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Abstract: Sustainable synthesis of pharmaceuticals is one of the main challenges for the pharmaceu-
tical industry. Production of these compounds from plastic waste can provide an innovative and
ecological approach to their sustainable synthesis. In this context, plastic waste can be regarded as a
potential cheap resource for the production of compounds of interest to the pharmaceutical industry.
In this work, the first methodologies for the reductive depolymerization of poly(4-hydroxybutyrate)
(P4HB) and polybutylene succinate (PBS) plastic waste are reported using the catalyst systems
MoO2Cl2(H2O)2/silane, MoO2Cl2(H2O)2/borane and KOH/PhSiH3 with moderate to excellent
yields. We also developed the first synthetic strategy for the synthesis of a drug, the anticancer
busulfan, from P4HB and PBS plastic waste with moderate overall yields.

Keywords: plastic waste; poly(4-hydroxybutyrate); polybutylene succinate; reductive depolymeriza-
tion; busulfan

1. Introduction

Plastics have become ubiquitous materials in our daily life, and the world without
plastics seems unimaginable today. Consequently, plastic pollution has increased drastically
over the last century and is currently one of the biggest problems facing the planet. It is
urgent to mitigate the environmental impact of plastics. To address this challenge, it is
crucial to continue the development of new, cost-efficient and sustainable processes for
the valorization of plastic waste. In the last years, great efforts have been made to develop
new methodologies for the depolymerization of plastic waste into a value-added chemical
to be used as raw materials in the chemical industry [1–15]. Among these methodologies,
the reductive depolymerization [16] of polyester waste has attracted the attention of the
scientific community using different catalysts and H2, silanes and alcohols as the reducing
agents [17–25].

Sustainable synthesis of biologically active and pharmaceutical compounds is one
of the main challenges for the pharmaceutical industry and has been investigated mainly
from biomass resources [26–32]. Plastic waste can also be regarded as a potential cheap
resource for the production of biologically active compounds and pharmaceuticals. To the
best of our knowledge, there is no example of the synthesis of a drug from plastic waste
described in the literature. Most of the research on the valorization of plastic waste has
been directed towards the synthesis of monomers and fuels [16–25].

Busulfan, 4-methylsulfonyloxybutyl methanesulfonate (Figure 1), is an antineoplastic
in the class of alkylating agents, used to treat various forms of cancer since 1959. Busulfan
has been used to treat chronic myelogenous leukemia and certain blood disorders, such
as polycythemia vera and myeloid metaplasia, and it has also been applied in some
conditioning regimens prior to bone marrow transplant [33–36].
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Figure 1. Structure of busulfan. 

The search for new synthetic strategies for the production of anticancer drugs, which 
usually involves several reaction steps [37,38], in a sustainable way, continues to be a 
challenging topic for the pharmaceutical industry. In continuation of our research using 
oxo-complexes as efficient catalysts for the synthesis of organic compounds [39–43], in 
this work, we investigated the reductive depolymerization of P4HB and PBS plastic waste 
into 1,4-butanediol. We also developed the first synthesis of a pharmaceutical, the 
anticancer drug busulfan, from these plastic wastes. 

2. Discussion and Results 
In the first part of this work, we studied the reductive depolymerization of the two 

aliphatic polyesters poly(4-hydroxybutyrate) (P4HB) and polybutylene succinate (PBS), 
obtained from a non-infected commercial surgical suture (Figure 2a) and a Delta Q eQo 
coffee capsule, a Portuguese coffee (Figure 2b), respectively. To the best of our knowledge, 
there are no methodologies reported in the literature for the reductive depolymerization 
of these polyesters. The reductive depolymerization of P4HB was investigated using the 
catalytic system silane and MoO2Cl2(H2O)2, which employs different silanes as the 
reducing agents, including PhSiH3, (EtO)2MeSiH, PMHS (poly(methylhydrosiloxane)) 
and TMDS (1,1,3,3-tetramethyldisiloxane). 
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Figure 2. (a) Non-infected commercial surgical suture; (b) Delta Q eQo coffee capsules. 

The reductive depolymerization of P4HB was initially carried out in the presence of 
2 mol% of MoO2Cl2(H2O)2 using 1 or 3 equivalents of PMHS in toluene at reflux 
temperature for 24 h. These reactions led to the formation of 1,4-butanediol with 39% and 
59% yields, respectively (Table 1, entries 1 and 2). When the reaction was carried out in 
the presence of 5 mol% of catalyst and 3 equiv. of PMHS, the yield of 1,4-butanediol 
increased slightly to 63% (Table 1, entry 3). The depolymerization of P4HB was also 
studied using (EtO)2MeSiH (3 equiv.) as the reducing agent and MoO2Cl2(H2O)2 (2 mol%) 
as the catalyst, producing 1,4-butanediol with 50% yield after 24 h at reflux temperature 
(Table 1, entry 4). This diol was also obtained in the 55% yield from the reaction of P4HB 
with PhSiH3 (3 equiv.) in the presence of 5 mol% of MoO2Cl2(H2O)2 (Table 1, entry 5). 

  

Figure 1. Structure of busulfan.

The search for new synthetic strategies for the production of anticancer drugs, which
usually involves several reaction steps [37,38], in a sustainable way, continues to be a
challenging topic for the pharmaceutical industry. In continuation of our research using
oxo-complexes as efficient catalysts for the synthesis of organic compounds [39–43], in this
work, we investigated the reductive depolymerization of P4HB and PBS plastic waste into
1,4-butanediol. We also developed the first synthesis of a pharmaceutical, the anticancer
drug busulfan, from these plastic wastes.

2. Discussion and Results

In the first part of this work, we studied the reductive depolymerization of the two
aliphatic polyesters poly(4-hydroxybutyrate) (P4HB) and polybutylene succinate (PBS),
obtained from a non-infected commercial surgical suture (Figure 2a) and a Delta Q eQo
coffee capsule, a Portuguese coffee (Figure 2b), respectively. To the best of our knowledge,
there are no methodologies reported in the literature for the reductive depolymerization
of these polyesters. The reductive depolymerization of P4HB was investigated using
the catalytic system silane and MoO2Cl2(H2O)2, which employs different silanes as the
reducing agents, including PhSiH3, (EtO)2MeSiH, PMHS (poly(methylhydrosiloxane)) and
TMDS (1,1,3,3-tetramethyldisiloxane).
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Figure 2. (a) Non-infected commercial surgical suture; (b) Delta Q eQo coffee capsules.

The reductive depolymerization of P4HB was initially carried out in the presence
of 2 mol% of MoO2Cl2(H2O)2 using 1 or 3 equivalents of PMHS in toluene at reflux
temperature for 24 h. These reactions led to the formation of 1,4-butanediol with 39%
and 59% yields, respectively (Table 1, entries 1 and 2). When the reaction was carried out
in the presence of 5 mol% of catalyst and 3 equiv. of PMHS, the yield of 1,4-butanediol
increased slightly to 63% (Table 1, entry 3). The depolymerization of P4HB was also studied
using (EtO)2MeSiH (3 equiv.) as the reducing agent and MoO2Cl2(H2O)2 (2 mol%) as the
catalyst, producing 1,4-butanediol with 50% yield after 24 h at reflux temperature (Table 1,
entry 4). This diol was also obtained in the 55% yield from the reaction of P4HB with
PhSiH3 (3 equiv.) in the presence of 5 mol% of MoO2Cl2(H2O)2 (Table 1, entry 5).
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Table 1. Reductive depolymerization of P4HB with the catalytic system MoO2Cl2(H2O)2/Silane a.
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Entry Catalyst
(mol%) Silane Silane

(Equiv.)
Temp.
(◦C)

Time
(h)

Yield
(%) b

1 2 PMHS 1 110 24 39
2 2 PMHS 3 110 24 59
3 5 PMHS 3 110 24 63
4 2 (EtO)2MeSiH 3 110 24 50
5 5 PhSiH3 3 110 24 55
6 5 TMDS 3 110 24 72
7 2 TMDS 2 110 24 52
8 2 TMDS 3 110 24 59
9 5 TMDS 2 110 24 52

10 5 TMDS 3 r. t. 48 No reaction
11 5 TMDS 3 110 24 65 c

a The reactions were carried out with 0.5 mmol of P4HB, obtained from a non-infected surgical suture. b Yields
were determined by 1H NMR using mesitylene as the internal standard. c The reaction was carried out using
2.0 mmol of P4HB.

To evaluate the efficiency of the catalytic system MoO2Cl2(H2O)2/TMDS in the depoly-
merization of P4HB, this reaction was explored using different amounts of MoO2Cl2(H2O)2
and TMDS in toluene at reflux and ambient temperatures. The best yield of 1,4-butanediol
(72%, Figures S1 and S2) was observed in the presence of 5 mol% of MoO2Cl2(H2O)2 and
3 equivalents of TMDS after 24 h at reflux (Table 1, entry 6). When the depolymerization
was carried out with smaller amounts of catalyst and TMDS, the diol was formed with
yields of approximately 50% (Table 1, entries 7–9). At room temperature, the depolymeriza-
tion of P4HB with the MoO2Cl2(H2O)2/TMDS system did not occur, demonstrating the
effect of temperature on the depolymerization of P4HB (Table 1, entry 10).

To study the possible scale-up of this methodology, the depolymerization of P4HB was
performed from 2 mmol (0.172 g) of this polyester with the catalytic system MoO2Cl2(H2O)2/
TMDS, which also leads to the formation of 1,4-butanediol with good yield (65%) (Table 1,
entry 11). This result is very interesting because it suggests the possible application of
this cheap and environmentally friendly catalytic system to the large-scale production of
1,4-butanediol, which would contribute to reducing the use of fossil resources.

In this work, the possible use of the catalyst MoO2Cl2(H2O)2 (5 mol%) in several
consecutive reductive depolymerizations of P4HB was also explored. This study was
carried out in toluene at 110 ◦C by successive additions of P4HB and TMDS to the reaction
mixture, without separating the catalyst at the end of each reaction. We concluded that the
catalyst remained active during the eight reactions, by observing the complete reduction of
P4HB and the formation of 1,4-butanediol in yields between 67% and 72% (Figure 3).

The reductive depolymerization of polyester PBS, obtained from Delta Q eQo coffee
capsules cut into small pieces was also studied with the catalytic system MoO2Cl2(H2O)2/
silane (Table 2). The depolymerization of PBS was initially investigated using PMHS as the
reducing agent and MoO2Cl2(H2O)2 as the catalyst. The reaction performed with 5 mol%
of catalyst and 2 equivalents of PMHS produced 1,4-butanediol with only 48% yield after
48 h (Table 2, entry 1). When this reaction was carried out using 6 equivalents of PMHS,
this diol was obtained with 72% yield (Table 2, entry 2). Then, the depolymerization of
PBS was studied using PhSiH3 (6 equiv.) in the presence of 5 mol% of MoO2Cl2(H2O)2,
producing 1,4-butanediol with 67% yield after 48 h at reflux temperature (Table 2, entry 3).
The reductive depolymerization of PBS carried out with TMDS (6 equiv.) and 5 mol% of
MoO2Cl2(H2O)2 led to the formation of 1,4-butanediol with the best yield (75%) after 48 h
at reflux temperature (Table 2, entry 4), while using 4 equivalents of TMDS, 1,4-butanediol
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was obtained with only 48% yield (Table 2, entry 5). In contrast, at room temperature,
this reaction did not occur (Table 2, entry 6). Finally, we also successfully applied the
catalytic system MoO2Cl2(H2O)2/TMDS to the depolymerization of 2.0 mmol (0.344 g) of
PBS, obtaining 1,4-butanediol with 69% yield (Table 2, entry 7).
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Figure 3. Use of MoO2Cl2(H2O)2 in consecutive reductive depolymerizations of P4HB. The reactions
were carried out using MoO2Cl2(H2O)2 (5 mol%) by successive additions of P4HB (0.5 mmol) and
TMDS (1.5 mmol) to the reaction mixture, without separating the catalyst at the end of each reaction.
Yields were determined by 1H NMR spectroscopy, using mesitylene as an internal standard.

Table 2. Reductive depolymerization of PBS with the catalytic system MoO2Cl2(H2O)2/Silane a.
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Entry Silane Silane
(Equiv.)

Temp.
(◦C)

Yield
(%) b

1 PMHS 2 110 48
2 PMHS 6 110 72
3 PhSiH3 6 110 67
4 TMDS 6 110 75
5 TMDS 4 110 48
6 TMDS 6 r. t. No reaction
7 TMDS 6 110 69 c

a The reactions were carried out with 0.25 mmol of PBS, obtained from a Delta Q eQo coffee capsule. b Yields
were determined by 1H NMR using mesitylene as the internal standard. c The reaction was carried out using
2.0 mmol of PBS.

Next, we tested the reductive depolymerization of P4HB and PBS using pinacolborane
(HBpin) as the reducing agent catalyzed by MoO2Cl2(H2O)2 (5 mol%). The reaction of P4HB
produced pinBO(CH2)4OBpin with 71% yield after 24 h in toluene at reflux (Scheme 1).
Similarly, the reductive depolymerization of PBS produced pinBO(CH2)4OBpin with 73%
yield (Scheme 1). During the execution of this work, Cantat and coworkers [44] reported
the first methodology for the depolymerization of polyesters using boranes as the reducing
agent catalyzed by La[N(SiMe3)2]3, but the depolymerization of P4HB and PBS was not
investigated in this work. Our methodology has the advantage of using a molybdenum
catalyst, which is cheaper and more environmentally friendly than the lanthanum complex.
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Scheme 1. Reductive depolymerization of P4HB and PBS waste with the system MoO2Cl2(H2O)2/
HBpin.

The development of efficient methodologies for the depolymerization of plastic waste
in the absence of a metallic catalyst is also an extremely important issue that needs to be
addressed. Nolan and coworkers [45] reported a new procedure for the reduction of esters
using the system KOH/PhSiH3, which provides the corresponding alcohols with good
yields; however, this catalyst system has never been used in the reductive depolymerization
of plastic waste. Based on these results, we decided to apply this methodology to the
depolymerization of P4HB and PBS (Table 3).

Table 3. Reductive depolymerization of P4HB and PBS with the system KOH/PhSiH3
a.
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Entry Polyester KOH
(Equiv.) Silane Silane

(Equiv.)
Temperature

(◦C)
Time

(h) Yield (%) b

1 P4HB 0.4 PhSiH3 3 110 24 95
2 P4HB 0.4 PhSiH3 2 110 24 38
3 P4HB 0.4 PhSiH3 3 r. t. 24 No reaction
4 P4HB 0.4 TMDS 3 110 24 65
5 P4HB 0.4 PMHS 3 110 48 47
6 PBS 0.8 PhSiH3 6 110 48 61c

a The reactions were carried out with 0.5 mmol of P4HB, obtained from non-infected surgical suture. b Yields were
determined by 1H NMR using mesitylene as the internal standard. c The reaction was carried out with 0.25 mmol
of PBS, obtained from a Delta Q eQo coffee capsule.

The reductive depolymerization of P4HB was performed with KOH (0.4 equiv.) and
PhSiH3 (3 equiv.) in toluene at reflux temperature during 24 h, producing 1,4-butanediol
with 95% yield (Table 3, entry 1). A similar reaction using only 2 equivalents of PhSiH3
also led to the formation of 1,4-butanediol but with a lower yield of 38% (Table 3, entry 2).
In contrast, at room temperature, no product was formed (Table 3, entry 3). When, this
reaction was performed with TMDS and PMHS at reflux temperature, 1,4-butanediol was
produced with 65% and 47% yields, respectively (Table 3, entries 4 and 5).

The reductive depolymerization of PBS, obtained from a coffee capsule, was investi-
gated with the catalytic system KOH/ PhSiH3 using 0.8 equivalents of KOH and 6 equiv-
alents of PhSiH3 in toluene at 110 ◦C for 48 h, leading to the formation of 1,4-butanediol
with 61% yield (Table 3, entry 6).

This result demonstrates, for the first time, the applicability of the system KOH/PhSiH3
in the reductive depolymerization of plastic waste. Beyond the excellent yield obtained
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from the reductive depolymerization of P4HB, this system also has the advantages of using
a cheap base and a non-metallic catalyst.

Our next goal was the valorization of 1,4-butanediol, obtained from the depolymer-
ization of P4HB and PBS plastic waste, in the synthesis of compounds of interest to the
pharmaceutical industry. Then, we decided to investigate the synthesis of the anticancer
drug busulfan from P4HB and PBS plastic waste.

A sample of P4HB, obtained from a non-infected commercial surgical suture, was
initially converted to 1,4-butanediol by reductive depolymerization with the catalytic
system MoO2Cl2(H2O)2/TMDS, followed by hydrolysis. We decided to use TMDS because
this reducing agent has the advantages of being less toxic and expensive. Next, the
1,4-butanediol obtained was mesylated by reaction with methanesulfonyl chloride and
triethylamine in dry dichloromethane at room temperature under nitrogen atmosphere,
producing busulfan in a moderate overall yield (54%, Figures S3–S5; Scheme 2). This result
is very encouraging, suggesting that this method can contribute to a more sustainable
production of this drug.
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A similar procedure was also developed for the synthesis of busulfan from PBS plastic
waste, obtained from a Delta Q eQo coffee capsule, also leading to the formation of 1,4-
butanediol, which was then mesylated, giving the anticancer drug busulfan with an overall
yield of 51% (Scheme 3).
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3. Conclusions

In this work, we reported the first study on the reductive depolymerization of P4HB
and PBS plastic waste in moderate to excellent yields. These methodologies involved
the use of the catalytic systems MoO2Cl2(H2O)2/TMDS, MoO2Cl2(H2O)2/HBpin and
KOH/PhSiH3, which have the advantages of using a cheap and environmentally friendly
catalyst or using a non-metallic catalyst. The catalytic systems MoO2Cl2(H2O)2/borane and
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KOH/PhSiH3 were applied for the first time in the depolymerization of plastic waste and
the results obtained suggest the future application of these systems to the depolymerization
of other plastic waste.

We also described the first example of the production of a drug, the anticancer drug
busulfan, from plastic waste, namely, P4HB and PBS, with moderate overall yields. This syn-
thetic approach enabled the production of busulfan in a very simple and sustainable way.

The synthesis of busulfan from plastic waste showed a completely new application of
plastic waste, adding new options for the circular economy of plastics. New applications
could include the use of plastic waste in the total synthesis of other drugs and in the
production of pharmaceutical ingredients, allowing the integration of plastic waste into the
drug supply chain. However, contaminations or impurities in the raw materials used are a
concern and may affect the safety and effectiveness of the drug. Nonetheless, nowadays,
the sensitivity of analytical methods to control the quality of the raw materials used in
medication, especially in stages near the end, is very high and well regulated.

This work also has other benefits, including the development of new methodologies
to recycle and extract value from plastic waste, to reduce the use of fossil resources and
to preserve natural sources of carbon. This investigation can also contribute to solving
two concerning issues that the planet is currently facing: the impact of plastic pollution
and the sustainability of the pharmaceutical industry. Finally, we hope that this work can
stimulate both academics and the industry to use plastic waste as a cheap and versatile
carbon source.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal12040381/s1, Figure S1: 1H NMR spectrum of 1,4-butanediol in CDCl3, Figure S2: 13C
NMR spectrum of 1,4-butanediol in CDCl3, Figure S3: 1H NMR spectrum of busulfan in CDCl3,
Figure S4: 13C NMR spectrum of busulfan in CDCl3, Figure S5: HPLC-HRMS analysis of a sample of
Busulfan. (Ref. [46] cited in the supplementary materials).
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