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Abstract: We report here, a strategy to prepare Pt/Pd nanoparticles decorated with Co-N-C materials,
where Co-N-C was obtained via pyrolysis of ZIF-67 directly. As-prepared Pt/Pd/Co-N-C catalysts
showed excellent ORR performance, offered with a higher limit current density (6.6 mA cm−2) and
similar half-wave potential positive (E1/2 = 0.84 V) compared with commercial Pt/C. In addition to
an ORR activity, it also exhibits robust durability. The current density of Pt/Pd/Co-N-C decreased by
only 9% after adding methanol, and a 10% current density loss was obtained after continuous testing
at 36,000 s.

Keywords: oxygen reduction reaction; PtPd nanoparticles; ZIF-67; Co-N-C

1. Introduction

Oxygen reduction reaction (ORR) is an important cathode reaction in the fuel cell, and
the activity of ORR catalysts greatly affects the performance and conversion efficiency of
the fuel cell [1–3]. At present, Pt has been used the most widely because of its unique ORR
electrocatalytic activity [4]. However, the high cost, poor durability and the possibility of
poisoning limit the development of Pt catalysts [5–7]. To find alternative electrocatalysts,
scientists have evaluated many materials, including transition metal oxides [8], nitrides [9],
and sulfides [10] in recent years, but their electrocatalytic activity is still not comparable to
that of Pt. Therefore, reducing the content of Pt while ensuring high catalytic performance
has become the key to solving the problem.

Generally, introducing other metals, preparing nanoparticles with special morphology
and finding suitable carriers are the methods to reduce the amount of platinum [11–14]. The
synergy between Pt and additional metals can effectively improve the activity and stability
of electrocatalyst, which has attracted extensive exploration [15–17]. The research shows
due to the mismatch of lattice, the introduction of transition metal will lead to the shrinkage
of Pt crystal and the downward movement of the d-band center, which will change the
binding strength of Pt-oxygen intermediates and improve the catalytic activity of ORR [18].
Among many metals, Pd, with a similar lattice constant and crystal structure to Pt, may
be an attractive candidate. As a member of the Pt group elements, Pd is much cheaper
and relatively abundant than Pt [19]. In addition, the ORR activity of Pd is just slightly
lower than Pt and shows the utmost resistance to carbon monoxide poisoning [20,21].
Intuitively, the introduction of Pd should not only improve the ORR activity but also
improve the stability of the electrocatalyst. Chen et al., prepared PtPd/CNWs nanowire by
the centrifugal electrospinning method [22]. The one-dimensional nanostructured catalysts
showed excellent ORR activity. the half-wave potential of PtPd/CNWs (0.865 V) shows a
positive shift of about 52 mV relative to that of 20% Pt/C (0.813 V). After 5000 potential
cycles, the electrochemically active surface area of PtPd/C nanowire almost did not change,
while Pt/C decreased by nearly 40%. Liu et al. developed ordered mesoporous carbons
that supported PtPd nanoclusters towards ORR with a greater tolerance to methanol [23].
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After the addition of methanol, only a 5.8% decrease of the current was observed for
Pt3Pd1NCs/OMC, much lower than that of Pt/C (39.2%), which can be mainly attributed
to the Pd around the Pt inhibiting the adsorption of methanol on the active center.

Transition metals such as Co and Fe are widely used as ORR catalysts because of
their excellent electrochemical performance and low cost [24–26]. A series of studies
have shown that the coordination interaction between Co and N-rich carbon can form
effective ORR activity sites, such as carbon-coated metallic nanoparticles (Co@C), a Co
nitrogen structure (Co-N2, Co-N4), and carbon-coated Co carbides (CoxCy@C) [27]. Another
important factor determining the performance of oxygen reduction is the well-designed
structure. Zeolitic imidazolate frameworks (ZIFs) are a type of porous material with good
structure and a large specific surface area, which can promote rapid material transport and
accessible active sites [28]. Meanwhile, ZIF-67 derived materials usually produce Co-N-C
species. Many studies have shown that the defective nanocarbons containing Co-N-C have
abundant active sites, which is beneficial to improving the catalytic activity and accelerating
the charge transfer in ORR [29–31]. Based on these noteworthy advantages, ZIF-67 has
become a promising template for the preparation of Co-N-C structure by simple thermal
decomposition. However, the ORR activity of pure Co-N-C catalyst is hardly comparable
with commercial Pt/C, and its stability under acidic conditions is difficult to guarantee.
Based on the above factors, we supported Pt/Pd nanoparticles on ZIF-67 to prepare
high-performance ORR catalysts. The existence of Co will reduce the OH adsorption
on Pt, leading to an increase in catalytic activity [17]. In addition, the introduction of
Co can also improve durability by reducing the dissolution and migration of Pt in the
ORR process [32]. On the other hand, the imidazole group in the precursor of ZIF-67 can
provide rich nitrogen atoms, which makes it easy to obtain N-doped carbon materials.
Many studies have shown that doping nitrogen into the carbon skeleton can change the
local charge density distribution of bonded carbon atoms and produce N-rich active sites,
so as to promote the adsorption of oxygen on the electrocatalyst [33,34]. The synergistic
effect between N-doped carbon and metal nanoparticles can increase the electron density
of catalytic sites and further improve ORR activity, which makes it a popular trend to load
metals nanoparticles with N-doped carbon. For instance, Han et al. [35] prepared PtZn
intermetallic nanoparticles anchored on conductive NC carriers by pyrolysis ZIF-8 graphene
oxide composites with coordinated Pt ions by tetra(4-carboxyphenyl)porphine, which
significantly enhanced oxygen reduction activity and stability. The half-wave potential of
PtZn/NC composites (0.911 V) exhibits a positive shift about 36 mV relative to that of Pt/C
(0.875 V) and almost no change was demonstrated after 5000 potential cycles.

In this work, we loaded the prepared Pt and Pd nanoparticles on ZIF-67 and carbonized
them to form a nitrogen-doped carbon material loaded with Pt, Pd, and Co, while effectively
reducing the content of Pt, Pt/Pd/Co-N-C also shows excellent ORR activity and stability.
This can mainly be attributed to the synergy between Pt, Pd, and Co, as well as the
contribution of nitrogen-doped carbon carriers.

2. Result and Discussion

The structure and morphology of Pt/Pd/ZIF-67 and Pt/Pd/Co-N-C were character-
ized by SEM and TEM. As shown, the Pt/Pd/ZIF-67 (Figure 1A,B) has a rhombododeca-
hedron shape and an average particle size of about 500 nm, which is the typical structure
of ZIF-67 [36,37]. After pyrolysis at 700 ◦C, the Pt/Pd/Co-N-C still retains the polyhe-
dron mechanism and shows the shape of a rough ridge. At the same time, the size of the
Co-N-C frame is reduced by dozens of nanometers compared with the ZIF-67 without
pyrolysis, which is consistent with other reports [25]. The results can be attributed to the
rapid skeleton shrinkage associated with ligand carbonization and atomic migration during
pyrolysis [38]. In addition, no metal nanoparticles were observed on the surface under
this magnification. TEM analysis further reveals the morphological information of the
Pt/Pd/Co-N-C catalyst in Figure 1C,D). As shown, there are some black dots with the
lattice fringe of 0.198 nm and 0.137nm, which can be indexed to the {200} and {220} planes
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of PtPd alloy, respectively [39–41], indicating that Pt and Pd may form alloy structure. In
addition, the results show that the average size of Pt/Pd on the surface of the Co-N-C frame
is about 2.4 nm, which may possess a high electrocatalytic activity in terms of particle size
effect. Furthermore, the EDS images of Pt/Pd/Co-N-C further suggest the uniform distri-
bution of N, O, Co, Pt, and Pd elements on the carbon skeleton (Figure S1), evidencing the
successful combination of Pt/Pd alloy and Co nanoparticles with N-doped carbon carrier.
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Figure 1. SEM images of Pt/Pd/ZIF-67 (A), and Pt/Pd/Co-N-C (B); HRTEM image of Pt/Pd/Co-N-
C (C,D).

The Raman spectra of Pt/Pd/Co-N-C are shown in Figure 2. As shown, typical
disordered carbon (D-band) and graphite carbon (G-band) structures were observed at
1356 cm−1 and 1590 cm−1. The ID/IG of Pt/Pd/Co-N-C is 1.17. The high ID/IG can be
attributed to the introduction of topological disorder into the graphite layer. Where the
bonding is still mainly sp2, but the weaker bonds soften the vibrational modes [42–45].
These defect sites can optimize the adsorption energy of the catalytic step by adjusting the
electronic and surface properties of the electrocatalyst [46].

To further investigate the elemental composition of Pt/Pd/Co-N-C, the samples were
characterized by XPS. It is found from the full spectrum of Pt/Pd/Co-N-C (Figure S2)
that the catalyst contains platinum, palladium, cobalt, nitrogen, and oxygen elements.
Table S1 shows the element contents of Pt/Pd/Co-N-C. In the N1s high-resolution spectra
of Pt/Pd/Co-N-C (Figure 3a), the peaks at 398.8 eV, 400.3 eV, 403.1 eV, and 406 eV can
be corresponded to pyridinic-N, pyrrolic-N/Co-Nx, graphitic nitrogen, and oxidized-N,
respectively [47–50], where pyridinic-N and pyrrolic-N/Co-Nx are the main types. It is
reported that N-containing MOF-derived catalysts usually result in Co-N-C and Co-N
species; both of them are proposed to be active toward ORR [51]. Moreover, importantly,
pyridinic-N can improve the catalytic activity of electrode materials because it can enhance
the electron density and doping properties [34,52]. Pyrrolic-N usually shows fast charge
mobility and good charge transfer between the donor and the acceptor and is considered to
improve the catalytic activity by reducing the carbon band gap energy [53]. In addition,
the presence of Graphite-N also has a positive effect on ORR activity, it can significantly
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improve the limiting current density. In the Co2p high-resolution spectra of Pt/Pd/Co-N-C
(Figure 3b), the peaks at 779.5 and 794.3 eV were assigned to metallic Co(0). The peaks
around 780.8 and 797.1 eV correspond to Co2p3/2 and Co2p1/2. The presence of Co-Nx can
be demonstrated by the peak at 782.1 eV [54–56]. Co-Nx is usually regarded as the catalytic
activity center of ORR, especially Co-N4, which may not only contribute to the overall ORR
activity but also improve the durability and service life of the electrocatalyst [16]. In the
Pt4f high-resolution spectra of Pt/Pd/Co-N-C (Figure 3c), the peaks at 71.8 and 75.3 eV
correspond to Pt4f7/2 and Pt4f5/2, respectively [57]. Meanwhile, Pt4f can be divided into
two pairs of peaks. The peaks at 71.8 eV and 75.1 eV are the characteristic peaks of Pt(0),
while the peaks at 72.8 eV and 76.4 eV can be attributed to Pt(II). The results show that
Pt atoms mainly exist in the metal form of Pt(0), which is beneficial for the enrichment of
catalytic activity [18]. In the Pt4f high-resolution spectra of Pt/Pd/Co-N-C (Figure 3d),
the peaks at 335 eV and 340.5 eV are the characteristic peaks of Pd(0), while the peaks
at 338.2 eV and 343.3 eV can be attributed to Pd(II) [58]. The results show that Pd atoms
mainly exist in Pd(0) and Pd(II) states. In addition, the Pt4f and Pd3d peaks of Pt/Pd/Co-
N-C show an obvious shift compared to those in Pt/C and Pd/C [59], suggesting that the
electronic structures of Pt and Pd have changed, and thus suggesting that the electronic
structures of Pt have changed [59], which can mainly be due to the electronic ensemble
effect of Pt and Pd atoms [11]. The change of binding energy between Pt and Pd further
indicates that an alloy structure may be formed between them.
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To evaluate the ORR catalytic activity, the linear sweep voltammetry (LSV) test
was performed on Pt/Pd/Co-N-C and other catalysts (Figure 4A) in a 0.1 M KOH so-
lution. As shown, the half-wave potential (E1/2) and current density of Pt/Pd/Co-N-C
(0.84 V and 6.6 mA cm−2) are the most positive alternatives to those of Co-N-C (0.82 V and
4.4 mA cm−2), Pd/Co-N-C (0.81 V and 5.4 mA cm−2), Pt/Co-N-C (0.81 V and 5.9 mA cm−2),
and Pt/C (0.84V and 5.8 mA cm−2) under the same experimental conditions. Compared
with Co-N-C, the current densities of Pt/Co-N-C and Pd/Co-N-C are increased signifi-
cantly, which is due to the introduction of Pt or Pd nanoparticles, which is beneficial to
increasing the electroactive area [60]. In addition, Pt/Pd/Co-N-C showed better catalytic
performance, indicating a good synergy between Pt and Pd. From the change in Pt4f
binding energy in XPS, it can also be inferred that its electronic state has changed, which
may be the reason for the enhancement of ORR. To further study the ORR kinetics, the
electron transfer number (n) at different spinning speeds was calculated by the RDE experi-
ment. With the increase in rotating speed, the current density of Pt/Pd/Co-N-C increases
significantly, while the initial potential remains constant (Figure 4B). According to the K–L
plots (Figure 4C), the as-calculated (n) values of Pt/Pd/Co-N-C are 3.8, indicating a good
four-electron selectivity. In other words, almost no intermediate products are produced in
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the process of ORR, which can provide higher energy efficiency in the application of fuel
cells. As shown in Figure 4D, The Tafel slope of Pt/Pd/Co-N-C (74 mV dec−1) is very close
to that of Pt/C (72 mV dec−1), which means a fast ORR process. The ORR performance
of all prepared samples and the comparison with other catalysts are shown in Table S2.
Considering the low noble metal loading, Pt/Pd/Co-N-C still has excellent performance
comparable to Pt/C catalyst, which may be a potential ORR catalyst.
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In addition to the required high activity, stability is also an important index to evaluate
the performance of catalysts. Figure 5A shows the chronoamperometric responses to the
addition of 1 M methanol for Pt/Pd/Co-N-C and Pt/C. As shown, the current density
of Pt/Pd/Co-N-C and Pt/C changed significantly after the addition of methanol. When
tested to 1000 s, the current of Pt/Pd/Co-N-C remains at 91% compared with the original
value—much higher than that of Pt/C (59%)—indicating that the methanol resistance
of Pt/Pd/Co-N-C is much higher than that of commercial Pt/C. Compared with the
unprotected PtPd nanoclusters, Pt/Pd/Co-N-C displays less current change after adding
methanol, which may be due to the protective effect of the N-doped carbon carrier [23,25].
Figure 5B shows the durability test of Pt/Pd/Co-N-C and Pt/C. The current density of
Pt/Pd/Co-N-C and Pt/C decreased slowly on the whole. After the 36,000 s test, the current
density of Pt/Pd/Co-N-C decreased to 90% of the initial value, while Pt/C decreased
to 68%. These results show that the stability of Pt/Pd/Co-N-C is much better than that
of Pt/C. The introduction of Pd and the contribution of N-doped carbon support jointly,
promote the high stability of the catalyst.
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3. Experimental
3.1. Reagents and Apparatus

Potassium hexachloroplatinate (K2PtCl6), Palladium chloride (PdCl2), and polyvinylpy-
rrolidone (PVP) were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China).
Cobalt nitrate hexahydrate (Co(NO3)2·6H2O) was purchased from Fuchen Chemical Reagent
Co., Ltd. (Tianjin, China). 2-methylimidazole (2-MEIM) was purchased from Macklin
Biochemical Co., Ltd. (Shanghai, China). Nafion solution (5 wt%) was purchased from
Jingzhong Co., Ltd. (Shanghai, China). Deionized water (18.25 MΩ cm−1) was used to
prepare all aqueous solutions throughout the experiments. All reagents were used without
further purification.

Scanning electron microscopy (SEM, Oberkochen, Germany) analyses were recorded
with an FEI SIRION microscope. Transmission electron microscopy (TEM) images and
energy-dispersive spectrometry (EDS) analysis were obtained using an FEI Tecnai G2T20
at 200 kV. Raman spectrum was taken at 532 nm and recorded on the LabRAM HR800
from JY Horiba (Kowloon, Hong Kong, China). X-ray photoelectron spectroscopy (XPS)
was performed on a K-alpha (Thermo Scientific, Waltham, MA, USA) using the C1s peak
(284.8 eV) as the reference for calibration. The electrochemical characterizations, includ-
ing cyclic voltammetry (CV), chronoamperometry, linear sweep voltammetry (LSV), and
chronoamperometry (CA) were performed with a CS2355 electrochemical workstation
(CorrTest Instrument, Wuhan, China) and rotating disk electrode (RDE) (AFMSRX, PINE
Instruments, Grove City, PA, USA). A three-electrode system was used in all experiments
with the working electrode as a glassy carbon electrode (GCE) (5 mm diameter, 0.196 cm2

area), respectively, Hg/HgO electrode and a platinum plate electrode, applied as counter
and reference electrodes using a rotating disk electrode (RDE).

3.2. Material Syntheses
3.2.1. Preparation of Pt/Pd Nanoparticles

In a typical synthesis, 39 mg of K2PtCl6 and 14 mg of PdCl2 were dissolved in 10 mL
of deionized water, respectively, and mixed evenly for standby. An amount of 333 mg of
PVP was dissolved in 100 mL of methanol and transferred to the flask for heating in a
water bath cauldron at 80 ◦C. Then, the prepared K2PtCl6 and PdCl2 solutions were quickly
added to the flask with agitation and maintained for 3 h. Finally, methanol was removed
by rotary evaporator, and PtPd nanoparticles were obtained and dispersed in water for
standby. Similarly, only 39 mg of K2PtCl6 or 14 mg of PdCl2 were added to the reaction
system to prepare Pt nanoparticles and Pd nanoparticles.

3.2.2. Preparation of ZIF-67

Typically, 1.45 g of Co(NO3)2·6H2O and 3.28 g of 2-methylimidazole were dissolved in
methanol and stirred for 1h to mix evenly. The mixed solution was allowed to stand at room
temperature for 24 h and then centrifuged to collect the solid. The obtained product was
dried in a vacuum oven at 60 ◦C for 12 h. Finally, ZIF-67 powder was obtained by grinding.

3.2.3. Preparation Pt/Pd/Co-N-C Composite

Pt/Pd/ZIF-67 were synthesized via an impregnation method. The prepared Pt/Pd
nanoparticles were added into ZIF-67 powder methanol solution and stirred at room
temperature for 4 h to mix evenly. The mixed solution was allowed to stand at room
temperature for 12 h. Then, the obtained composite was washed several times with
deionized water and ethanol, dried, and labeled as Pt/Pd/ZIF-67.

Finally, the prepared Pt/Pd/ZIF-67 was pyrolyzed under an Ar2 atmosphere at 700 ◦C
for 2 h with a heating rate of 5 ◦C min−1 and labeled as Pt/Pd/Co-N-C. For comparison,
Pt/Co-N-C, Pd/Co-N-C, and Co-N-C were also prepared.
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3.3. Electrocatalytic Measurements

The catalyst ink was prepared by a mixture of 4.0 mg of catalyst in 1 mL of solution
containing 700 µL of deionized water, 250 µL of isopropanol, and 50 µL of Nafion (5 wt%).
After ultrasonic treatment for 1 h, 10 µL catalyst ink was loaded onto an RDE and used as a
working electrode for electrochemical tests after natural drying. The catalyst loading for
the RDE is 0.2 mg cm−2. The electrolyte used was 0.1 M KOH, and the test temperature
was 30 ◦C. In the ORR test, the electrolyte is O2 saturated.

The Koutecky–Levich equation was used to calculate the kinetic current, which can be
described as follows:

1
j
=

1
jk
+

1
jd

=
1
jk
+

1
Bω1/2 (1)

where j is the measured current density, jk and jd are the kinetic and diffusion-limited
current densities, respectively. ω is the electrode rotating rate, and B could be determined
from the slope of the K–L plots based on the Levich equation as follows:

B = 0.62nF(Do)
2/3ϑ−1/6Co (2)

where n represents the electron transfer number, F is the Faraday constant, Do is the
diffusion coefficient of O2 in 0.1 M KOH, ϑ is the kinetic viscosity and Co is the bulk
concentration of O2.

Tafel slopes were calculated using the Tafel equation:

η = a + blg | jk | (3)

where η is the overpotential, j is the disk current density, and b is the Tafel slope.

4. Conclusions

A simple and efficient method was developed to prepare N-doped carbon materials
loaded with Pt, Pd, and Co, intended for the ORR. The content of total precious metals
in Pt/Pd/Co-N-C is only 0.56%, and the ORR activity is comparable to that of Pt/C. In
addition, Pt/Pd/Co-N-C showed much higher stability than Pt/C. Overall, while ensuring
the performance of ORR, we reduced the content of Pt by introducing other metals and
designing appropriate supports, which provides a new strategy for the development
of low-cost and high activity ORR electrocatalysts (References [61–64] are cited in the
Supplementary Materials).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal12050482/s1, Figure S1. TEM of Pt/Pd/Co-N-C(A) and EDS mapping of N, O, Co, Pt, and
Pd(B–F); Figure S2. XPS surveys of Pt/Pd/Co-N-C; Figure S3. CVs on Pt/Pd/Co-N-C in N2 and O2
saturated 0.1 M KOH solution; Table S1. Atomic content of Pt/Pd/Co-N-C; Table S2. ORR activity
data from different catalysts.
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