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Abstract: A cost-effective and environmentally benign benzopyrano-pyrimidine derivative syn-
thesis has been established with the condensation of different salicylaldehyde derivatives, piperi-
dine/morpholine with malononitrile, in the presence of a catalyst containing p-toluene sulphonic acid
(PTSA) at 80 ◦C temperature. This procedure offers a new and enriched approach for synthesizing
benzopyrano-pyrimidine derivatives with high yields, a straightforward experimental method, and
short reaction times. The synthesized compounds were investigated for their nematocidal activity,
and the result shows that among the four compounds, compounds 4 and 5 showed strong nemato-
cidal activity against egg hatching and J2s mortality. The nematocidal efficacy of the compounds
might be due to the toxicity of chemicals which are soluble in ethanol. The nematocidal effectiveness
was directly related to the concentration of ethanolic dilutions of the compounds, i.e., the maximum
treatment concentration, the higher the nematocidal action, or the higher the mortality and egg
hatching inhibition. In the present study, with support from docking analysis, the relation between
chemical reactivity and nematocidal activity of compound 4 was inferred.

Keywords: benzopyrano-pyrimidine; malononitrile; piperidine; PTSA; molecular docking

1. Introduction

Heterocyclic compounds have been prepared from many methods which contain sig-
nificant biological activities in multicomponent reactions [1–5]. Selectivity, atom economy,
rapid reaction times, and ability are critical characteristics of multicomponent reactions.
Multicomponent reactions have recently been shown to be a significant development for
synthesizing structurally varied chemical collections of the drug since the products are
formed in a single step, and the variety can be achieved by simply moving each compo-
nent [6]. Nitrogen-containing heterocyclic pyrimidines and their fused derivatives serve
an essential function in medicinal chemistry and have been employed as drug develop-
ment scaffolds [7–15]. Benzopyrano-pyrimidine is an important pharmacore that exhibits
anti-thrombotic, anti-inflammatory, anti-aggregating, anti-platelet, and analgesic proper-
ties [16–20]. Many benzopyrano-pyrimidines contain anti-tumor activity and cytotoxic
activity against cancer cell lines [18]. Some quinazolines and pyrimidine derivatives [21]
are shown in various activities in Figure 1.
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Fe(II)-benzoyl thiourea complex bound silica nanoparticles [Fe(II)-BTU-SNPs] [26], TiO2–
SiO2 [27], p-toluenesulfonic acid supported by polystyrene in a solvent-free sonochemical 
multicomponent synthesis [28], and Brønsted acidic ionic liquid [29]. Solid acid catalysts 
have long been used in the oil refining industry, for example, in cracking processes and 
chemical manufacturing. In contrast, a substantial variety of acid-catalyzed reactions, in-
cluding Friedel–Crafts reactions, esterification, hydration, and hydrolysis, are still cata-
lyzed by conventional acids such as AlCl3, H2SO4, and so on [30]. Chemical reactions em-
ploying traditional acids, on the other hand, are frequently linked with issues such as cat-
alyst waste, corrosion, high toxicity, the use of huge volumes of catalyst, and separation 
and recovery challenges. Similarly, prolonged reaction times, elevated temperatures, high 
solvent costs, and the difficulty of separating conventional acids from the product are all 
disadvantages of using them as homogeneous catalysts [31] in laboratory trials for ben-
zopyrano-pyrimidines synthesis. Additionally, organocatalysts such as proline and its de-
rivatives and chiral phosphoric acids can be used to selectively synthesize heterocyclic 
compounds due to their achiral or chiral nature. Besides that, they have a number of ad-
vantages, not only due to their synthetic range, but also due to lower price. The absence 
of metals in organocatalysts is undeniably advantageous from both a green chemistry and 
economic standpoint. However, the high catalyst loading, the time and cost associated 
with removing and recycling excess catalyst from the reaction mixture, as well as the rel-
atively young field, all work against widespread use of organocatalysts [32,33]. Conse-
quently, a more efficient, ecologically friendly, and practical method of production of ben-
zopyrano-pyrimidines was considered. 

The use of p-toluene sulphonic acid (PTSA) as a solid catalyst for benzopyrano-py-
rimidines synthesis via a three-component reaction in ethanol at 80 °C has been recom-
mended as a non-explosive, non-toxic, and easily accessible option. After forming ben-
zopyrano-pyrimidine derivatives, various spectroscopic techniques, including X-ray crys-
tallographic, 1H NMR, 13C NMR, FT-IR, elemental analysis, and mass spectrophotometry, 
were employed to confirm the structure of the synthesized compounds. The 2-(4-
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In the last decades, benzopyrano-pyrimidine one has been prepared via a three-
component reaction of malononitrile, salicylaldehyde, and piperidine/morpholine by use
of a catalytic amount of LiClO4 [22], Na2MoO4·2H2O [23], [Bim]BF4 [24], Fe3O4 and SBA-
15 [25], Fe(II)-benzoyl thiourea complex bound silica nanoparticles [Fe(II)-BTU-SNPs] [26],
TiO2–SiO2 [27], p-toluenesulfonic acid supported by polystyrene in a solvent-free sono-
chemical multicomponent synthesis [28], and Brønsted acidic ionic liquid [29]. Solid acid
catalysts have long been used in the oil refining industry, for example, in cracking processes
and chemical manufacturing. In contrast, a substantial variety of acid-catalyzed reactions,
including Friedel–Crafts reactions, esterification, hydration, and hydrolysis, are still cat-
alyzed by conventional acids such as AlCl3, H2SO4, and so on [30]. Chemical reactions
employing traditional acids, on the other hand, are frequently linked with issues such as
catalyst waste, corrosion, high toxicity, the use of huge volumes of catalyst, and separation
and recovery challenges. Similarly, prolonged reaction times, elevated temperatures, high
solvent costs, and the difficulty of separating conventional acids from the product are
all disadvantages of using them as homogeneous catalysts [31] in laboratory trials for
benzopyrano-pyrimidines synthesis. Additionally, organocatalysts such as proline and its
derivatives and chiral phosphoric acids can be used to selectively synthesize heterocyclic
compounds due to their achiral or chiral nature. Besides that, they have a number of
advantages, not only due to their synthetic range, but also due to lower price. The absence
of metals in organocatalysts is undeniably advantageous from both a green chemistry and
economic standpoint. However, the high catalyst loading, the time and cost associated
with removing and recycling excess catalyst from the reaction mixture, as well as the
relatively young field, all work against widespread use of organocatalysts [32,33]. Con-
sequently, a more efficient, ecologically friendly, and practical method of production of
benzopyrano-pyrimidines was considered.

The use of p-toluene sulphonic acid (PTSA) as a solid catalyst for benzopyrano-
pyrimidines synthesis via a three-component reaction in ethanol at 80 ◦C has been rec-
ommended as a non-explosive, non-toxic, and easily accessible option. After forming
benzopyrano-pyrimidine derivatives, various spectroscopic techniques, including X-ray
crystallographic, 1H NMR, 13C NMR, FT-IR, elemental analysis, and mass spectropho-
tometry, were employed to confirm the structure of the synthesized compounds. The
2-(4-(piperidine-1-yl)-5H-chromeno[2,3-d]pyrimidin-2-yl) phenol (2) structure was further
confirmed by single-crystal X-ray diffraction with good conformity with earlier reports [32].
The synthesized compounds were also investigated for their nematocidal activity. The
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results show that compounds 4 and 5 showed strong nematocidal activity against egg
hatching and J2s mortality among the four compounds. The nematocidal efficacy of the
compounds might be due to the toxicity of chemicals which are soluble in ethanol. The
nematocidal activity of the compounds in ethanolic dilutions was directly proportional to
their concentration, i.e., the maximum treatment concentration, the higher the nematocidal
action, or the more significant the mortality and egg hatching inhibition. In the current
work, molecular docking of the active compound obtained from the experimental inves-
tigation was used to understand the mechanistic approach of non-bonding interactions
with receptors and determine active amino acids’ participation in receptors. The computer-
generated 3D structure of ligands is docked into a receptor structure in various orientations,
conformations, and sites via molecular docking. A molecular recognition strategy can help
with medicine innovation and medicinal chemistry [34].

2. Results and Discussion

A small series of benzopyrano-pyrimidine derivatives were synthesized in this paper
using p-toluene sulphonic acid in ethanol under reflux conditions. This approach out-
performs other available synthetic methods in terms of yield, reaction timings, product
purity, and catalyst stability. These synthetic benzopyrano-pyrimidine derivatives possess
different applicability and are well-matched with several other functional groups.

2.1. Chemistry

Based on FT-IR, NMR (1H & 13C), and mass spectra analyses, the structure of all
synthesized benzopyrano-pyrimidine derivatives was determined and found to be in
good agreement with the anticipated structure. Furthermore, the spectroscopic data of
compounds 2 and 4 matches those described in the literature quite well [27,28]. The reaction
occurs at the carbonyl and hydroxy moieties of one mole of salicylaldehyde, as evidenced
by the FT-IR spectra, which reveal that the produced molecule has no aldehyde group
frequency. Furthermore, the entire compound showed a characteristic peak for the group,
appearing at approximately 3418, 2857.4, 1619, and 1600.83 cm−1, indicating the formation
of benzopyrano-pyrimidine derivatives. The saturated proton in each synthesized molecule
resonance had a sharp singlet at approximately δ 4.35 ppm, at around δ 9.0–12.5 ppm with
a broad peak accounted to the-OH proton of a benzene ring, and the benzene ring proton
displayed a multiplet at around 6.98–8.75 ppm in the 1H NMR spectra of the synthesized
compounds. 13C NMR spectra display signals at about δ 119–165, which have been shown
aromatic carbon, with a peak display at around δ 155–159 to -C=N and 161–165 to –C-O of
pyrano moiety. Similarly, the signal resonated at δ 22–50 has been ascribed to a saturated
carbon. The mass analysis of the prepared series was very suitable in conformity with the
design structure.

2.2. Crystal Structure

Compound 2 crystallizes in the asymmetric unit (ASU) in the monoclinic P21/n space
group (Figure 2). All of the bonds in the ASU have a considerable range of bond lengths,
viz. N2–C1 (1.476(3) Å), N2–C5 (1.452(2) Å), N2–C6 (1.373(3) Å), N1–C6 (1.336(2) Å), N1–
C16 (1.341(3) Å), N3–C15 (1.329(2) Å), N3–C16 (1.316(3) Å), O2–C14 (1.398(3) Å), O2–C15
(1.359(3) Å) and O1–C18 (1.313(4) Å). The molecule is non-planar with a dihedral angle of
33.17◦ between the mean planes of C1–N2–C5 and C7–C6–N1. Meanwhile, the dihedral
angle between the mean planes of N3–C16–N1 and C9–C10–C11 is 22.80◦.
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Figure 2. The asymmetric unit of compound 2 with atom labeling and displacement ellipsoids are
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2.3. Mechanism

A tentative mechanism pathway for the p-toluene sulphonic acid (PTSA)-catalyzed
synthesis of the benzopyrano-pyrimidine derivative has been described based on the
literature [28] as shown in Scheme 1. First, the reaction is started by protonating the
carbonyl group from the p-toluene sulphonic acid catalyst, which produces an active
electrophilic intermediate I and makes the carbonyl carbon more electrophilic, lowering
its pKa value. Further, the conjugate base of the catalyst generated in situ in the reaction
mixture acts as a nucleophile which abstracts a proton from the active methylene carbon
of malononitrile. This step facilitates the formation of a tetrahedral intermediate II. In the
next step, elimination of the water molecule forms intermediate III. Then, intermolecular
cyclization occurs by attaching the phenolic group of salicylaldehyde to the cyanide group,
and intermediate IV is obtained. In the next step, piperidine attaches onto intermediate
IV, and intermediate V is formed. In the last step, the second molecule of salicylaldehyde
attaches to intermediate V. Finally, the formation targets the benzopyrano-pyrimidine
derivatives with the removal of the catalyst (Scheme 1).Catalysts 2022, 12, x FOR PEER REVIEW 5 of 19 
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2.4. Optimization of Reaction Conditions

Firstly, the focus was on optimizing the reaction conditions for the current protocol
concerning the reaction temperature, the amount of catalyst, and the choice of solvent in our
study, and selecting a suitable catalyst for a chosen model reaction using salicylaldehyde,
malononitrile, and hetero/aromatic aldehyde from various catalysts to provide the best
possible reaction condition for the synthesis of the benzopyrano-pyrimidine derivatives.

2.4.1. Effect of Different Solvent

In the presence of p-toluene sulphonic acid, the effect of other solvents on the reaction
rate and yield of the product was investigated. Solvents such as CHCl3, CH3NO2, CH2Cl2,
and CH3CN were unsatisfactory. In water, the reaction did not proceed. In methanol, DMF,
and THF, the reaction completed in 8 h. In ethanol, the reaction produced the best results,
the minimum time for completion, and gave a good yield. The results are shown below in
Table 1.

Table 1. Effect of different solvents on the reaction a.
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Entry a Solvent Condition Time (h) b Yield c

1 H2O Reflux 24 Trace
2 CH3CN Reflux 10 32
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a Reaction of 4-chloro-salicylaldehyde (1 mmol) with malononitrile (1 mmol) and piperidine (1 mmol) in the
presence of 10 mol% PTSA as a catalyst. b Reaction progress monitored by TLC. c Isolated yield.

2.4.2. Effect of Different Catalysts

There are many catalysts used in the optimization of model reactions. To emphasize
the efficiency of p-toluene sulphonic acid-catalyzation compared to other catalysts, the
reaction was carried out with various catalysts such as pyridine, AlCl3, FeCl3, ZnCl2, I2,
NH4OAc, and NaOAc. Without catalysts, the reaction occurs for a long time and has a low
yield. It is observed that the reaction performed with I2 and NH4OAc was complicated
after a long reaction time with a 72–80% yield. The model reaction was also carried out in
FeCl3 and AlCl3 with less reaction time but low yield, and the product obtained a minimal
amount. The reaction was completed with zinc chloride in a short time and with a moderate
yield. The model reaction was completed in a short reaction time when p-toluene sulphonic
acid was used with a high yield (Entry 9) (Table 2).
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Table 2. The influence of different catalysts on the model reaction under thermal solvent-free conditions.
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2.4.3. Effect of Catalyst Loading

The effect of loading catalyst was tested in the model reaction. In optimization, we
analyzed the reaction by varying the loading amount of the catalyst in the model reaction
from 2 to 10 mol%. Finally, the results show that 10 mol% of the catalyst was sufficient to
give a better yield (entry 5) (Table 3).

Table 3. Effect of catalyst loading on the reaction.
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Entry a Catalyst (Mol%) Time (Min) b Yield c

1 2 2 h 60
2 3 1.5 h 75
3 5 1.0 h 80
4 10 40 88
5 10 40 min 95

a Reaction of 4-chloro-salicylaldehyde (1 mmol) with malononitrile (1 mmol), piperidine (1 mmol) in the presence
of 10 mol% PTSA as a catalyst. b Reaction progress monitored by TLC. c Isolated yield.

2.4.4. Catalytic Reaction

With these encouraging results in hand, we turned to explore the scope of the reaction
using different aromatic aldehydes (2a–g), malononitrile, and piperidine as substrates
under the optimized reaction conditions (Table 4). It was observed that the aromatic
aldehydes with electron-donating and electron-withdrawing groups reacted successfully to
furnish the final products 1–6 in good yields (Table 4).
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Table 4. Synthesis of benzopyrano-pyrimidine derivatives using PTSA at 80 ◦C temperature.

Entry Reactant (1) Reactant (2) Product Time (min) Yield (%) M.P.

1.
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2.4.5. Catalyst Recycling

Effective catalyst recovery from the reaction mixture is the most important aspect for
determining its usability for practical applications, from an environmental and economic
standpoint. As a result, catalyst recycling studies were performed to establish the degree
of recyclability of our catalytic system (Figure 3). As a model reaction, the reaction of
4-chloro-salicylaldehyde, malononitrile, and piperidine in the presence of 10 mol% PTSA
was used. After the reaction was completed, the catalyst was recovered by extracting
the mixture with ethyl acetate and then filtering it. After that, the catalyst was washed
with ethyl acetate and reused in consecutive cycles. In ethanol, the catalyst maintained its
activity for at least five reaction cycles, demonstrating excellent catalytic performance with
a product yield of over 95%.
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2.5. Nematicidal Activity

The data analysis in Table 4 indicates that mortality of juveniles of Meloidogyne javanica
was recorded (8) in absolute alcohol (control). However, all the concentrations of each
diluted compound, i.e., 2, 3, 4, and 5, significantly impacted mortality. Second stage (J2)
juvenile mortality was directly correlated to the concentrations and exposure period. The
highest mortality (98.9%) was observed in 100% concentration of compound 4 after 72 h of
exposure time. In contrast, the lowest mortality was found in compound 2 (7.6%) at 12.5%
concentration after the exposure period of 24 h (Table 5).

Table 5. Effect of different dilutions of organic chemicals on the mortality of juvenile root-knot
nematode Meloidogyne javanica in vitro.

Compounds Exposure
Period (Hours)

Percent Mortality in Different Concentrations
Regression Equation

100% 50% 25% 12.2% Control

2
24 72

(69.5)
60

(56.5)
51

(46.7)
15

(7.6) 8.00 Y = 17.19x − 13.91

48 79
(77.1)

65
(61.9)

58
(54.3)

18
(10.8) 8.00 Y = 18.93x − 14.37

72 83
(81.5)

79
(77.1)

70
(67.3)

23
(16.3) 8.00 Y = 20.78x − 12.30

3
24 80

(78.2)
68

(65.2)
53

(48.9)
17

(9.7) 8.00 Y = 19.59x − 16.77

48 86
(84.7)

74
(71.7)

63
(59.7)

20
(13.0) 8.00 Y = 21.21x − 16.21

72 91
(90.2)

85
(83.6)

76
(73.9)

29
(22.8) 8.00 Y = 22.52x − 11.86

4
24 90

(89.1)
68

(65.2)
55

(51.0)
30

(23.9) 8.00 Y = 20.35x − 13.61

48 93
(92.3)

86
(84.7)

75
(72.8)

35
(29.3) 8.00 Y = 22.4x − 9.78

72 99
(98.9)

90
(89.1)

81
(79.3)

55
(51.0) 8.00 Y = 21.99x − 0.71

5
24 86

(84.7)
65

(61.9)
50

(45.6)
26

(19.5) 8.00 Y = 19.58x − 14.80

48 91
(90.2)

77
(72.8)

63
(59.7)

34
(28.2) 8.00 Y = 20.9x − 10.92

72 95
(94.4)

82
(80.4)

67
(64.1)

39
(33.6) 8.00 Y = 21.96x − 9.78

Each value is an average of three replicates.
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In vitro nematicidal activity of compounds was displayed as an LC50 value with
95% confidence limits. The effect of organic chemicals on probit output and LC 50 was
calculated. As the concentrations of the compounds increased from 12.5% to 100%, juvenile
mortality also increased. The toxins of compound 4 convert nematode natality into mortality
with LC50 values 27.21, 17.91, and 11.89 percent after 24, 48, and 72 h of exposure time,
respectively. The findings indicated that compound 4 was highly toxic to mortality of M.
javanica at 100% concentration of 72 h time duration. Compounds 5, 3, and 2 followed. After
24, 48, and 72 h of exposure, compound 2 showed the least toxicity in terms of nematode
mortality, with LC50 values of 42.97, 34.36, and 24.44, respectively (Table 6).

Table 6. Nematicidal activity of different concentrations of compounds against juveniles of Meloidog-
yne javanica.

Compounds Exposure Time (Hours) LC50 Value in Percent
(95% CL)

2 24 42.97
48 34.36
72 24.44

3 24 35.10
48 27.97
72 19.62

4 24 27.21
48 17.91
72 11.89

5 24 31.79
48 21.93
72 18.70

Similarly, dilutions of each compound were also considered effective against M. ja-
vanica egg hatching. After 7 days of exposure, compound 4 was the most reactive of the
four compounds, whereas compound 2 was the least effective at a 12.5 percent dilution.
Compound 2 had the lowest amount of hatching (95.8, 89.7, 78.8, and 54.8%). On the other
hand, maximum egg hatching of M. javanica second-stage juveniles (J2) was shown by
compound 4 (100, 96.0, 87.6, and 62.7%) at different dilutions such as 100%, 50%, 25%,
and 12.5% concerning their control (ethanol). As per data analysis, the maximum percent
inhibition in Meloidogyne javanica egg hatching was indicated by compound 4 (100%) at
100% concentration (Table 7). Alternatively, the minimum hatchability of J2s was revealed
by compound 2 (54.8%) at 12.5% diluted form after seven days of time duration (Table 7).

Table 7. Effect of different ethanolic dilutions of various compounds on the egg hatching of Meloidog-
yne javanica in vitro after 7 days.

Compounds Number of Larvae Hatched in Different Dilutions

100% 50% 25% 12.5% Control

2 22
(95.8%)

55
(89.7%)

113
(78.8%)

241
(54.8%)

534
(0.00%)

3 16
(97.0%)

41
(92.3%)

87
(83.7%)

227
(57.4%)

534
(0.00%)

4 0
(100%)

21
(96.0%)

66
(87.6%)

199
(62.7%)

534
(0.00%)

5 9
(98.3%)

27
(94.9%)

78
(85.3%)

214
(59.9%)

534
(0.00%)

Each value is an average of three replicates, DW = Distilled Water (control). The value of percent inhibition in egg
hatching over control is given in parentheses.

Conclusions reached that compounds 4 and 5 showed strong nematocidal activity
against egg hatching and J2s mortality among the four synthesized compounds. The



Catalysts 2022, 12, 531 10 of 17

nematocidal efficacy of the synthesized compounds might be due to the toxicity of com-
pounds that are soluble in ethanol. The previous findings showed that salicylaldehyde
derivatives and other chemicals possess nematicidal potency against most damaging soil-
borne pathogens, i.e., Phyto parasitic nematodes [35–37]. In the current in vitro testing,
the ethanolic dilutions of compounds 2, 3, 4, and 5 showed significant nematotoxicity or
nematocidal potentiality against juvenile mortality and egg hatching of M. javanica. The
four ethanolic doses of the synthesized compounds were the most efficient in lowering
egg hatching and increasing mortality. Results analysis revealed that the nematocidal
efficacy was proportionate to the concentration of compounds in ethanolic dilutions, i.e.,
the maximum treatment concentration, the higher the nematocidal action, or greater the
mortality and egg hatching inhibition [38].

In vitro mortality investigation showed that compound 4 exhibited the highest ne-
matocidal potency against the survival of J2s of M. javanica after 72 h of exposure time.
Compound 4 had the least LC50 values compared to other compounds (5, 3, and 2) at
24, 48, and 72 hrs of exposure. The mortality of the second stage (J2) juveniles increases
with the increase of all compound concentrations, along with exposure time initiated from
24 to 72 h. Related results were described by [39], who report that aromatic aldehydes
such as salicylaldehyde, Phthaldehyde, and cinnamic aldehydes actively demonstrated
nematocidal activity against the root-knot nematode, M. incognita in in vitro study. So, it
can be concluded that the toxicity of synthesized compounds toward nematodes depends
on the concentrations of treatment and the exposure period (Figure 4).

Catalysts 2022, 12, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 4. Regression lines show a linear relationship between different dilutions of organic chemi-
cals against juvenile mortality M. javanica at another exposure period. 

2.6. Docking Analysis 
The crystal structure of yeast V1-ATPase in the autoinhibited form of Saccharomyces cere-

visiae was chosen for the docking investigation, and docking was conducted to identify the non-
bonding contacts between the compound that showed good nematocidal activity in this study 
and the receptor. Compound 4 was docked between β-strand β-21 and α-helix α4, containing 284–
287 and 357–360 residues, in a docking experiment (Figure 5). The best docked posed established a 
hydrophobic pocket at the receptor site with residues PHE538, ILE541, LEU235, PRO233, PRO540, 
and TRP542 adjacent to compound 4 with binding energy (8.3420 kcal/mol). 

Figure 4. Regression lines show a linear relationship between different dilutions of organic chemicals
against juvenile mortality M. javanica at another exposure period.



Catalysts 2022, 12, 531 11 of 17

2.6. Docking Analysis

The crystal structure of yeast V1-ATPase in the autoinhibited form of Saccharomyces
cerevisiae was chosen for the docking investigation, and docking was conducted to identify
the non-bonding contacts between the compound that showed good nematocidal activity
in this study and the receptor. Compound 4 was docked between β-strand β-21 and α-helix
α4, containing 284–287 and 357–360 residues, in a docking experiment (Figure 5). The best
docked posed established a hydrophobic pocket at the receptor site with residues PHE538,
ILE541, LEU235, PRO233, PRO540, and TRP542 adjacent to compound 4 with binding
energy (8.3420 kcal/mol).
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Figure 5. Molecular docking of the (a) receptor (PDB: 5D80) with (b) the compound 4, (c) the docked
compound into active site shown in the circle, (d) involvement of various amino acids interacting
with compound 4, and (e) compound 4 interacts with the receptor, forming non-bonding contacts
with the aromatic and non-aromatic skeletons.

The envelope of these active amino acids that interact with compound 4 is positioned
in the amino acids pocket in the proper orientation, to establish close contact with the
receptor and stop plant-parasitic nematodes from spreading. Furthermore, apart from
hydrophobic amino acids, hydrophilic amino acids are present around the ligands such as
LYS 272, TYR 273, SER 274, ASN 275, ASN 475, and GLU 304 are also involved in various
interactions such as van der walls, pi-pi-T-shaped, pi-alkyl, and so on, as shown in Figure 5.
These interactions boosted the compound’s stability as well as its biological activity.

3. Materials and Methods

All chemicals were purchased from Merck and Sigma-Aldrich (Mumbai, India) as
“synthesis grade” and used without further purification. Kofler apparatus (Nageman,
Germany) was used to determine melting points and are uncorrected. A Carlo Erba
analyzer model 1108 (Milan, Italy) was used to analyze elemental analysis (C, H, N). The
Shimadzu IR-408 instrument (Shimadzu Corporation, Kyoto, Japan) recorded the IR spectra,
and the values were set in cm−1. For the 1H NMR and 13C NMR spectra, a Bruker Avance-
II 400 MHz instrument (Bruker Instruments Inc., Billerica, MA, USA) was used, and the
spectra run in DMSO-d6 with TMS as an internal standard, and the J values were measured
in Hertz (Hz). Chemical shifts were reported in ppm (δ) relative to TMS. A JEOL D-300
mass spectrometer was used to record the Mass spectra. Thin-layer chromatography (TLC)
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glass plates (20 × 5 cm) were coated with silica gel G (Merck) (Darmstadt, Germany) and
exposed to iodine vapors to check the homogeneity as well as the progress of the reaction.

3.1. General Procedure for the Synthesis of Benzopyrano-Pyrimidines Derivatives (1–6)

A mixture of salicylaldehyde 1 (1 mmol), malononitrile 2 (1 mmol), and piperi-
dine/morpholine (1 mmol) was added to p-toluene sulphonic (10 mol%). The reaction
mixture was refluxed and stirred at 80°C for the required time. The completion of the
reaction was monitored by thin-layer chromatography (TLC) using n-hexane and ethyl
acetate (8:2). After completing the reaction as indicated by TLC, the reaction mixture was
treated with ice-cold water. The mixture was filtered to collect the crystal. Separation
of the catalyst was completed by filtration and the resulting solution was extracted with
ethyl acetate. The aqueous organic layer was washed with brine, poured onto anhydrous
Na2SO4, and filtered under reduced pressure. The pure product obtained was crystallized
with ethanol chloroform to afford pure crystal (Scheme 2).
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3.2. Spectral Data of Synthesized Compounds

Spectroscopic and elemental analysis data for the heterocyclic compounds (1–6) syn-
thesized and reported in the literature are given as Supplemental Materials.

3.3. X-ray Crystallographic Studies

Additional information to the structure of compound 2 is specified in Table 8.

Table 8. Crystallographic data and experimental details compound 2.

Parameters Compound 2

Empirical Formula C22 H21 N3O2
Formula weight 359.42
Crystal size/mm 0.30 × 0.36 × 0.40
Crystal system Monoclinic

Unit cell dimensions

a = 9.9377 (2) Å
b = 15.8917 (3) Å
c = 12.1806 (3) Å

α = γ = 900
β = 108.7810

Space group P21/n
Z 4

Temperature (K) 293
Wavelength (Å) 0.71073 Å

Volume (Å3) 1821.22 (7)
Density (g cm−3) 1.311

µ/mm−1 0.086
F(000) 760

Measured reflections 44244
Independent reflections 4015 (Rint = 0.112)

Observed reflections [I ≥ 2σ(I)] 2667
Goodness-of-fit on F2 1.149

Radiation type MoKα

h, k, l max 12, 20, 15
Final R indices

[I ≥ 2σ(I)]
R1 = 0.078

wR2 = 0.280

3.4. Inoculum Maintenance

The pure culture of root-knot nematode, Meloidogyne javanica, was multiplied on the
brinjal plant under the greenhouse of the Department of Botany, Aligarh Muslim University,
Aligarh (India). Infected roots were separated from the adhering soil, washed gently in tap
water, and kept in a distilled water tray (DW). The root-knot nematode species M. javanica
identification was carried out based on the technique of the perineal patterns [40]. The roots
were cut into small segments, and egg masses were handpicked from the root for hatching
purposes. These egg masses were transferred to Petri dishes (40 mm) containing DW at
27 ± 2 ◦C in a BOD incubator. The suspension containing the juveniles was collected after
the fifth day of hatching, and fresh DW was added. The concentration of freshly hatched J2
juveniles of M. javanica was standardized as per the requirement for in vitro testing.

3.5. In Vitro Nematicidal Activity Bioassays
3.5.1. Hatching Test

Five new and uniform-size egg masses of M. javanica were handpicked from the
infected roots of brinjal. The collected egg masses were transferred to Petri dishes (40 mm)
containing 10 mL of each synthesized compound in different concentrations (100%, 50%,
25%, and 12.5%). Distilled water containing egg masses served as a control. Each treatment,
including the control, had three replicates. All the Petri dishes were incubated in a BOD
(biological oxygen demand) incubator at 28 ◦C for seven days. After seven days, hatched
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juveniles in the treated and control samples were recorded using a counting dish with the
help of a stereomicroscope.

3.5.2. Mortality Test

For mortality, 0.4 mL of DW containing 100 juveniles of M. javanica was transferred
into the Petri dishes containing 9.6 mL of synthesized compounds of four different con-
centrations (100%, 50%, 25%, and 12.5%). Petri dishes containing juveniles in DW were
considered as the control. Each treatment, including the control, was replicated three times.
All the Petri dishes were kept at 28 ◦C in BOD. The number of dead juveniles was counted
with the help of a counting dish under a stereomicroscope at different time intervals (24,
48, and 72 h). The mortality of the juveniles was confirmed by transferring immobilized
juveniles into fresh DW water for 1 h and observing if any movement was shown by
nematode. If there was no mobility, then they were considered dead. Probit analysis was
used to compute the LC50 values for all treatments based on percent mortality data and
concentration [41].

The following formula was used to compute the percent inhibition in egg hatching or
juvenile mortality:

% inhibition or mortality =

(
C0 − Tα

C0

)
× 100%

where, in terms of egg hatching, Tα = number of juveniles hatched in each concentration of
the compound dilutions, C0 = number of juveniles hatched in the control. In the case of
mortality, Tα = number of live nematodes after 24, 48, and 72 h of exposure, C0 = number
of juveniles living in the control.

3.6. Docking Study

Molecular docking between compound 4 and the V1-ATPase crystal structure receptor
downloaded from the RCSB Protein Data Bank was performed with YASARA software [42]
using the dock_run.MCR module that was available in YASARA-Structure. Initially, the
receptor’s PDB file was imported into YASARA, and water molecules and ions from the
receptor were removed from the structure. The missing hydrogen atoms and residues
were added to the receptor. One of the multiple receptor structures was saved for docking
studies. Chem Draw was used to sketch the 2D structure of compound 4, which was then
transformed to a 3D structure by Chem3D before being optimized using molecular mechan-
ics using the MM+ force field and saved in sd format for the docking study. YASARA View
was used to illustrate the best dock pose from the docking experiment, which was then
converted to PDB format for Molecular graphics by a BIOVIA Discovery Studio Visualizer
(Discovery Studio Visualizer, version 16.1.0; Dassault Systemes, BIOVIA Corp., San Diego,
CA, USA).

4. Conclusions

The protocol provides not only a high yield of products and a shorter reaction time
but also high purity, mild reaction conditions, operational simplicity, a cleaner reaction
profile, increased reaction rates, and a simple workup approach. We hope that this syn-
thetic protocol will provide a more feasible alternative to the other available methods for
synthesizing benzopyrano-pyrimidine. Compounds 4 and 5 had a significant nematocidal
effect on egg hatching and J2s mortality. The nematocidal efficacy of the compounds might
be due to the toxicity of chemicals which are soluble in ethanol. The analysis revealed
that the nematocidal efficacy was proportionate to the concentration of the compounds in
ethanolic dilutions, i.e., the maximum treatment concentration, the greater the mortality or,
the higher the nematocidal action, as well as egg hatching inhibition. For the investigation
of close contacts with active amino acids, the molecular docking of compound 4 against the
3D structure of V1-ATPase obtained from Saccharomyces cerevisiae was employed.
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