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Abstract: The lignocellulosic enzymes of Trichoderma asperellum have been intensely investigated 

toward efficient conversion of biomass into high-value chemicals/industrial products. However, 

lack of genome data is a remarkable hurdle for hydrolase systems studies. The secretory enzymes 

of newly isolated T. asperellum ND-1 during lignocellulose degradation are currently poorly known. 

Herein, a high-quality genomic sequence of ND-1, obtained by both Illumina HiSeq 2000 sequencing 

platforms and PacBio single-molecule real-time, has an assembly size of 35.75 Mb comprising 10,541 

predicted genes. Secretome analysis showed that 895 proteins were detected, with 211 proteins as-

sociated with carbohydrate-active enzymes (CAZymes) responsible for biomass hydrolysis. Addi-

tionally, T. asperellum ND-1, T. atroviride IMI 206040, and T. virens Gv-298 shared 801 orthologues 

that were not identified in T. reesei QM6a, indicating that ND-1 may play critical roles in biological-

control. In-depth analysis suggested that, compared with QM6a, the genome of ND-1 encoded a 

unique enzymatic system, especially hemicellulases and chitinases. Moreover, after comparative 

analysis of lignocellulase activities of ND-1 and other fungi, we found that ND-1 displayed higher 

hemicellulases (particularly xylanases) and comparable cellulases activities. Our analysis, combined 

with the whole-genome sequence information, offers a platform for designing advanced T. asperel-

lum ND-1 strains for industrial utilizations, such as bioenergy production. 

Keywords: Trichoderma asperellum ND-1; whole-genome sequencing; secretome; comparative  

genomics; lignocellulolytic enzymes; biomass degradation 

 

1. Introduction 

Lignocellulose from agricultural wastes, such as corn stover and sugarcane bagasse, 

serves as a widespread, renewable, and available resource [1–3]. Its components contain 

abundant and complex polysaccharides, including hemicellulose, cellulose, and lignin [4–

6]. Particularly, hemicellulose and cellulose are becoming potential biomass feedstocks in 

the generation of high-value chemicals or bioenergy products [7–9]. Efficiently catalytic 

conversion of lignocellulose is mainly dependent on the availability of carbohydrate-ac-

tive enzymes (CAZymes) [10,11], typically glycoside hydrolases (GHs), which degrade 

lignocellulosic biomass into simple sugars [12], a critical process for the production of 

second-generation bioethanol [13]. In spite of remarkable progress that has been achieved 

in enzymatic biodegradation of lignocellulosic materials [14,15], the high production cost 

of lignocellulases is still a major hurdle that must be solved prior to commercial-scale im-

plementation of cellulosic ethanol [16]. 
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In nature, the complete hydrolysis of biomass polysaccharides is usually carried out 

by synergetic action of various CAZymes (hemicellulases, cellulases, and lignin-modify-

ing enzymes) rather than individuals [17–20]. Moreover, the discovery of lytic polysac-

charide monooxygenases (LPMOs) has profoundly changed the way in which we view 

the enzymatic conversion of polysaccharides, particularly recalcitrant materials, such as 

cellulose and chitin [21]. LPMOs have been classified in the CAZymes database, within 

the Auxiliary Activity (AA) families AA9-11 and AA13-16, on account of their sequences 

[22–24]. The most widely investigated LPMO families are AA9 and AA10 [25]. LPMOs are 

currently known to be encoded in genomes across all kingdoms of life, especially fungi, 

and catalyze cleavage of various substrates [26–29]. In addition, LPMOs may be subjected 

to various post-translational modifications depending on their origin with effects on pro-

tein function and stability [30]. 

Due to their high specific enzyme activities and relatively strong protein secretion 

ability, several Trichoderma species and their cultivation on diverse agricultural wastes to 

yield polysaccharide-degrading enzymes have been intensely studied in the past two dec-

ades [31–33]. For example, T. reesei has been widely utilized in industrial fields and is 

regarded as a major source of commercial cellulases [34–36]. However, the enzymatic mix-

tures produced by T. reesei is deficient in high efficiency hemicellulases and other acces-

sory enzymes, which facilitated investigations of other enzymes and/or fungi [37]. Among 

the numerous filamentous fungi that secreted hemicellulases and cellulases, T. asperellum 

is also known for its strong lignocellulosic hydrolysis ability [38–40]. Moreover, most of 

the investigations on T. asperellum were concentrated on the selection and expression of 

specific genes related to biomass-degrading enzymes, such as xylanases, β-glucanases, 

and cellobiohydrolases [11,38,41]. However, the genome sequence information of T. 

asperellum to further understand secretory proteins and carbohydrate-active enzymes re-

mains to be fully investigated. 

Rapid developments in sequencing strategies have facilitated the improvement of 

reference genomes in distinct microorganisms and the analysis of genome-scale variations 

[42]. The achievements have accelerated investigation for sequencing several Trichoderma 

genomes (including T. reesei, T. virens, and T. atroviride), utilizing genome shotgun ap-

proach, which provided a platform for detection of genome-wide differences and under-

standing degradation mechanisms of plant biomass polysaccharides [43,44]. Moreover, 

the PacBio RS sequencing platform has emerged to be the most advanced third-generation 

sequencer in the market in 2011 [45,46]. The system utilizes a unique and novel single 

molecule real-time (SMRT) detection technology that promotes the production of se-

quences with longer reads and decreases the level of bias [47–49]. Therefore, the applica-

tion of PacBio sequencing technology provides a promising strategy to obtain advanced 

and accurate assemblies for Trichoderma genomes. 

The goal of this study is to detect potentially significant enzymes and obtain an in-

depth understanding of the lignocellulose-degrading mechanism from T. Asperellum ND-

1. Therefore, the whole genome sequencing and comparative analysis of T. Asperellum 

ND-1 were performed by PacBio RS sequencing technology, with particular emphasis on 

biomass hydrolysis-related genes. Here, we described lignocellulolytic enzyme character-

istics of T. asperellum ND-1 and compared them with other fungi (particularly T. reesei). 

Secretome analysis of T. asperellum ND-1 was also carried out to identified extracellular 

CAZymes. In addition, the diversity comparative analysis of the CAZymes in the genome 

of T. asperellum ND-1 and other fungi were achieved to provide novel insights into the 

biomass-decomposing enzymatic system of this fungus. 

2. Results and Discussion 

Genome features of T. asperellum ND-1. Whole-genome sequence of T. asperellum 

ND-1 was determined using PacBio and Illumina Hiseq × 10 platforms. De novo assembly 

using SOAPdenovo (version 2.04) and CANU (version 1.7) resulted in 32 scaffolds with 

N50 size of 2,032,888 bp (each with a length >1000 bp and N90 value of 792,243 bp). The 
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largest scaffold size was 3.7 Mb. The sum of the assembly length was 35.75 Mb, with a 

coverage of 99.3% (Table S1). Protein-coding genes, using the MAKER annotation method, 

yielded 10,541 genes for T. asperellum ND-1 and 12,802 genes for T. asperellum CBS 433.97, 

respectively, both greater than the estimate for T. asperellum IC-1 (8803) (Table S1). 

The average gene density in the T. asperellum ND-1 genome was 290 genes per Mb. 

The average gene length was 1.86 (kb) and consisted of an average of 0.52 (kb) of the cod-

ing region and 0.16 (kb) of the non-coding region (Table 1), which were similar to other 

Trichoderma fungi [43]. The overall G+C content of the predicted genes was approximately 

52.8%. tRNAScan-SE [50,51] identified a sum of 246 tRNAs containing 21 types of tRNAs 

in the genome (Table 1). Gene Ontology (GO) mapping was performed to detect GO terms 

for BLASTP functionally analyzed ORFs. BLASTP generated 6669 genes according to GO 

(Figure 1). Among them, 5092 genes belonged to molecular function (MF) (Figure 1A), 

4325 genes were assigned to cellular component (CC) (Figure 1B), and 4903 genes were 

distributed into the biological process (BP) (Figure 1C). The major GO terms were con-

structed by the following groups: metabolic process (56.6%), catalytic activity (50.8%), cel-

lular process (45.4%), binding (42.2%), cell (41.4%), cell part (41.2%), single-organism pro-

cess (33.8%), organelle (33.7%), membrane (33.2%), and membrane part (30.5%). The ge-

nome size (35.75 Mb), total number of predicted genes (10, 541), and % (G+C) contents 

(48.65%) (Table 1) of T. asperellum ND-1 are comparable to the hypocreales mesophilic 

ascomycete fungus T. reesei (33.9 Mb) [44]. In addition, PFAM domains (7281) and prote-

ases (82) of T. asperellum ND-1 genome were identified. 

Table 1. Genome assembly and annotation statistics of T. asperellum ND-1. 

Featuers Trichoderma asperellum ND-1 

Coverage 99.3% 

Protein length, amino acids 516.18 

Avg. Gene Density (genes/kb) 0.29 

Avg. Gene length (bp) 1.86 kb 

Repeat Content % 1.66 

tRNAs 246 

Secreted Proteins 895 

PHI genes 2340 

Proteases 82 

Average exons per gene 2.98 

Average exon length (bp) 0.52 kb 

Average introns per gene 1.98 

Average intron length (bp) 0.16 kb 

Supported by homology, Swissprot 6746 (64%) 

Supported by homology, NR 9496 (90%) 

Has PFAM domain 7281 (69%) 
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Figure 1. Gene ontology (GO)-based functional annotation of genes present in the T. asperellum ND-

1 genome. (A) Molecular function domain (MF); (B) cellular process domains (CC); (C) biological 

process domains (BP). 

Mobile elements. Repetitive DNA elements and transposable elements (TEs) play 

critical roles related to the gene functions, the evolution, and genome structure of the fil-

amentous fungi [52]. The repeated sequences of the T. asperellum ND-1 genome were iden-

tified to be approximately 591,590 bp, including simple repeats, low complexity, small 

RNA, interspersed repeats, and satellites (Table S2). The repeated sequences represent 

1.66% of the genome. Moreover, 78% of the TEs were simple repeats, whereas LINEs was 

just estimated to be 2% (Figure S1, Supplementary Materials). Notably, low complexity 

and small RNA account for 16 and 4%, respectively. 
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Prediction and analysis of the T. asperellum ND-1 secretome. The secretory prote-

ome is believed to have an important role in identifying the capacity of the fungi to inter-

act with distinct nature environment [38]. According to online software SignalP (version 

4.1), the total number of 895 (represent 8.5% of the protein-coding genes) secreted proteins 

were predicted and annotated in T. asperellum ND-1 genome, which was higher than that 

of T. reesei Rut C30 (636 proteins) [53]. From this, GO terms were identified into 529 puta-

tive secreted proteins in the GO groups, namely, biological process (730), molecular func-

tion (561), and cellular component (675) (Figure S2). In the cellular component group, se-

cretory proteins for membrane and membrane part, cell and cell part, organelle and orga-

nelle part, extracellular region, and macromolecular complex were highly abundant. 

Within the biological process, including the metabolic process, cellular process, localiza-

tion, single-organism process, biogenesis or cellular component organization, biological 

regulation, and regulation of biological process, responses to the stimulus were highly 

represented. Under molecular function category, proteins related to binding, nucleic acid 

binding transcription factor activity, transporter activity, catalytic activity, electron carrier 

activity, and antioxidant activity were most abundant. 

As for potential pathogenesis-related proteins of T. asperellum ND-1 secretome, 175 

secreted proteins identified within the PHI database were assigned to various categories. 

Among them, 81 (41%) proteins were associated with reduced virulence, (76) 38% proteins 

were of unaffected pathogenicity, (18) 9% proteins were related to increased virulence 

(hypervirulence), and (18) 9% were related to loss of pathogenicity (Figure 2). Cytochrome 

P450 (CYP450) monooxygenase superfamily is involved in numerous metabolisms of the 

filamentous fungi, including secondary metabolites, lifestyle, and pathogenicity [54–56]. 

In T. asperellum ND-1, 163 CYP proteins were confirmed, of which 99 showed homologous 

counterparts in the PHI database. 

 

Figure 2. Summary of different phenotypic categories of orthologs of T. asperellum ND-1 secretome 

genes in the pathogen-host interactions (PHI-base) database. 

A large number of extracellular enzymes secreted from T. asperellum have been rec-

ognized, many of which are involved in the degradation of complex biomass carbohy-

drates in various environments [38,41]. Using the CAZy database and carrying out a 

HMMER (version 3.3) scan, according to the profile compound in dbCAN release 2.0, we 

identified the presence of 67% GHs, 12% auxiliary activities (AAs), 10% carbohydrate es-

terases (CEs), 6% glycosyl transferases (GTs), 3% polysaccharide lyases (PLs), and 2% car-

bohydrate binding modules (CBMs) in T. asperellum ND-1 secretome (Figure 3A). LPMOs 

are the monocopper enzymes widely distributed in nature that catalyze the hydroxylation 

of glycosidic bonds in most abundant available polysaccharide in nature, i.e., cellulose 

[57,58]. Secretomic analysis revealed that T. asperellum ND-1 encode two predicted LPMOs 

from AA9 and AA11, respectively. Moreover, the AA9 family could have important roles 

as copper dependent LPMOs, cleaving oxidatively biomass cellulose [38]. Additionally, 

this work contributes to the broader mapping of enzyme activity in the Auxiliary Activity 

family (particularly AA9, AA11, and AA14) and provides new biocatalysts for potential 

applications in biomass modification. 

The analysis of the CAZy categories was performed for the biomass hydrolysis en-

zymes families. Results showed that 141 genes encoding glycosyl hydrolases enzymes 
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were divided into 49 families. The GH families possessing three or more genes had 18 in 

T. asperellum ND-1 secretome, with GH18 being the largest family (17 genes), followed by 

GH16 (11 genes), GH55 (8 genes), GH3 (7 genes), GH92 (7 genes), and GH5 (6 genes) (Fig-

ure 3F). PL7 (3 genes), PL20 (2 genes), PL1 (1 genes), and PL8 (1 genes) of the PL families 

were also identified (Figure 3C). A previous study reported that members of the Tricho-

derma fungi (particularly T. atroviride and T. harzianum) are widely utilized as agricultural 

biocontrol agents [59,60], and both secondary metabolites and GH18 (chitinases) could 

play critical roles in growth and attacking pathogens [61]. Additionally, out of seven CEs 

families confirmed, members of family CE10 contained the maximum genes [7], followed 

by CE5 (4 genes), CE8 (3 genes), CE4 (2 genes), CE3 (2 genes), and CE1 (1 gene) (Figure 

3E). The enzymatic activities of carboxylesterases were displayed in both CE10 and CE1 

families [62]. Further, the enzymes providing auxiliary functions for degradation of poly-

saccharides were represented by four families of carbohydrate binding modules (CBM6, 

CBM24, CBM42, CBM66), glycosyl transferases (9 families) (Figure 3B), and auxiliary ac-

tivities (9 families) (Figure 3D). Among them, the numbers of CBM42, AA7, and 

GT90/GT22/GT15 genes were significantly higher. Moreover, the secretory proteins of T. 

asperellum ND-1 also contained an assortment of proteases, transferases, and chitinases. 

These results imply that T. asperellum ND-1 secretome consists of various functional pro-

teins and the major components associated with proteolytic and cellulolytic enzymes, 

which are crucial for promoting the hydrolysis of the host plant to obtain essential nutri-

ents and adapt various environments. 

 

Figure 3. CAZymes identified in the secretome of T. asperellum ND-1. (A) Summary of the six CA-

Zyme categories: auxiliary activities (AAs), carbohydrate- binding modules (CBMs), polysaccharide 

lyases (PLs), glycoside hydrolases (GHs), glycosyl transferases (GTs), and carbohydrate esterases 

(CEs). (B) Distinct summaries of the CAZyme GTs. (C) Distinct summaries of the CAZyme PLs. (D) 

Distinct summaries of the CAZyme AAs. (E) Distinct summaries of the CAZyme CEs. (F) Distinct 

summaries of the CAZyme GHs. 

Phylogenetic relationships. The evolutionary relationships of T. asperellum ND-1 

and other selected fungi species were evaluated using the proteomes of these fungi. Ac-

cording to phylogenetic analysis results, all the selected Trichoderma were distributed into 

a single primary cluster (Figure 4). Majority of Trichoderma species are commonly applied 

in agriculture as effective agents for biological control against many phytopathogenic mi-

croorganisms; examples are T. asperellum T203 [63], T. harzianum [59], and T. asperellum 
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SKT-1 [64]. The isolated lignocellulolytic fungus T. asperellum ND-1 is evolutionally close 

to T. asperellum CBS 433.97 (Figure 4). T. asperellum ND-1 is also close to the other two 

biological species, T. atroviride IMI 206040 and T. gamsii T6085, suggesting that T. asperel-

lum ND-1 may have biocontrol functions applied in agriculture. Moreover, T. asperellum 

ND-1 and T. reesei QM6a (a representational producer of plant biomass degrading en-

zymes) were distributed into different subclusters (Figure 4). In addition, all the Asperellus 

species were grouped into another single clade that is distantly related to T. asperellum 

ND-1. Grifola frondosa 9006-11 was served as an outgroup in the phylogenomic analysis. 

 

Figure 4. Whole-genome phylogenetic analysis of T. asperellum ND-1 sequences. The tree of selected 

genome sequences was constructed by using the neighbor-joining (NJ) method with the Poisson 

model, as implemented in Mega software 7.0. T. asperellum ND-1 was labeled with diamonds. 

Comparative analysis of orthologous genes between different Trichoderma spe-

cies. The annotated proteome of T. asperellum ND-1 was further compared with the other 

three biological species, T. reesei QM6a, T. virens Gv-298, and T. atroviride IMI 206040, by 

using orthoMCL [65]. Among the four Trichoderma species, a total of 7073 common clusters 

were identified (Figure 5). The common clusters accounted for 60–80% of the four fungal 

proteomes, respectively, which indicated that the vast majority of the genes were con-

served in the Trichoderma group. However, T. asperellum ND-1, T. atroviride IMI 206040, 

and T. virens Gv-298 contained about 1381, 1618, and 1991 species-specific clusters, respec-

tively, but the T. reesei QM6a had only 520 unique clusters (Figure 5), consistent with a 

previous study, showing that T. reesei contained fewer exclusive orthologous genes than 

other sequenced fungus [43,44]. Moreover, T. virens and T. atroviride are probably the most 

popular investigated biocontrol agents utilized in various agriculture fields [60]. In this 

study, we found that T. asperellum ND-1, T. atroviride IMI 206040, and T. virens Gv-298 

shared 801 orthologues that were not detected in T. reesei QM6a (Figure 5), which may be 

partial factors that resulted in a T. asperellum ND-1 biological control function [63,64]. In 

addition, we identified that 7250 orthologous genes were present between T. asperellum 

ND-1 and T. reesei QM6a (Figure 5), indicating that T. asperellum ND-1 may have strong 

biomass degradation ability [38,41]. A number of 7889, 8179, and 8957 common clusters 

were also predicted between Trichoderma species (Figure 5) when comparing T. reesei 

QM6a vs. T. atroviride IMI 206040, T. reesei QM6a vs. T. virens Gv-298, and T. atroviride IMI 

206040 vs. T. virens Gv-298, respectively. 
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Figure 5. Distribution of orthologues of T. atroviride IMI 206040, T. virens Gv-298, T. reesei QM6a, 

and T. asperellum ND-1. 

Diversity of carbohydrate-active enzymes in T. asperellum ND-1 and other fungi. 

The components of lignocellulosic biomass contain structural polysaccharides, e.g., cellu-

lose, xylan, and mannan [6,13,16]. CAZymes that hydrolyzed the poly- and oligosaccha-

rides play a critical role in the biology of filamentous fungi [38,40]. The T. asperellum ND-

1 genome harbored 438 genes encoding for CAZymes, the members of which were iden-

tified with the presence of 83 candidate GTs from 29 families, 59 AAs from 11 families, 41 

CEs from 8 families, and 14 CBMs from 9 families, in addition to 7 PLs from 4 families 

(Figure S3). The largest group of CAZymes were GHs (234 genes), which were categorized 

into 57 various families. The size of the GHs in T. asperellum ND-1 was close to T. atroviride 

IMI 206040 (242 genes) and T. virens Gv-298 (250 genes) (Table S3). 

To further evaluated biomass-degrading abilities of T. asperellum ND-1, the diversity 

of CAZymes in T. asperellum ND-1 was compared with other fungi (particularly T. reesei 

and T. asperellum CBS 433.97) (Figure 6). The number of CAZyme-encoding genes and GH 

class distribution among the five Trichoderma species were remarkably different (Figure 

6). T. reesei QM6a, a well-known biomass polysaccharide degrader, possesses a variety of 

genes encoding GHs [44]. However, with a total of 189 GH encoding genes, it has fewer 

GHs than the T. asperellum ND-1 (234 genes) (Table S3). Analysis of the T. asperellum ND-

1 for CAZymes predicted various proteins involved in xylan degradation. For example, 

three endo-1,4(3)-β-xylanases (representing families GH10) and four endo-1,4(3)-β-xy-

lanases (GH11) were identified for T. asperellum ND-1, as opposed to one endo-1,4(3)-β-

xylanase (GH10) and three endo-1,4(3)-β-xylanases (GH11) in T. reesei QM6a (Figure 6). T. 

asperellum CBS 433.97 also contained two endo-1,4(3)-β-xylanases (representing families 

GH10) and four endo-1,4(3)-β-xylanases (GH11) (Figure 6). Xylanase adding to cellulase 

mixtures has significant improvement for complete degradation of lignocellulosic bio-

mass, on account of enhancing the cellulase’s accessibility to cellulose [17,19,66]. How-

ever, the component of xylan in lignocellulosic polymers has a backbone of xylose units, 

which can be connected with various residues [20]. Complete degradation of heteroxylan 

needs a battery of side-chain-degrading enzymes [67], including GH2 (β-glucuronidase 

or β-mannanase), GH5 (endo-β-1,4-mannase), GH27 (α-galactosidase), GH28 (α-L-
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rhamnosidase), GH62 (α-L-arabinofuranosidase), GH67 (α-glucuronidase), GH76 (α-1,6-

mannanase or α-glucosidase), GH78 (α-L-rhamnosidase), GH92 (α-1,2(3)-mannosidase), 

GH125 (exo-α-1,6-mannosidase), and GH154 (β-glucuronidase), which were predicted in 

all five Trichoderma species (Figure 6). In addition, GH1 was mainly composed of β-gluco-

sidase and β-galactosidase, and the two GH1 enzymes of T. reesei QM9414 were β-gluco-

sidase [68], which was similar with the present study. In T. asperellum ND-1 and T. asperel-

lum CBS 433.97, α-mannosidases, α-L-arabinofuranosidases, and β-xylosidases were iden-

tified in higher abundances (Figure 6). For example, the genome of T. asperellum ND-1 and 

T. asperellum CBS 433.97 contained eight genes encoding GH31 enzymes with α-manno-

sidase or α-xylosidase activities (Figure 6). A number of GH43 (β-xylosidase or α-L-arab-

inofuranosidase) were also remarkably expanded in T. asperellum CBS 433.97, T. asperellum 

ND-1, and T. atroviride IMI 206040. Enzymes from other GH families, such as GH32 (arab-

inosidase), GH93 (exo-α-L-1,5-arabinanase), and GH114 (endo-α-1,4-polygalactosamini-

dase), were detected in the genome of T. asperellum CBS 433.97, T. atroviride IMI 206040, T. 

virens Gv-298, and T. asperellum ND-1 (alongside T. reesei QM6a) (Figure 6). The diversity 

of hemicellulases in T. asperellum ND-1 was much larger in some respects than other bio-

mass-degrading fungi (especially T. reesei), which were similar to previous studies [38,44]. 

Moreover, hydrolases from GH51 (α-L-arabinofuranosidase or β-xylosidase), GH127 (β-

L-arabinofuranosidase), and GH142 (β-L-arabinofuranosidase) were predicted in the T. 

asperellum CBS 433.97, T. asperellum ND-1, and T. atroviride IMI 206040 genome only (Fig-

ure 6). In addition, the genome of T. asperellum CBS 433.97 contained nine genes encoding 

GH27 enzymes with α-galactosidase activities, which was three-fold higher than that of 

T. asperellum ND-1 (Figure 6). These findings, taken together, revealed that T. asperellum 

ND-1 generated more diversity of CAZymes relevant to hemicellulose hydrolysis than 

those of T. reesei QM6a. 
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Figure 6. Heat map showing the distribution of glycoside hydrolases (GHs) in the genomes of T. 

atroviride IMI 206040, T. virens Gv-298, T. reesei QM6a, T. asperellum ND-1, and T. asperellum CBS 

433.97. CAZymes families are grouped according to their activities in major components of plant 

cell walls. 

Degradation of complex cellulose polysaccharides depends on synergistic actions of 

three representative cellulases: β(α)-glucosidases, exo-1,4-β-glucanases, and endo-1,4-β-

glucanases [69,70]. A much higher number of enzymes associated with cellulose degrada-

tion were identified in the genome of T. virens Gv-298, T. asperellum ND-1, and T. atroviride 

IMI 206040 (54, 53, and 50 proteins, respectively), compared with that of T. reesei QM6a 

and T. asperellum CBS 433.97 (Figure 6). Three endoglucanases (GH12), five β(α)-gluco-

sidases (GH17 and GH63), and three exo-1,4-β-glucanases (GH6/7) were predicted in the 

T. asperellum ND-1 genome, and three endoglucanases (GH12), four β(α)-glucosidases 

(GH17 and GH63), and three exo-1,4-β-glucanases (GH6/7) were identified in the genome 

of T. atroviride IMI 206040 (Figure 6). Particularly in T. virens Gv-298, 17 β-glucosidases 

(GH3), four endoglucanases (GH12), and three exo-1,4-β-glucanases (GH6/7) were the 

most abundant hydrolases (Figure 6), compared to the other described fungi. Moreover, 
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17 endo-1,3(4)-β-glucanase (GH16) and four endo-1,3-β(α)-glucosidase (GH17) were iden-

tified in the genome of T. asperellum CBS 433.97. In contrast, detected cellulolytic enzymes 

of T. reesei QM6a contained only two endoglucanases (GH12), two β(α)-glucosidases 

(GH17 and GH63), and three exo-1,4-β-glucanases (GH6/7) (Figure 6), consistent with a 

previous study, which showed that the genome of T. reesei contained fewer cellulase-re-

lated genes than other Trichderma fungi [38,43,44]. In addition, the number of CAZyme-

encoding genes and GH class distribution among the different Trichoderma species were 

remarkably different. T. reesei Rut-C30 had at least two exo-1,4-β-glucanases (Cel6a: GH6 

and Cel7a: GH7), four endo-1,4-β- glucanases (Cel5a: GH5, Cel7b: GH7, Cel12b: GH12, 

and Cel45a: GH45), and one β-glucosidase (Cel3a: GH3) [71]. In recent years, the charac-

teristics of 11 β-glucosidases (two GH1 enzymes and nine GH3 enzymes) has been ana-

lyzed [68,72]. Moreover, a high number of GH3, GH16, and GH128 enzymes suggested 

that T. asperellum ND-1 has a larger substrate range, which can be applied for various 

applications, including biomass conversion and biofuel production. 

All five Trichoderma species also produced a large series of enzymes, the majority of 

which were known to be associated with chitin degradation. For example, the GH18 fam-

ily, containing various enzymes linked to chitin hydrolysis [61], was remarkably ex-

panded in the genomes of T. virens Gv-298, T. atroviride IMI 206040, T. asperellum CBS 

433.97, and T. asperellum ND-1 (32, 27, 27, and 26 genes, respectively), relative to T. reesei 

QM6a (19 genes) (Figure 6). The component of fungal cell walls was comprised of sub-

stantial chitin and chitinolytic enzymes and was therefore an indispensable part of myco-

parasitic attack [48]. Moreover, hydrolases from GH75 (chitosanases) and GH18 (endo-β-

N-acetylglucosaminidases) also play a critical role in the degradation of fungal cell walls 

[43,61]. The most abundant of all glycoside hydrolases in T. asperellum ND-1 genome was 

GH18 comprised of 26 chitinolytic enzymes (Figure 6), which is consistent with a previous 

study [73]. Therefore, the T. asperellum ND-1 may be served as an effective and environ-

mentally friendly bio-control agent, similar to T. virens Gv-298 and T. atroviride IMI 206040, 

against numerous phytopathogenic microorganisms [43]. In addition, identified amyloly-

tic enzymes of T. asperellum ND-1 comprised six α-amylase (GH13), and three glucoamyl-

ase (GH15) were detected (Figure 6). Consequently, T. asperellum ND-1 could have great 

application potentials in the production of value-added biomolecules maltose from α-glu-

can like starch. 

Comparative analysis of lignocellulolytic enzyme activities. Efficiently catalytic 

degradation of lignocellulose is dependent on the synergistic action of various enzymes 

that hydrolyze lignocellulolytic biomass into fermentable sugars [17,19,20]. The present 

results show that T. asperellum ND-1 and other filamentous fungi displayed different time 

course profiles of lignocellulase activities (Figure 7). 
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Figure 7. Comparison of lignocellulolytic enzyme activities produced by T. asperellum ND-1 and 

other fungi. The activities of hemicellulases (endoxylanase, β-xylosidase, and α-L- arabino-

furanosidase) are shown in (A–C), respectively. The activities of cellulases (endoglucanase, cellobi-

ohydrolase, and β-glucosidase) are shown in (D–F), respectively. 

Among hemicellulases, xylanase activity in T. asperellum ND-1 extract improved 

sharply over time and obtained the highest level of 173.25 ± 3.14 U/mL after 5 days of 

cultivation (Figure 7A). Xylanases produced by T. asperellum ND-1 were identified to effi-

ciently hydrolyze xylan into major product xylobiose [11]. For P. decumbens, the corre-

sponding activity increased slowly to reach the maximum value (80.83 ± 4.55 U/mL) on 

day 3 (Figure 7A). Xylanase activity produced by T. reesei increased gradually until the 

end of the cultivation and a maximum of 68.84 ± 2.98 U/mL was achieved on day 6, while 

it was much lower in G. frondosa, F. solani, A. tamarii, A. niger ND-1, and M. thermophila 

extract (Figure 7A). β-xylosidase activity of T. asperellum ND-1 increased over time, and a 

peak (0.54 ± 0.08 U/mL) displayed on day 3 (Figure 7B). For A. niger ND-1 and P. decum-

bens, the activity was up to a maximum (0.43 ± 0.003 U/mL and 0.31 ± 0.02 U/mL, respec-

tively) after 4 days (Figure 7B) and then remained relative stable. In contrast, the enzyme 

activity of T. reesei, M. thermophila, and F. solani fluctuated at a low level between 0.046 ± 

0.003 and 0.12 ± 0.02 U/mL during the cultivation time (Figure 7B). A minimal β-xylosidase 

activity was observed in the G. frondosa and A. tamarii extract (Figure 7B). In addition, 

reports reveal that side-chain-degrading enzymes play a crucial role in the degradation of 

biomass [17]. α-L-arabinofuranosidase activities were found and showed the maximum 

level on day 5 in all selected fungi. In T. asperellum ND-1, the enzyme activity reached a 

maximum value of 1.58 ± 0.06 U/mL (Figure 7C), with a 5.5-fold, 4-fold, and 1.3-fold higher 
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level, respectively, compared with that of M. thermophila, T. reesei, and P. decumbens. These 

results, taken together, reveal that T. asperellum ND-1 produced various hemicellulases 

with significantly higher activities, which can be utilized in various fields, particularly in 

the production of valuable biomolecules (prebiotics, xylooligosaccharides). 

In terms of cellulolytic enzymes, endoglucanases from T. asperellum ND-1 displayed 

the highest level (6.33 ± 0.11 U/mL) on day 5, and the activity exhibited was comparable 

with that of T. reesei (8.78 ± 0.03 U/mL) (Figure 7D). The corresponding enzyme activity in 

P. decumbens and M. thermophila increased rapidly to the maximum value (17.71 ± 0.03 

U/mL and 11.20 ± 0.84 U/mL, respectively) on day 5 (Figure 7D), but it was too low in A. 

niger ND-1, A. tamarii, F. solani, and G. frondosa during the overall cultivation period. In 

addition, another two major cellulase activities (cellobiohydrolase (0.23 ± 0.01 U/mL) and 

β-glucosidase (0.087 ± 0.01 U/mL)), produced by T. asperellum ND-1, were much higher 

than those of other selected fungi (Figure 7E,F), including A. niger ND-1, F. solani, and G. 

frondosa. The maximum exoglucanase activity (1.01 ± 0.06 U/mL) in P. decumbens extract 

appeared on day 4 (Figure 7E), and the β-glucosidase secreted by A. tamatrii obtained a 

maximum activity of 0.14 ± 0.01 U/mL on day 6 (Figure 7F). T. reesei was well known for 

its involvement in the degradation of complex biomass carbohydrates and was used as 

the main industrial producers of cellulases [34,35]. These lignocellulase activities profiles 

indicated that T. asperellum ND-1 generated an enzyme mixture with enhanced cellulose 

hydrolysis capability similar to that of T. reesei. Moreover, genome sequencing and anal-

ysis of the biomass-degrading fungus T. asperellum ND-1 were performed to pave the way 

for designing enhanced T. asperellum ND-1 strains toward a more rapid conversion of lig-

nocellulose into soluble sugars for bioenergy production. 

3. Conclusions 

The whole genome sequence and lignocellulases activities of the newly isolated T. 

asperellum ND-1 were determined for the first time. A high-quality genomic sequence of 

ND-1 has an assembly size of 35.75 Mb comprising 10,541 predicted genes. Secretome 

analysis showed that 895 proteins were detected, with 211 proteins associated with CA-

Zymes, possessing remarkable potential for utilization in biomass decomposition. Com-

parative genome analysis suggested that the genome of ND-1 contained many genes in-

volved in biological-control, which would be useful to investigate Trichoderma species as 

biocontrol agents. Furthermore, the genome of ND-1 encoded a higher diversity of poly-

saccharide-degrading enzymes, especially those associated with hemicellulose decon-

struction. Compared with T. reesei (CICC 40932), ND-1 produced higher hemicellulases 

(particularly xylanase) and similar cellulases activities. These results will help us under-

stand the unique hydrolytic enzyme system of T. asperellum ND-1 and promote the inves-

tigation of more efficient and cost-effective enzymes for the degradation of lignocellulosic 

biomass. 

4. Materials and Methods 

Strains, reagents, and media. The T. asperellum ND-1 (GenBank accession number 

MH496612) and A. niger ND-1 (GenBank Accession number MH137707) strains were iso-

lated from soil samples collected in Chifeng, Inner Mongolia, China, and preserved in the 

laboratory. The T. reesei (CICC 40932), Grifola frondosa (CICC 14078), Penicillium decumbens 

(CICC 40674), Fusarium solani (CICC 2618), and A. tamarii (CICC 40233) were obtained 

from the China Center of Industrial Culture Collection. Myceliophthora thermophila ATCC 

42464 was from the American Type Culture Collection. P-nitrophenyl (pNP)-D-β-gluco-

pyranoside (pNPG), pNP-L-α-arabinofuranoside (pNPAf), pNP-β-D-xylopyranoside 

(pNPX), pNP-D-β-cellobiose (pNPC), and sodium carboxymethyl cellulose (CMC-Na) 

were from Sigma-Aldrich (St. Louis, MO, USA). Beechwood xylan (BWX) was purchased 

from Megazyme (Wicklow, Ireland). 

All fungi were precultured on potato dextrose agar (PDA) at 28 °C for 4 days. In total, 

5 g of unpretreated, dry corn stover (milling to 2 cm), 0.2 g tryptone, 0.2 g yeast extract, 
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and 100 mL of a basal salt solution (0.5 g/L MgSO4·7H2O, 1 g/L K2HPO4·3H2O, 2 g/L NH4Cl, 

0.5 g/L KCl, 0.02 g/L FeSO4·7H2O, 0.03 g/L CaCl2, and 0.02 g/L ZnSO4·7H2O) were added 

to 250 mL Erlenmeyer flasks, and the mixtures were sterilized at 121 °C for 30 min used 

as inducing medium. For lignocellulases (cellulases, hemicellulases) activity analysis, sus-

pensions of T. asperellum ND-1 and other fungi were inoculated onto sterile inducing me-

dium at approximately 5 × 108 spores, which were cultured with agitation at 200 rpm, 28 

°C, for 6 days. Culture samples were taken every day and centrifuged at 12,000× g for 10 

min to collect the supernatant. The supernatant containing the crude enzymes was then 

used directly for enzyme assays. Experiments were performed in triplicate. 

Genomic DNA preparation and quality assessment. The T. asperellum ND-1 

(MH496612) strain cultured on PDA medium at 28 °C for 2 days was inoculated in potato 

dextrose broth (PDB) and incubated at 28 °C for 3 days, 200 rpm. Fungal biomass (3.5 g) 

of 500 mL was acquired via centrifugation for 15 min, at 4000 rpm, and maintained in 

liquid nitrogen. Genomic DNA of T. asperellum ND-1 was isolated using the Omega Fun-

gal DNA Kit D3390-02, according to fungal DNA extraction protocol. The purity and con-

centration of genomic DNA were quantified the with NanoDrop 2000 (Thermo Fisher Sci-

entific, Waltham, MA, USA) and TBS-380 (Turner BioSystems Inc., Sunnyvale, CA, USA) 

methods, respectively. 

Sequencing and assembly. T. asperellum ND-1 genome was sequenced using a com-

bination of PacBio sequel single molecule real-time (SMRT) [42] and Illumina sequencing 

platforms (MajorBio Co., Shanghai, China). DNA libraries containing ~400 bp and 10-kb 

inserts were prepared. The 400-bp library was constructed according to NEXTflex™ 

Rapid DNA-Seq Kit, including fragmentation of genomic DNA, end repair, adaptor liga-

tion, and PCR amplification. The 400-bp library was used for paired-end Illumina se-

quencing (2 × 150 bp) by Illumina HiSeq 2000 and assembled with SOAPdenovo version 

2.04 (http://soap.genomics.org.cn/, accessed on 5 April 2022). The 10-kb library was pre-

pared using PacBio’s standard methods. DNA fragments were purified, end-repaired, and 

ligated with SMRTbell sequencing adapters following the manufacturer’s instruction (Pa-

cific Biosciences, Menlo Park, CA, USA). The 10-kb library was evaluated with 2100 Bio-

analyzer (Agilent, Santa Clara, CA, USA), sequenced by SMRT, and the sequencing results 

(filtered reads: 4.92 G, sequencing depth: 123×) were assembled into contigs through 

CANU (version 1.7) with default parameters [74]. Furthermore, error correction of the 

PacBio assembly results was performed using the Illumina reads and gap filling with 

GAPCLOSER version 1.12 [75]. Finally, quality assessment of genome assembly was car-

ried out using CEGMA (version 2.5) and BUSCO (version 3.0) softwares. 

Gene prediction and annotation. Genome prediction of protein-encoding sequences 

(opening reading frames, ORFs) were carried out by a combination of four independent 

softwares, GeneMark-ES (version 2.3a) [76], SNAP [77], MAKER (version 2.31.9) 

(http://www.yandell-lab.org/software/maker.html, accessed on 5 April 2022), and Augus-

tus (version 2.5.5) (http://augustus.gobics.de/, accessed on 5 April 2022). The tRNAscan-

SE version 2.0 was used for tRNA prediction (50,51). Gene annotations for predicted ORFs 

were carried out by various databases, including the Non-Redundant Protein database 

(NR) (ftp://ftp.ncbi.nlm.nih.gov/blast/db/, accessed on 5 April 2022), Swiss-Prot database 

(https://web.expasy.org/docs/swiss-prot_guideline.html, accessed on 5 April 2022) [78], 

COG (http://www. ncbi. nlm.nih.gov/COG/, accessed on 5 April 2022) [79], and KEGG 

database (http://www.genome. jp/kegg/, accessed on 5 April 2022) [80] using blastP with 

E-values of ≤ l × 10−5. Proteins coding for proteases were classified by conducting Blastp 

(batch) against the MEROPS database (http://merops.sanger.ac.uk, accessed on 5 April 

2022). Domain identification of predicted protein-encoding sequences were analyzed ac-

cording to the Pfam database (http://pfam.xfam.org/, accessed on 5 April 2022) [81] and 

HMMER version 3.3 (http://www.hmmer.org/, accessed on 5 April 2022) [82]. The enrich-

ment analysis of gene ontology (GO) was obtained by using Blast2GO version 2.5 

(https://www.blast2go.com/, accessed on 5 April 2022) [83]. 
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Identification of transposable elements. Transposable elements (TEs) containing 

various classes (LTRs (long terminal repeats), LINEs (long interspersed nuclear elements), 

DNA transposons, etc.) were determined strictly using three methods. We firstly detected 

the T. asperellum ND-1 with a de novo software Repeat Modeler (http://repeat-

masker.org/RepeatModeler/, accessed on 5 April 2022), then the predicted repetitive ele-

ments were identified by BLASTP searches against the Repeat Protein Masker (www.re-

peatmasker.org/cgi-bin/RepeatProteinMaskRequest, accessed on 5 April 2022) and Repeat 

Masker (version 4.0.7) database-based softwares (http://www.repeatmasker.org/, ac-

cessed on 5 April 2022). All the parameters were set as default. 

Secretome prediction and analysis. The identification of putative secreted proteins 

was carried out by SignalP version 4.1 (http://www.cbs.dtu.dk/services/SignalP, accessed 

on 5 April 2022). The Blast2GO version 2.5 (https://www. blast2go.com/, accessed on 5 

April 2022) [83] and BLASTP analysis with E-values of ≤ 1 × 10−5 were used for the func-

tional annotations of predicted secretome, according to the terms “cellular component”, 

“biological process”, and “molecular function” in the GO database. Potential pathogenic-

ity-related genes (related to reduced virulence, unaffected pathogenicity, lethal, loss of 

pathogenicity, etc.) were analyzed by detecting against the pathogen-host interaction 

(PHI) database (http://www.phi-base.org/, accessed on 5 April 2022) by Diamond (version 

0.8.35) with E-values of ≤ 1 × 10−5 [84]. 

Phylogenetic analyses. The evolutionary relationships of T. asperellum ND-1 and 

other selected fungi species were evaluated using the proteomes of these fungi. Protein 

sequence alignment was performed using ClustalW software [85], and the phylogenetic 

tree was constructed by MEGA version 7.0 [86] with the UPGMA method. In addition to 

T. asperellum ND-1, the proteomes of other selected fungi available on DOE Joint Genome 

Institute [87] were contained: T. asperellum CBS 433.97 (GenBank assembly accession 

GCA_003025105.1), T. reesei QM6a (GCF_000167675.1), T. virens Gv-298 

(GCF_000170995.1), T. harzianum CBS 226.95 (GCA_003025095.1), T. longibrachiatum ATCC 

18648 (GCA_003025155.1), T. atroviride IMI 206040 (GCF_000171015.1), T. guizhouense 

NJAU 4742 (GCA_002022785.1), T. gamsii T6085 (GCF_001481775.2), T. parareesei CBS 

125925 (GCA_001050175.1), T. citrinoviride TUCIM 6016 (GCA_00302 5115.1), A. niger CBS 

513.88 (GCF_000002855.3), A. oryzae 3.042 (GCA_000269785.2), A. terreus NIH2624 

(GCF_000149615.1), A. glaucus CBS516.65 (GCF_001890805.1), A. aculeatus ATCC16872 

(GCF_001890905.1), A. flavus NRRL3357 (GCF_00000627 5.2), G. frondosa 9006-11 

(GCA_001683735.1), P. decumbens IBT 11843 (GCA_002072245.1), Thermothelomyces ther-

mophila 42464 (GCF_000226095.1), F. graminearum PH-1 (GCF_000240135.3), Aureobasidium 

pullulans EXF-150 (GCA_000721785.1). The neighbor joining method with a Poisson model 

was used for phylogenetic evaluation, and the reliability of branching order was evalu-

ated by 1000 bootstrap replications. 

Comparison analysis of orthologous gene families. In order to identify the ortholo-

gous genes of the four Trichoderma species (T. asperellum ND-1, T. reesei QM6a, T. atroviride 

IMI 206040, T. virens Gv-298), we used orthoMCL for the similar pairwise matches to con-

firm that the groups were orthologous in the Trichoderma genomes [65,88]. The genes that 

were defined as orthologs from clusters of paralogs were subtracted, then the rest of spe-

cies-specific gene sets of the cluster group expanded because of the most recent common 

ancestor (MRCA) of the four Trichoderma genomes [43]. 

Carbohydrate-active enzymes identification and analysis. For the detection of CA-

Zymes, the families of structurally related catalytic (glycosyltransferases (GTs), carbohy-

drate esterases (CEs), glycoside hydrolases (GHs), auxiliary activities (AAs), polysaccha-

ride lyases (PLs)), and carbohydrate-binding modules (CBMs)) in the four Trichoderma 

species (T. asperellum ND-1, T. reesei QM6a, T. atroviride IMI 206040, and T. virens Gv-298) 

were analyzed exactly based on the CAZymes database (http://www.cazy.org/, accessed 

on 5 April 2022). A HMMER version 3.3 scan (http://www.hmmer.org/, accessed on 5 

April 2022) was performed for annotated CAZyme domain boundaries according to the 
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dbCAN CAZyme domain HMM database [89,90]. DIAMOND (http://www.dia-

mondsearch.org/, accessed on 5 April 2022) and Hotpep were used for fast blast hits in the 

CAZy database and short conserved motifs in the Peptide Pattern Recognition (PPR) li-

brary, respectively. The Hotpep combined with peptide patterns was performed to ac-

quire a stand-alone software for functional prediction and annotation of protein models 

corresponding to CAZymes. 

Enzyme assays. β-glucosidase, β-xylosidase, α-L-arabinofuranosidase, and cellobio-

hydrolase activities were evaluated [91]. Reaction mixture containing 100 µL crude en-

zyme and 100 µL of 5 mM pNPX, pNPC, pNPG, and pNPAf substrates were incubated in 

50 mM sodium acetate buffer (pH 5.0) at 50 °C for 10 min. The reaction was terminated 

using 100 µL sodium carbonate (1.0 M). A mixture without enzymes was used as the con-

trol. An amount of liberated pNP was quantified by determining the absorbance at 405 

nm, and one unit was defined as the number of enzymes required to release 1 μmol pNP 

per min. 

Endoxylanase and endoglucanase activities were assayed using the 3,5-dinitrosali-

cylic acid (DNS) method [92], with 1% (w/v) of CMC-Na and BWX as substrate, respec-

tively. The reaction system (150 μL of 1.0% (w/v) substrate with 50 μL crude enzyme) was 

incubated in 50 mM sodium acetate buffer (pH 5.0) for 10 min at 50 °C, and the reaction 

was stopped by adding 50 μL of 1 M NaOH. A mixture without enzymes was used as the 

control. After boiling at 100 °C for 5 min, the amount of reducing sugar was assayed at 

absorbance 540 nm, with one activity unit defined as the enzyme (endoglucanase or en-

doxylanase) amount that liberated 1 μmol of reducing sugar (equivalent to glucose or xy-

lose) per min from CMC-Na or BWX (equivalent to glucose or xylose) per min under assay 

conditions. The respective standard curves were obtained with 0.1–0.7 mg/mL glucose 

and xylose. All enzyme activities were performed in triplicate. 
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Figure S2. Functional annotation of the T. asperellum ND-1 secretome showing top 20 

hits of different category. MF, molecular function; CC, cellular component; BP, bio-

logical process; Figure S3. Statistical analysis of CAZymes of T. asperellum ND-1 ge-

nome. Different colors of the pie chart represent different CAZy classifications, and 

their areas represent the proportion of genes in the classification; Table S1. Genome 

features of T. asperellum ND-1, T. asperellum IC-1 and T. asperellum CBS 433.97.; Table 

S2. Repetitive elements identified in the T. asperellum ND-1 genome. Table S3. Glyco-

side hydrolases (GHs) identified in the genome of T. atroviride IMI 206040, T. virens 
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