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Abstract: In the present study, TiO2-montmorillonite (MMT) composites were synthesized hydrother-
mally under variable conditions, including the TiO2/MMT mass ratio, reaction pH, reaction tem-
perature, and dwelling time. These samples were determined by X-ray photoelectron spectrometry
(XPS), ultraviolet–visible spectroscopy% (UV-Vis DRS), electrochemical impedance spectroscopy
(EIS), transient photocurrent responses, photoluminescence (PL) spectra, electron paramagnetic
resonance (EPR), and N2 adsorption–desorption isotherms. The photocatalytic activity was evaluated
as the ability to promote the visible-light-driven degradation of 30 mg/L of aqueous methylene blue,
which was maximized for the composite with a TiO2 mass ratio of 30 wt% prepared at a pH of 6,
a reaction temperature of 160 ◦C, and a dwelling time of 24 h (denoted as 30%-TM), which achieved
a methylene blue removal efficiency of 95.6%, which was 4.9 times higher than that of pure TiO2.
The unit cell volume and crystallite size of 30%-TM were 92.43 Å3 and 9.28 nm, respectively, with
a relatively uniform distribution of TiO2 particles on the MMT’s surface. In addition, 30%-TM had
a large specific surface area, a strong light absorption capacity, and a high Ti3+ content among the
studied catalysts. Thus, the present study provides a basis for the synthesis of composites with
controlled structures.

Keywords: hydrothermal synthesis; TiO2-montmorillonite; photocatalysis; synthetic conditions

1. Introduction

The global energy crisis and environmental pollution have necessitated the develop-
ment of materials that can reduce our dependence on nonrenewable energy sources and
remove hazardous pollutants from wastewater [1–5]. Recently, photocatalytic degrada-
tion has attracted significant attention as a novel, simple, and environmentally friendly
wastewater treatment method, which is superior to traditional techniques that rely on
adsorption, membrane separation, ion exchange, and oxidation [6–9]. Titanium dioxide is
extensively used for the photocatalytic degradation of pollutants owing to its nontoxicity,
low cost, high chemical stability, hydrophilicity, and good catalytic activity [10,11]. How-
ever, it exhibits certain drawbacks, such as rapid electron–hole recombination and a wide
band gap [12].

Montmorillonite (MMT) is a common lamellar aluminosilicate [13] that is often used
as a photocatalyst support owing to its large specific surface area [10], its high adsorption
capacity for cations and polar molecules [14], and stable chemical properties [15]. Com-
posites of TiO2-MMT have been reported to exhibit slower electron–hole recombination
and promote better oxidative degradation of pollutants by ozone compared with pure
TiO2 and MMT [16]. The porosity of these composites, prepared by reacting titanium
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silicalite with titanium alkoxides at 50–80 ◦C, strongly influences their ability to adsorb
dyes such as methylene blue (MB), which can be adjusted by varying the reaction tempera-
ture [17]. A study reporting the preparation of TiO2 gel from titanium tetrachloride (TiCl4)
at 30–80 ◦C demonstrated the photocatalytic performance of the resulting TiO2-MMT com-
posite, which was maximized at a reaction temperature of 70 ◦C [18]. In another study,
TiO2-MMT suspensions were hydrothermally prepared from titanium sulfide (Ti(SO4)2)
and MMT at pH 4, and calcined for 2 h at 300–1200 ◦C [10]. The growth of anatase and rutile
TiO2 was inhibited by adding MMT, while the complete transformation of anatase TiO2 into
rutile TiO2 was observed at 900 ◦C. TiO2-MMT composites prepared by combining cation
filling, sol-gel processing, and thermal treatment featured a narrow band gap of 2.79 eV
and advantageous structural properties [19]. Preparation of a carbon-modified nitrogen-
doped TiO2/montmorillonite composite by the sol-gel method increased the absorption
range of light and realized the effective separation of photogenerated electron pairs [20].
Mohammad et al. prepared a kind of gray titanium dioxide, which increased the content of
Ti3+ and oxygen vacancies in titanium dioxide and increased the rate of charge transfer [21].
Yusuke et al. studied the synergistic effect of layered silicate and TiO2 on the photocatalytic
oxidation of benzene to recover phenol with unprecedented efficiency and selectivity [22].

More recently, TiO2-MMT composites were shown to exhibit high photocatalytic ac-
tivity even at elevated temperatures, which was ascribed to the presence of TiO2 in the
anatase phase [16,17,23,24]. Esmail et al. reported a Cl-doped rutile titanium dioxide photo-
catalyst, which alone could produce a lower effective carrier mass, higher photogenerated
electron and hole mobility, and a longer Ti3+ ion interaction lifetime, thus improving the
photocatalytic activity [25]. Compared with pure TiO2, TiO2-MMT composites are easier to
recover, facilitating their industrial applications [26], and can exhibit reduced absorbance
at 220–300 nm [27].

Numerous studies have probed the effects of the photodegradation conditions (such
as solution pH, initial dye concentration, reaction atmosphere, and illumination time) on
the photocatalytic performance of TiO2-MMT composites [10,16,27–29]. However, only
a few have examined the corresponding effects of composite preparation conditions, such as
the TiO2/MMT mass ratio and pH of the hydrothermal reaction, which may affect the
structure and properties of the composite (for example, the phase composition, chemical
bonding, the absorption range, and energy bands), thereby influencing the photocatalytic
performance. Herein, we hydrothermally synthesized pure TiO2 and TiO2-MMT composites.
We examined the effect of TiO2 content, reaction pH, reaction temperature, and dwelling
time on the ability of these composites to promote the photodegradation of MB, which was
compared with that of pure TiO2 and MMT. Through detection and analysis by X-ray
photoelectron spectrometry (XPS), ultraviolet–visible spectroscopy (UV), electrochemical
impedance spectroscopy (EIS), transient photocurrent responses, photoluminescence (PL)
spectra, electron paramagnetic resonance (EPR), and Brunner–Emmet–Teller measurements
(BET), the materials with the best properties under different conditions were explored.
Thus, this study describes valuable correlations between synthetic conditions and catalyst
properties, and thus provides a basis for synthesizing composites with a controlled structure.

2. Results and Discussion
2.1. Structural, Morphological, and Chemical Bonds

Figures 1 and 2 illustrate the XRD patterns of TiO2-MMT composites prepared under
different conditions, demonstrating peaks at 2θ = 25.3◦, 37.8◦, 48.1◦, 53.9◦, 55◦, and 62.8◦

that correspond to the (101), (004), (200), (105), (211), and (204) planes of anatase (JCPDS
NO.73-1764), respectively. Notably, the anatase (101) surface had a higher intrinsic pho-
tocatalytic activity compared with other TiO2 crystal faces [24]. The peak corresponding
to the (101) plane was the most intense among those observed previously [28], with the
variation in its intensity reflecting the effect of the MMT addition and reaction conditions on
the crystallization state of TiO2 and thereby on the photocatalytic performance. Apart from
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anatase and MMT, the XRD patterns featured relatively sharp peaks of quartz, indicating
a large surface area owing to the flaky structure of MMT.
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sample featured the strongest MMT (004), (111), (210), and (300) peaks, thus exhibiting the 
most preserved MMT microstructure. These results, in combination with Table 1 and Fig-
ure 2, implied that the particle size of TiO2 in the composite became finer when TiO2 was 
adsorbed on the MMT surface, which could benefit the photocatalytic performance. The 
weakest MMT peaks were observed for the sample prepared at pH 2, indicating that the 
MMT structure was largely destroyed under these conditions. The average crystallite size 
of the samples described in Figure 1b first decreased and then increased with an increase 
in pH, while the maximum cell volume was obtained at pH 8 (V = 121.40 Å3). 

Figure 2a demonstrates that the intensities of anatase (101), MMT, and quartz peaks 
reached a maximum at 180 °C; the position of the anatase (101) peak was influenced by 
the temperature. The average crystallite size of the samples increased steadily with an 
increase in temperature, and the maximum cell volume was obtained at 140 °C (V = 117.67 
Å3). 

Figure 1. X-ray diffraction patterns of TiO2-montmorillonite (MMT) composites prepared using
(a) different TiO2/MMT mass ratios at a reaction temperature of 160 ◦C, a dwelling time of 24 h,
and a pH of 6, and (b) different pH values at a reaction temperature of 160 ◦C, a dwelling time of
24 h, and a TiO2 mass ratio of 30 wt%.
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of MMT, allowing complete utilization of the large interlamellar and surface area of the 
latter [34]. 

Figure 2. X-ray diffraction patterns of TiO2-montmorillonite (MMT) composites prepared using
(a) different reaction temperatures with a dwelling time of 24 h, a pH of 6, and a TiO2 mass ratio of
30 wt%, and (b) different dwelling times at a reaction temperature of 160 ◦C, a pH of 6, and a TiO2

mass ratio of 30 wt%.

Figure 1a reveals that the relative intensity of the anatase peaks, and thereby the
amount of anatase, increases with an increase in the TiO2 content; however, the intensity
was less than that observed for pure TiO2. The strongest MMT peaks indicated that the
lamellar structure was best preserved at a TiO2 mass ratio of 30 wt%. Table 1 illustrates
the unit cell parameters, unit cell volumes (V), and crystallite sizes (D) of the investigated
materials, which belong to the tetragonal system. The unit cell volume was calculated as
V = 0.866a2c [29,30], and the crystallite size was calculated as D = Kλ/(βcos θ), where θ is
the diffraction angle, β is the full width at half-maximum of the most intense peak, λ is
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the X-ray wavelength (0.15406 nm), and K is the Debye–Scherrer constant (0.89) [14,31,32].
The average crystallite size of the samples described in Figure 1a first increased and then
decreased with an increase in the TiO2 content, while the maximum cell volume was
obtained at a TiO2 mass ratio of 70 wt% (V = 117.97 Å3).

Table 1. Selected structural parameters of the prepared composites and the TiO2 reference (a = b 6= c,
α = β = θ = 90◦).

Parameters a (Å) b (Å) c (Å) V (Å3) D (nm)

TiO2 3.776 3.776 7.486 92.43 9.74

30%, pH = 6, 160 ◦C, 24 h TiO2-MMT
(30%-TM) 3.780 3.780 9.510 117.67 9.28

40%, pH = 6, 160 ◦C, 24 h TiO2-MMT
(40%-TM) 3.776 3.776 9.486 117.13 9.28

50%, pH = 6, 160 ◦C, 24 h TiO2-MMT
(50%-TM) 3.776 3.776 9.486 117.13 9.42

60%, pH = 6, 160 ◦C, 24 h, TiO2-MMT
(60%-TM) 3.783 3.783 9.497 117.70 9.43

70%, pH = 6, 160 ◦C, 24 h TiO2-MMT
(70%-TM) 3.784 3.784 9.514 117.97 9.24

pH = 2, 30%, 160 ◦C, 24 h TiO2-MMT
(pH = 2-TM) 3.784 3.784 9.514 117.97 9.65

pH = 4, 30%, 160 ◦C, 24 h TiO2-MMT
(pH = 4-TM) 3.776 3.776 9.486 117.13 9.00

pH = 6, 30%, 160 ◦C, 24 h TiO2-MMT
(pH = 6-TM) 3.780 3.780 9.510 117.67 9.28

pH = 8, 30%, 160 ◦C, 24 h TiO2-MMT
(pH = 8-TM) 3.785 3.785 9.785 121.40 11.76

140 ◦C, 30%, pH = 6, 24 h TiO2-MMT
(140 ◦C-TM) 3.780 3.780 9.510 117.67 8.98

160 ◦C, 30%, pH = 6, 24 h TiO2-MMT
(160 ◦C-TM) 3.780 3.780 9.510 117.67 9.28

180 ◦C, 30%, pH = 6,24 h TiO2-MMT
(180 ◦C-TM) 3.807 3.807 9.090 114.09 9.52

200 ◦C, 30%, pH = 6, 24 h, TiO2-MMT
(200 ◦C-TM) 3.807 3.807 9.090 114.09 9.79

18 h, 30%, pH = 6, 160 ◦C TiO2-MMT
(18 h-TM) 3.784 3.784 9.515 117.99 9.994

20 h, 30%, pH = 6, 160 ◦C TiO2-MMT
(20 h-TM) 3.784 3.784 9.515 117.99 10.73

24 h, 30%, pH = 6, 160 ◦C TiO2-MMT
(24 h-TM) 3.780 3.780 9.510 117.67 9.28

Figure 1b shows that the anatase (101) peak was the strongest and sharpest at pH 8.
Thus, the sample prepared at pH 8 had the highest crystallinity. Moreover, the pH = 6-TM
sample featured the strongest MMT (004), (111), (210), and (300) peaks, thus exhibiting
the most preserved MMT microstructure. These results, in combination with Table 1 and
Figure 2, implied that the particle size of TiO2 in the composite became finer when TiO2
was adsorbed on the MMT surface, which could benefit the photocatalytic performance.
The weakest MMT peaks were observed for the sample prepared at pH 2, indicating that the
MMT structure was largely destroyed under these conditions. The average crystallite size
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of the samples described in Figure 1b first decreased and then increased with an increase in
pH, while the maximum cell volume was obtained at pH 8 (V = 121.40 Å3).

Figure 2a demonstrates that the intensities of anatase (101), MMT, and quartz peaks
reached a maximum at 180 ◦C; the position of the anatase (101) peak was influenced by the
temperature. The average crystallite size of the samples increased steadily with an increase
in temperature, and the maximum cell volume was obtained at 140 ◦C (V = 117.67 Å3).

Figure 2b shows that the intensity of the anatase (101) peak, and thus the crystallinity
and photocatalytic activity of TiO2, was maximum at 24 h. In addition, the intensities of
quartz and MMT (004) peaks were maximized at 24 h, indicating that this dwelling time
was the most suited for preserving the MMT’s microstructure. In contrast, TiO2 particle
agglomeration was observed with a dwelling time of 20 h. The average crystallite size of the
samples first increased and then decreased with an increase in the dwelling time, and the
maximum cell volume was obtained for dwelling times of 18 and 20 h (V = 117.99 Å3).

Figure 3 shows the SEM images of 30%-TM at different magnifications, revealing that
the ordered lamellar structure of MMT remained intact after the hydrothermal reaction,
and showing the presence of well-dispersed TiO2 nanoparticles on and between the MMT
layers [33]. The corresponding particle size distribution (Figure 4) suggested that the TiO2
particles and their aggregates had sizes of 10–30 and 50–100 nm, respectively. These results
implied that hybridization with TiO2 did not destroy the ordered interlayer structure
of MMT, allowing complete utilization of the large interlamellar and surface area of the
latter [34].
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Figures 5 and 6 illustrate the FTIR spectra of TiO2-MMT composites, pure TiO2,
and MMT. The absorption bands of pure TiO2 were located at 480, 1345, 1377, 1594, 1630,
2821, 2921, and 3423 cm−1 (Figure 6a). The band at 480 cm−1 was ascribed to the tensile
vibration of Ti–O bonds [35,36]. Peaks at 1594 and 1630 cm−1 were attributed to the vibra-
tion of hydroxyl and water molecular layers [32], whereas the peaks at 2821 and 2921 cm−1

were ascribed to the asymmetric vibration of the C–H bonds. The broad peak at 3423 cm−1

was assigned to the stretching vibration of hydroxyl groups, which were mainly represented
by adsorbed moisture and hydroxyl groups on the TiO2’s surface. Pure MMT featured
peaks at 472, 525, 775, 1048, 1594, and 3420 cm−1. The peak at 3420 cm−1 was due to the
symmetrical O–H stretching of the absorbed moisture, whereas that at 1594 cm−1 was
ascribed to the deformation vibration of the interlayered water molecules. The strong peak
at 1048 cm−1 was assigned to asymmetric Si–O stretching. The signals at 775, 525, and
472 cm−1 were attributed to Al–O bond stretching, Al–O–Si bond deformation, and Si–O–Si
bond deformation, respectively [36,37].
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Figure 5. Fourier transform infrared spectra of TiO2-montmorillonite (MMT) composites prepared
using (a) different TiO2/MMT mass ratios at a reaction temperature of 160 ◦C, a dwelling time of
24 h, and a pH of 6, and (b) different pH values at a reaction temperature of 160 ◦C, a dwelling time
of 24 h, and a TiO2 mass ratio of 30 wt%.
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a TiO2 mass ratio of 30 wt%.

The peak range of 910–930 cm−1 was observed only for the TiO2-MMT composites
and was assigned to the Si–O–Ti units produced from the reaction of SiO2 with TiO2 [31,32].
The formation of Si–O bonds increased the number of oxygen vacancies on the surface of
the TiO2 attached to the MMT [19], enhancing the catalytic performance of the composites.
Figure 6a shows that the characteristic absorption band of MMT is unclear for composites
with a TiO2 mass ratio of 50, 60, and 70 wt%. This behavior could reflect the increased
occurrence of the reaction of SiO2 with TiO2 with the increase in TiO2 content, which de-
creased the intensity of the Si–O–Si deformation vibration, Al–O–Si deformation vibration,
Si–O tensile vibration, and Ti–O tensile vibration. Figure 5b shows that for pH 2, no peaks
were observed at 472 and 525 cm−1, implying that the lamellar structure of MMT was
destroyed under strongly acidic conditions, which affected the photocatalytic performance.

2.2. Photocatalytic Activity and Dye Degradation

Figure 7a shows the absorption maxima of MB at 664 nm, which decreased with the
degradation time for 30%-TM. Figure 7b,c demonstrates the absorbance spectra obtained
for the degradation of MB with different catalysts at degradation times of 120 and 0 min,
respectively. Figure 8b illustrates insignificant changes in the absorbance of MB in the
blank group (light, no catalyst), suggesting that MB is relatively stable in the absence of
a photocatalyst. Figure 8a shows that pure TiO2 had a low MB adsorption capacity in the
dark and achieved a fluctuating MB removal efficiency of only 7% after 2 h. However,
pure TiO2 achieved a removal efficiency of 19.4% after 2 h when irradiated with light
(Figure 8b), indicating that it exhibited a certain photocatalytic activity. In contrast,
the MB removal efficiency of MMT did not depend on the lighting conditions because
the dye was removed by adsorption only. Figure 8a illustrates the MB adsorption capacity
of TiO2-MMT composites, which was lower than that of the pure MMT and required
more time to reach an adsorption equilibrium (70 min vs. 60 min for MMT). However,
after irradiation for 2 h, a further increase in the removal efficiency was observed upon
the hybridization of TiO2 with MMT. The highest degradation efficiency of 95.6% after
2 h was observed for composites at a TiO2 content of 30%. The degradation rate of MB
by 30%-TM was superior to many of the previously reported TiO2-based and Ag-based
photocatalysts, as shown in Table 2.
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Figure 8. Methylene blue degradation curves obtained for (a) TiO2, montmorillonite (MMT), and
30%-TM under dark conditions; (b) the blank group, TiO2, MMT, and 30%-TM under visible light;
(c) composites with different TiO2 contents prepared at a reaction temperature of 160 ◦C, a dwelling
time of 24 h, and a TiO2 mass ratio of 30 wt%; (d) composites prepared at different pH values with
a dwelling time of 24 h, a pH of 6, and a TiO2 mass ratio of 30 wt%; (e) composites prepared with
different dwelling times at a reaction temperature of 160 ◦C, a pH of 6, and a TiO2 mass ratio of
30 wt%; and (f) composites prepared at different reaction temperatures with a dwelling time of 24 h,
a pH of 6, and a TiO2 mass ratio of 30 wt%.
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Figure 8d shows the MB degradation curves for composites prepared at different
pH values, revealing that the highest degradation efficiency of 76.1% after 2 h was obtained
for pH 6. Although the sample prepared at pH 2 had the best absorption range and the
lowest band gap, it exhibited poor photocatalytic performance. This result can be explained
as follows: as a cationic dye, MB mainly exists in the cationic form at pH 8 [38]. Because the
zero-charge point of TiO2 is at pH 6.8, the surface of TiO2 is positively charged (pH < 6.8)
in acidic solutions and negatively charged (pH > 6.8) in alkaline solutions [32]. Therefore,
the surface of TiO2 particles is positively charged at pH 2. In addition, MMT mainly exists as
large aggregates with a partially destroyed lamellar structure under acidic conditions (pH 1),
whereas the size of these aggregates decreases at pH 7 [39]. Moreover, MMT has a negative
potential, which changes insignificantly under acidic conditions. Thus, the electrostatic
attraction induces the aggregation of positively charged TiO2 with negatively charged
MMT [40] to produce composites with reduced surface potential and surface area available
for dye adsorption and photon absorption, thereby seriously affecting the adsorption of MB
during its degradation. When hydrothermal synthesis was performed at pH 8, Coulombic
repulsion existed between the negatively charged surfaces of TiO2, MMT, and OH− anions.
Therefore, the number of TiO2 particles on the surface of the composite prepared at pH 8
was less than that on the surface of the composite prepared at pH 6, thereby exhibiting
fewer active TiO2 surface sites and lower performance.

Table 2. Comparison of the percentage of degradation of 30%-MT with previously reported photocatalysts.

Material Light Source Pollutant % Degradation Time (min) Reference

CA/TiO2 Visible light Methylene blue 85 300 [41]

ZnO/Ag Visible light Methyl orange 78 180 [42]

NiO/Ag Visible light Methyl orange 42 180 [42]

TiO2/Ag Visible light Methyl orange 86 180 [42]

Cu-MOF-235 Visible light Methylene blue 90 480 [43]

B-TiO2/MIL100(Fe) Visible light Methylene blue 91.12 60 [44]

Cd-TCAA Visible light Methylene blue 81 175 [45]

ZnO-TiO2 Visible light Methylene blue 62 120 [46]

TiO2/Al2O3@Cu(BDC) Visible light Methylene blue 33.77 30 [47]

TiO2@Ti(BTC) Visible light Methylene blue 56 60 [48]

30%-MT Visible light Methylene blue 95.6 120 This work

Figure 8e shows the effect of dwelling time, indicating that the MB degradation
performance was maximized (95.6% after 2 h) and minimized (33.4% after 2 h) with
dwelling times of 24 and 20 h, respectively. The overall intensity of the FTIR peaks of
the sample prepared by using a dwelling time of 20 h was lower than that observed for
samples with different dwelling times, which may be attributed to the agglomeration
of TiO2 particles on the lamellar structure of MMT. This agglomeration also affected the
intensity of the characteristic MMT diffraction peaks, although it did not destroy the MMT’s
structure. This hypothesis agrees with the maximization of the average crystallite size of
TiO2 with a dwelling time of 20 h (10.73 nm).

Figure 8f illustrates the effect of the reaction temperature, exhibiting maximum (95.6%)
and minimum (42.8%) MB degradation performance at 160 and 200 ◦C, respectively.
The sample prepared at 200 ◦C had the largest average TiO2 crystallite size of 9.79 nm.
In contrast, the corresponding FTIR spectrum showed no new peaks, which agreed with
the results of the optical band gap analysis. Therefore, the poor performance of the sample
prepared at 200 ◦C was ascribed to the agglomeration of TiO2 particles and the absence of
heterogeneous TiO2-MMT aggregation.
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To probe the mechanism of catalytic MB degradation, we used active species trapping
experiments (Figure 9). In particular, 5,5-dimethyl-pyrroline N-oxide (DMPO, a spin trap-
ping agent) reacted with photogenerated holes (h+) to produce the radical cation DMPO+,
which subsequently reacted with water molecules to form DMPO-OH•. The signals of spin
adducts were predictably weak in the dark and became more intense when irradiated with
light. A typical four-line electron paramagnetic resonance (EPR) signal of DMPO-OH• (g =
2.0057, intensity ratio = 1:2:2:1) was observed for all samples after irradiation and was more
intense for TiO2-MMT composites than for pure TiO2, which implied that MMT remarkably
enhanced the ability of TiO2 to produce ·OH radicals (Figure 9a).
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− obtained for catalysts irradiated with visible light.

The EPR signal of the DMPO-·O2
− adduct (g = 2.009, intensity ratio = 1:1:1:1) was also

more intense for TiO2-MMT composites than for pure TiO2 (Figure 9b). This adduct was
produced via the reduction of O2 by the electrons in the conduction band of TiO2-MMT
(−0.08 V; O2/·O2

− reduction potential = −0.046 V). Thus, the high photocatalytic activity
of TiO2-MMT was ascribed to the enhanced production of reactive oxygen species on
its surface.

Figure 10 shows the capture experiment of active substances in the process of MB
degradation. In the degradation process, isopropanol (IPA), disodium ethylenediamine
tetraacetate (EDTA-2Na), and p-benzoquinone (BQ) at 1 mmol were added as scavengers of
hydroxyl radicals (·OH), holes (h+), and superoxide radicals (·O2

−), respectively, to further
explore the role of active substances in the process of photodegradation. It was obvious
that the addition of IPA, EDTA-2Na, and BQ affected the efficiency of the photodegradation
of pollutants, indicating that ·OH, h+, and ·O2

− played an important role in the process
of photodegradation, and the inhibitory effect of BQ was the most obvious. Therefore,
·O2
− played a more important role in the process of photocatalytic degradation. This was

consistent with the test results of EPR. As shown in Figure 10, DMPO-·O2
− had more

obvious peaks under light conditions. In addition, by PL analysis, the recombination rate
of the electron hole was lower, and the electron and hole functioned separately for a longer
time, so the sample had better photocatalytic efficiency.
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2.3. N2 Adsorption–Desorption Isotherms, Light Absorption, and Behavior of Photogenerated
Charge Carriers

By testing the N2 adsorption–desorption isotherms of TiO2 and 30%-TM, the specific
surface area of these catalysts was obtained. As shown in Figure 11a, it can be seen that TiO2
and 30%-TM displayed characteristic Type IV isotherms, and the shape of the hysteresis
loop for these isotherms was Type H3, according to the International Union of Pure and
Applied Chemistry (IUPAC) classification [49]. Besides, the BET surface area of 30%-MT
was 77.069 m2/g, which was a larger surface area than pure TiO2. The pore volume and
pore diameter were 0.2489 cm3/g and 15.192 nm, respectively (Figure 11a and Table 3).
Furthermore, Figure 11b shows the pore diameter distribution curves, showing that the
30%-TM featured a shift in the distribution curve to larger pore sizes and the broadening of
its shape. Therefore, the surface of 30%-MT can provide more active reaction sites.
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Table 3. BET parameters of TiO2 and 30%-TM.

Sample BET Surface Area (m2/g) BJH Pore Volume (cm3/g) Pore Diameter (nm)

TiO2 38.925 0.1179 10.001

30%-MT 77.069 0.2489 15.192

Figure 12 illustrates the UV–vis absorption spectra of TiO2-MMT composites pre-
pared under different conditions. Anatase TiO2 had an absorption maximum at 387 nm
and an optical band gap of 3.2 eV [50]. The absorption edge of TiO2-MMT shifted in the
direction of the wavelength increase, implying a red shift [51], which can be attributed to
the production of numerous empty orbitals and defects by the transition metal elements
(Fe and Mn) present in MMT. Simultaneously, several studies have reported a blue shift
in the absorption edge of TiO2-MMT nanocomposites, ascribing this to the quantum
confinement effects [52].
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Figure 12. Ultraviolet-visible absorption spectra of TiO2-montmorillonite (MMT) prepared using
(a) different TiO2/MMT mass ratios at a reaction temperature of 160 ◦C, a dwelling time of 24 h,
and a pH of 6; (b) different pH levels with a reaction temperature of 160 ◦C, a dwelling time of
24 h, and a TiO2 content of 30 wt%; (c) different reaction temperatures with a dwelling time of
24 h, a pH of 6, and a TiO2 mass ratio of 30 wt%; and (d) different dwelling times at a reaction
temperature of 160 ◦C, a pH of 6, and a TiO2 mass ratio of 30 wt%. Inset images show expansions
of the 370–450 nm region.

Figure 12a shows that the samples with a TiO2 mass ratio of 30 and 60 wt% featured
absorption edges at 437 and 404 nm, which were red-shifted by 50 and 17 nm, respectively,
compared with that of anatase TiO2 (387 nm, 3.2 eV). The corresponding red shifts for
40%-TM (425 nm) and 50%-TM (409 nm) were 38 and 22 nm, respectively. Thus, 30%-TM
exhibited the largest red shift and featured the highest visible-light-absorbing ability [29],
and thus, they potentially had the highest photocatalytic activity [53]. Figure 12b illustrates
the effects of pH on the absorption spectra of TiO2-MMT composites. Samples prepared
at pH 2, 4, 6, and 8 exhibited red-shifted absorption edges relative to that of the anatase
TiO2 by 27, 25, 50, and 18 nm, respectively (Figure 8b). Thus, the sample prepared at pH 2
featured the best visible-light-absorbing ability.

Figure 12c shows the effect of the reaction temperature on recombination light ab-
sorption. The samples prepared at 140, 160, 180, and 200 ◦C have absorption edges at
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408, 437, 406, and 405 nm, respectively (the respective red shifts relative to pure anatase
TiO2 equaled 21, 50, 19, and 18 nm). Figure 12d demonstrates the effect of dwelling time,
revealing that samples prepared using dwelling times of 18, 20, and 24 h had absorption
edges of 395 nm, 402 nm, and 437 nm, respectively. Therefore, the sample prepared using
a dwelling time of 24 h had the best combination of absorption ability.

In order to further explore the optical properties of the samples, XPS was applied.
Figure 13 shows the XPS peak of the pH = 2-TM and the 30%-TM nanoparticles. The Ti 2p
peak was measured, as shown in Figure 13a, and the O 1s peak, Si 2p peak, and Ti 2p
peak of 30%-TM were detected, as illustrated in Figure 13b–d, respectively. Most stud-
ies have pointed out that pure TiO2 only presents the Ti 2p1/2 peak and Ti 2p3/2 peak,
and these were attributed to Ti4+ [54]. However, for TM composites, two new peaks ap-
peared (Figure 13a,d), corresponding to Ti3+ 2p1/2 and Ti3+ 2p3/2, respectively. For pH
= 2-TM, two peaks appeared at 456.93 eV and 463.7 eV, and two peaks for 30%-TM ap-
peared at 456.8 eV and 463.6 eV. From the corresponding area of each peak, the ratio of
Ti3+/Ti4+ of pH = 2-TM and 30%-TM was approximately 18.83% and 20.81%, respectively.
Obviously, 30%-TM had the highest Ti3+ content, and the minimum band gap of 30 TM
was 2.76 eV (Figure 14), which meant that it had better light absorption capacity and better
photocatalytic performance.
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TiO2/MMT mass ratios at a reaction temperature of 160 ◦C, a dwelling time of 24 h, and a pH of 6;
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content of 30 wt%; and (d) different dwelling times at a reaction temperature of 160 ◦C, a pH of 6,
and a TiO2 mass ratio of 30 wt%.

As presented in Figure 13b, the photoelectron peaks for O 1s were observed at 530.11,
531.66, and 533.09 eV, provided by carboxyl group, TiO2, and MMT, respectively [19].
Carboxyl can increase the hydrophilicity of materials in the process of photocatalysis.
The peak at 102.69 eV in Si 2p can be ascribed to MMT.

Figure 15a shows the EIS of TiO2, 30%-TM and pH = 2-TM, and the PL intensity of
TiO2, 30%-TM, 50%-TM, pH = 2-TM and 18 h-TM. In the EIS results, 30%-TM had the
smallest radius and had higher charge transfer efficiency, while TiO2 had the highest radius
and the smallest charge transfer efficiency. Figure 15b presents the photocurrent versus
time (I–t) curve of the prepared samples with off and on rotations of visible light irradiation.
The photocurrent intensity of 30%-TM was obviously higher than that of TiO2. This point
was also verified by the PL analysis. Figure 15c shows the PL intensity of TiO2, 30%-TM,
50%-TM, pH = 2-TM, and 18 h-TM. The intensity of the PL peak indicated the recombination
rate of photogenerated electrons and holes under light irradiation. Therefore, 30%-TM had
better charge transfer ability, and a lower recombination rate of photogenerated electrons
and holes than the samples prepared under other conditions.
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2.4. Mechanism of Photocatalytic

Figure 16 illustrates a plausible mechanism of MB photodegradation by the investi-
gated catalysts. For a better representation of the direct charge transfer in the composite,
we estimated the positions of the conduction band (CB) and the valence band (VB) as follows:

EVB = χ − Ee + 0.5Eg, (1)

ECB = EVB − Eg, (2)

where χ, Ee, Eg, EVB, and ECB are the absolute electronegativity of TiO2 (5.8 eV), the energy
of electrons at the standard hydrogen electrode (4.8 eV), the band gap of 30%-TM, the VB
boundary of 30%-TM, and the CB boundary of 30%-TM, respectively [55]. The values of ECB
and EVB obtained using Equations (1) and (2) were 0.08 and 2.68 eV vs. NHE, respectively.
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Compared with TiO2, the number of oxygen vacancies in the composites increased
markedly, indicating that it was easier to generate oxygen vacancies on the MMT’s surface
supported by TiO2. These changes could be attributed to the combination of the Si–O bond
(in the Si–O tetrahedron on the MMT’s surface) and the TiO2 hydrosol that formed the
Si–O–Ti bond [19,54]. Cheng et al. reported that oxygen vacancies and Ti3+ content affected
the band gap of TiO2 matrix composites [19,54,56,57]. Thus, the changes in the band gap
of TiO2 matrix composites is mainly related to the number of oxygen vacancies and the
content of Ti3+ in the material. In TiO2-MMT composites, TiO2 acts as a photocatalyst,
producing electrons (e−) and holes (h+) under illumination. The electrons pass through
the band gap and then enter the CB, leaving holes in the VB [58]. Compared with pure
TiO2, composites with MMT featured lower band gaps, thus favoring the injection of
electrons into the CB. In the composite of TiO2 and MMT, the electrons in the CB react
with Ti4+ to form Ti3+, which is considered the most reactive site in the oxidation process
because it can produce more oxygen vacancies to facilitate the adsorption of O2 on the TiO2’s
surface [59]. The adsorbed O2 molecules then react with electrons to produce highly reactive
·O2
− species. Simultaneously, several electrons occupy the empty d-orbitals of metal ions

in the MMT’s structure [28], which indirectly delays the electron–hole recombination and
then reacts with O2 to produce ·O2

− [60]. The holes react with water or adsorbed hydroxyl
ions to form hydroxyl radicals (·OH). Both ·O2

− and ·OH are strong oxidants that can
destroy organic molecules [61] on and near the TiO2

′ surface. Thus, the photocatalysis
mechanism can be represented by the following equations:

TiO2 + hv→ TiO2 + e− + h+, (3)

Ti4+ + e− → Ti3+, (4)

O2 + e− → ·O2
−, (5)

H2O + h+ → ·OH + H+, (6)

OH− + h+ → ·OH, (7)

·O2
− + H2O→ ·OH + H+, (8)

O2
−•/h+/·OH + MB→ degradation products. (9)

The study of the structure, morphology, and chemical bonds proved that the layered
structure of montmorillonite was still intact and that Si-O-Ti was successfully formed.
Tao et pointed out in their research that Si-O-Ti could increase Ti3+ content and oxygen
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vacancies in the composites [19]. In this work, the Ti3+/Ti4+ contentwas determined and
simulated, and it increased by 20.81%. In addition, the optical absorption, electron and hole
recombination efficiency, photogenerated carrier behavior, and specific surface area proved
that 30%-TM had strong optical absorption capacity, low electron–hole recombination
efficiency, a large specific surface area, and high Ti3+ content. This work also explored the
role of active substances in the degradation process, which fully proved the significant
role of ·OH, h+ and ·O2

−, and especially the degradation efficiency of ·OH. In a recent
study, Thi et al. studied the efficiency and mechanism of photocatalytic degradation of
MMT/TiO2 nanotubes [28]. Ami’s group prepared a titanium dioxide composite clay
photocatalyst by a microwave hydrothermal (5 min) and calcination method, which proved
that a TiO2/bentonite photocatalyst has high photocatalytic efficiency [62]. However,
in most research, only a single set of preparation conditions were explored, without the
exploration of different preparation conditions. This study will play a guiding role in the
compounding of clay and titanium dioxide.

3. Materials and Methods
3.1. Materials

All reagents were of analytical grade and used in accordance with the prescribed
requirements. MB (>98.5%), MMT (>98%), tetrabutyl titanate (>98%), and cetyltrimethylam-
monium bromide (CTAB) (>98%) were purchased from Tianjin Komeo Chemical Reagent
Co. Ltd., Tianjin, China. Anhydrous ethanol was purchased from Tianjin Hengxing Chemi-
cal Reagent Manufacturing Co. Ltd., Tianjin, China.

3.2. Preparation of TiO2

Tetrabutyl titanate (2.3 mL) and deionized water (30 mL) were mixed and stirred
for 30 min to achieve complete homogenization. The homogeneous solution was then
transferred to a 100 mL polytetrafluoroethylene-lined stainless steel reactor and heated
at 160 ◦C for 24 h. After washing, the samples were placed on an evaporation dish and
oven-dried at 80 ◦C for 12 h to obtain TiO2.

3.3. Preparation of TiO2-MMT Composites

TiO2-MMT composites with TiO2 mass ratio of 30, 40, 50, 60, and 70 wt% were
prepared at different reaction pH values (2, 4, 6, and 8), reaction temperatures (140, 160,
180, and 200 ◦C), and dwelling times (18, 20, and 24 h) (Figure 17).
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Tetrabutyl titanate (1.7, 2.3, 2.8, 3.3, or 3.9 mL) and deionized water (30 mL) were
mixed and stirred for 15 min to ensure uniform dispersion. Separately, MMT (1.0 g) was
mixed with deionized water (80 mL) in a beaker, which was sealed with clingfilm to
prevent evaporation; the suspension was stirred for 4 h. The solution’s pH was adjusted
to 2, 4, 6, or 8. The solution was allowed to stand for 5 min to ensure homogeneity and
transferred to a 100 mL polytetrafluoroethylene-lined stainless steel reactor. The mixture
was heated at 140, 160, 180, or 200 ◦C for 18, 20, or 24 h, and subsequently cooled to room
temperature. After washing, the samples were placed on an evaporation dish and oven-
dried at 80 ◦C for 12 h to obtain TiO2-MMT composites; these composites were denoted as
w%-pH = x – y ◦C-zh-TiO2-MMT, where w, x, y, and z are the TiO2 loading, pH, reaction
temperature, and dwelling time, respectively.

3.4. Characterization

The phase composition was probed by X-ray diffraction (XRD; Bruker D8 ADVANCE)
in the 2θ range of 5–90◦. The morphology and composition were observed by scanning
electron microscopy (SEM; FEI INSPECT F50) coupled with energy-dispersive X-ray spec-
troscopy. Optical absorption was analyzed by ultraviolet–visible spectroscopy (UV-vis;
JASCO V-600). Infrared absorption was analyzed by Fourier transform infrared spec-
troscopy (FTIR; IR Prestige-21) within the range of 400–4000 cm−1. The surface Ti (Si or O)
states of the samples were obtained by X-ray photoelectron spectrometry (XPS, Thermo
SCIENTIFIC ESCALAB 250Xi). The photoluminescence (PL) spectra for solid samples were
obtained using an Shimadzu RF6000 spectrophotometer with excitation wavelength of
305 nm. The surface area of the samples was obtained by applying the Brunner–Emmett–
Teller (BET, BELSORP MaxII) method to the N2 adsorption−desorption isotherms.

All electrochemical measurements were carried out in an electrochemical worksta-
tion (RST5210F, Shanghai Shiruisi instrument Technology Co., Ltd., Shanghai, China.).
The electrochemical impedance spectroscopy (EIS) was conducted using an electrochemical
workstation under visible light and a forward bias of 0.5 mV at the frequency range from
1 Hz to 200 Hz. Photocurrent intensity was measured in an electrolyte of 50 mL 0.2 mol/L
Na2SO4, 30%-TM, and TiO2 as described above. A xenon lamp equipped with a 420 nm
cutoff filter was the light source, and the switching cycle was 20 s.

3.5. Photocatalytic Performance Evaluation

The ability of photocatalysts to (i) adsorb and (ii) photodegrade organic pollutants in
wastewater was probed in the dark and under irradiation with visible light, respectively,
using MB as a model at room temperature.

The aqueous solution of MB was mixed with the catalyst of choice (0.03 g). In the
dark, the mixture was stirred for 30 min for (i), while it was irradiated with a xenon lamp
(CEL-PF300-T8) at a power density of 100 mW/cm2 for (ii). Subsequently, 5 mL aliquots of
the dispersion were sampled every 20 min and centrifuged at 7000 rpm for 5 min. Finally,
to determine the MB removal efficiency, the absorbance of the supernatant was measured;
for (ii), the absorbance was measured in the range of 400–800 nm.

4. Conclusions

TiO2-MMT composites with different TiO2 contents were hydrothermally prepared
at different pH values, reaction temperatures, and dwelling times, and evaluated as pho-
tocatalysts for MB degradation. Instrumental analysis revealed that the best-performing
composite (30%-TM; TiO2 content = 30 wt%) had the smallest band gap of 2.76 eV, a unit
cell volume of 92.43 Å3, a crystallite size of 9.28 nm, and a relatively uniform distribution of
TiO2 particles on the MMT’s surface. The absorption threshold of 30%-TM was red-shifted
by 50 nm compared with that of anatase TiO2 (387 nm, band gap = 3.2 eV), which enhanced
the visible-light absorption and visible-light-induced activity. The intensity of the PL peak,
EIS, and photocurrent indicated that 30%-TM had better charge transfer ability and a lower
recombination rate of photogenerated electrons and holes than the samples prepared under
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other conditions. After irradiation for 2 h with visible light, 30%-TM achieved an MB re-
moval efficiency of 95.6%. Therefore, the compounding and modification of clay materials
in this study provides a train of thought for design and research.
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