.5Mn1.5O4

Sat.
Sat.

Cu 2p Cu 2p3/2Cu 2p1/2

Cu2+

Cu+/0

In
te

n
si

ty
 (

a
.u

.)

b
Cu1Mn2O4

Binding Energy (eV)
960 950 940 930

Binding Energy (eV)

Mn 2p

Mn2O3

c

In
te

n
si

ty
 (

a
.u

.)

Cu1Mn2O4

Cu1.5Mn1.5O4

Cu2Mn1O4

Mn4+

Mn3+

Mn2+

655 650 645 640

OαOβ

In
te

n
si

ty
 (

a
.u

.)
d

Binding Energy (eV)

O 1s
Mn2O3

Cu1Mn2O4

Cu1.5Mn1.5O4

Cu2Mn1O4

534 532 530 528

CuO

Figure 6. Survey spectra (a), Cu 2p (b), Mn 2p (c) and O 1 s, (d) XPS spectra of CuxMn3−xO4 catalysts.

Table 2. XPS results of all the catalysts.

Sample Mn4+/Mn Mn3+/Mn Mn2+/Mn Cu2+/Cu Oα/O Oβ/O

Mn2O3 2.7 50.7 46.6 - 55.4 44.6
Cu1Mn2O4 31.6 50.8 17.6 70.1 53.1 46.9

Cu1.5Mn1.5O4 54.4 36.0 9.6 66.2 32.3 67.7
Cu2Mn1.5O4 33.4 54.4 12.2 86.7 37.5 62.5

CuO - - - 100 51.1 48.9

3. Catalytic Performances of the Catalysts
3.1. Catalytic Reduction of NO with CO

In the temperature range 100–400 ◦C, the catalytic performance of the synthesized
materials for the reduction of NO by CO is shown in Figure 7. It can be seen that pure Mn2O3
has CO-SCR catalytic activity, the NO conversion rate can reach 100% at a temperature of
approximately 350 ◦C, and the CO conversion rate is the worst. It can be clearly found
that the catalytic activity of all Cu-doped catalysts is significantly higher than that of
manganese oxide catalysts in the test temperature range. The CO-SCR activities of the
Cu1.5Mn1.5O4 catalyst exhibited the best NO conversion when the temperature was below
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200 ◦C. High-valence state spinel is the active component of the CO-SCR reaction, which is
more conducive to showing better low-temperature activity, as reported in the literature.
The CO conversion of the Cu-doped catalyst has a similar trend with the increase of
temperature, and the CO conversion data are inconsistent with the NO conversion data
above 200 ◦C, implying that CO reduced partial metal oxides in Figures 7c and S1 (consistent
with the H2−TPR result). From the CO catalytic activity results, it can be seen that the Cu-
doped catalyst shows better catalytic activity than the pure Mn2O3 sample. The Cu2Mn1O4
sample shows a higher CO catalytic oxidation activity, which suggests that excessive
copper doping causes the adsorption of CO to be stronger than that of NO. This also
implies that the Cu−O−Mn structure in spinel is the active site of CO-SCR (corresponding
to the XRD results). The reaction of CO-SCR under O2-rich conditions was performed to
investigate the effect of O2 on the catalytic performance. As shown in Figure S2, the NO
conversion of the catalyst significantly decreased, and CO conversion increased with the
increase of temperature. It can be found that the main reason affecting the NO conversion
is the competitive reaction between CO and NO with O2, resulting in the decline of
performance. Improving the low-temperature catalytic performance of the catalyst under
oxygen conditions will be the focus of our future research.
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Figure 7. (a) NO conversion and (b) CO conversion of all the catalysts in the CO-SCR.

Therefore, Cu doping is conducive to the performance improvement of the CuxMn3−xO4
catalyst because there is a strong synergistic effect between the binary metal oxides. It is
accepted that the active phase of spinel is the highly reactive center in the catalytic reaction
process. The active phase of Cu1.5Mn1.5O4 spinel plays an important role in the CO-SCR
reaction, and the catalytic performance of the spinel structure catalyst is better than that
of the other catalysts. The stability of this catalyst was further confirmed by the XRD
(Figure S3a) and TEM analyses (Figure S3b,c), which showed no obvious change in the
structure after the reaction at 400 ◦C.

3.2. Structure Activity Relationship and Catalystic Reaction Mechanism

According to reports, the active phase of CuxMn3−xO4 in the redox reaction is the Mn4+

concentration on the catalyst surface [30]. On Cu-Mn spinels, the number of surface-active
sites and bulk concentration of Mn4+/Mn are critical to the reaction. At the same time, Cu2+

is transformed into Cu+, and Mn3+ is transformed into Mn4+. Mn4+ is considered to be a
manganese species that has a passivation effect on the redox reaction. With the doping of
copper ions in Mn2O3, the spinel structure with rich lattice defects and oxygen vacancies
increases the concentration of Mn4+, which can adsorb reactant molecules and improve its
redox performance, enhance the mobility of active oxygen species and enhance its catalytic
activity. Therefore, compared with CuO and Mn2O3, the spinel-type copper-manganese
composite oxide rich in Cu+ and Mn4+ will have a significantly improved activity. In
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other words, due to the strong synergy between the binary metal oxides, copper doping is
beneficial to the stability and catalytic performance of the CuxMn3−xO4 catalyst.

Based on the above analysis, important information on the catalytic route was obtained,
and a reasonable mechanism of the CO-SCR reaction on a CuxMn3−xO4 catalyst was initially
proposed. A proposed mechanism of the two processes is shown in Scheme 1: (i) CO and
NO molecules are the first adsorbed oxygen vacancies, Mn4+ and Cu+, on the catalyst
surface. In this process, the reactant molecules CO and NO are adsorbed as CO (ads) and
NO (ads). Subsequently, CO (ads) reacts with the active oxygen on the catalyst to produce
CO2. (ii) NO molecules are adsorbed on the catalyst surface oxygen vacancy, the oxygen O
of NO reacts with the oxygen vacancy, and nitrogen gas is generated. Herein, the redox
cycle occurs between bimetallic oxide components (Cu2+ + Mn3+ � Cu+ + Mn4+) in the
CuxMn3−xO4 spinels, and the Cu+ and Mn4+ formed by this interaction distorts the spinel
structure and promotes the generation of more surface vacancies; that is, it is conducive to
the activation of reactants CO and NO and forms more active species and improves the
catalytic performance for CO-SCR of the catalysts.
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4. Experimental
4.1. Material Synthesis

Specifically, CuxMn3−xO4 (x = 0, 1, 1.5, 2, 3) spinels were prepared by a citrate-
based modified pechini method [33–35]. Cu(NO3)2·3H2O (Sinopharm Chemical Reagent
Co., Ltd., Beijing, China, ≥99.0%) and Mn(NO3)2 solution (Macklin, 50% in H2O) were
dissolved in deionized water. In the calculated amount of copper nitrate trihydrate and
50% manganesenitrate solution (Table 3), citric acid monohydrate (Xilong Chemical Co.,
Ltd., Guangzhou, China, ≥99.5%) was added at a molar ratio of 1:1 (Cu+Mn/citric acid).
The solution was stirred for 2 h at room temperature to obtain a homogeneous mixture and
then evaporated to obtain a sticky gel. The gel was dried in a 120 ◦C oven for 6 h, forming
a foam metal citrate complex. Finally, the samples were calcined in 600 ◦C air for 8 h to
form spinel oxides.

Table 3. The chemicals and their amounts used for preparing samples.

Sample Cu(NO3)2·3H2O (g) 50% Mn(NO3)2
Solution (g)

Citric Acid
Monohydrate (g)

Mn2O3 - 23.4 11.7
Cu1Mn2O4 5.1 15.0 11.7

Cu1.5Mn1.5O4 7.5 11.1 11.7
Cu2Mn1.5O4 9.8 7.3 11.7

CuO 15.1 - 11.7
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4.2. Characterization

The powder samples were characterized by XRD with the use of a PANalytica X’Pert
PRO MPD diffractometer using Cu Kα radiation (λ = 0.154 nm, 40 kV, 40 mA). The crystallite
sizes of all samples were calculated using the Debye–Scherrer equation. The morphology
of the particles was analyzed with a JSM-7001F field-emission SEM with energy-dispersive
spectroscopy (EDS) (INCA X-MAX, JEOL, Oxford, UK) and TEM (JEM-2010F, JEOL, Tokyo,
Japan). The reducibility of the catalysts was examined by H2-TPR using a Quantachrome
automated chemisorption analyzer (Chem BET pulsar TPR/TPD). Briefly, 50 mg of sample
was loaded into a quartz U-tube and heated from room temperature to 150 ◦C at 10 ◦C
min−1 under helium flow to remove moisture and impurities. Then, the sample was cooled
to room temperature, followed by heating to 800 ◦C at a heating rate of 10 ◦C min−1

under a binary gas mixture (10 vol.% H2/Ar) with a gas flow rate of 30 mL min−1. H2
consumption was detected continuously as a function of increasing temperature using a
thermal conductivity detector (TCD). The BETs were determined using N2 physisorption
at −196 ◦C using Quantachrome NOVA 3200e equipment. Prior to N2 adsorption, each
catalyst was degassed for 2 h under vacuum at 200 ◦C. The surface chemical composition
was determined by XPS (Model VG ESCALAB 250 spectrometer, Thermo Electron, London,
UK) using non-monochromatized Al Kα X-ray radiation (hν = 1486.6 eV).

4.3. Measurement

The evaluation of the catalyst was carried out with a typical fixed-bed reactor with
a quartz tube (8 mm inner diameter). Two grams of the catalysts (particle size was
20–40 mesh) were used in quartz tubes between glass wool. The catalytic activity was
measured using feed gas compositions of 1000 ppm NO, 2000 ppm CO and N2 (the balance)
at different temperatures at a rate of 30,000 h−1. First, the catalysts were treated using a
CO/N2 gas flow at 200 ◦C for 1 h before each test. After the catalysts were cooled to room
temperature under a N2 flow, they were allowed to react with the mixed gas. The CO, NO
and NO2 concentrations were monitored using a Testo 350 flue gas analyzer. The catalytic
activity was calculated using the following formula:

NO converstion (%) =
NOin − NOout

NOin
× 100% (1)

CO converstion (%) =
COin − COout

COin
× 100% (2)

where the “in” and “out” subscripts indicate the inlet and outlet concentrations of NO and
CO in the steady state, respectively. The selectivity of N2 was not calculated here due to no
NO2 being detected at the outlet.

5. Conclusions

In this work, a series of CuxMn3−xO4 spinels were synthesized by the citrate-based
modified pechini method. The results show that controlling the doping amount of Cu can
improve the low-temperature activity of the Mn2O3 catalyst. Doping Cu species could shift
the redox balance in the catalyst system (Cu2+ + Mn3+ � Mn4+ + Cu+), improve the redox
performance and catalytic activity of manganese oxide catalyst, and promote the grain
formation and growth of the Cu1.5Mn1.5O4 spinel structure instead of manganese oxides to
increase the surface area and particle size. The surface of Cu1.5Mn1.5O4 spinels retained a
high ratio of Mn4+/Mn, more reactive oxygen species were formed than pure Mn2O3 on
the surface to promote the adsorption of oxygen molecules, and it enhanced the adsorption
capacity of CO and NO. In general, the doping of low valence state Cu significantly
enhanced the CO−SCR activity of CuxMn3−xO4 spinels at low temperature, which could
be an effective way to design and synthesize highly active Mn−based CO-SCR catalysts.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12060591/s1, Figure S1: CO conversion of Cu1.5Mn1.5O4 cata-
lyst in the CO-SCR (Reaction conditions: [CO] = 2000 ppm and N2 as balance gas, GHSV = 30,000 h−1);
Figure S2: (a) NO conversion; (b) N2 selectivity in CO–SCR reaction (Reaction conditions: [NO] = 1000 ppm,
[CO] = 2000 ppm, [O2] = 0 or 1%, and N2 as balance gas, GHSV = 30,000 h−1); Figure S3: (a) XRD
patterns, and (b,c) TEM images of the catalyst of Cu1.5Mn1.5O4 after reaction.
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