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Abstract: Methane is an abundant resource and its direct conversion into value-added chemicals has
been an attractive subject for its efficient utilization. This method can be more efficient than the present
energy-intensive indirect conversion of methane via syngas, a mixture of CO and H2. Among the
various approaches for direct methane conversion, the selective oxidation of methane into methane
oxygenates (e.g., methanol and formaldehyde) is particularly promising because it can proceed at low
temperatures. Nevertheless, due to low product yields this method is challenging. Compared with
the liquid-phase partial oxidation of methane, which frequently demands for strong oxidizing agents
in protic solvents, gas-phase selective methane oxidation has some merits, such as the possibility
of using oxygen as an oxidant and the ease of scale-up owing to the use of heterogeneous catalysts.
Herein, we summarize recent advances in the gas-phase partial oxidation of methane into methane
oxygenates, focusing mainly on its conversion into formaldehyde and methanol.
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1. Introduction

Petroleum, coal, and natural gas are important fossil fuels and feedstocks for vari-
ous products, including plastics, clothing, and pharmaceuticals [1]. Coal resources are
abundant and broadly distributed worldwide. However, coal mining and utilization have
considerable side effects on the ecological environment [2]. The development of the current
global economy has been secured by petroleum; nevertheless, its price is unstable and is
anticipated to rise steadily owing to its limited reservoir and uneven regional distribution.
Therefore, natural gas, a relatively abundant and clean resource among carbon-based re-
sources has attracted growing interest. Its major component is methane, which accounts
for approximately 70–90% of its total [3].

In recent decades, substantial methane reserves, including shale gas and gas hydrates,
have been discovered. According to the annually published BP Statistical Reviews of World
Energy, global natural gas production was 3853.7 billion cubic meters in 2020 [4]. Moreover,
methane is the main constituent of biogas, a renewable resource. However, most methane
resources are found in sparsely populated areas, such as polar regions and deep sea.
Regardless of the mode of transportation, transporting methane to its location of demand
is challenging, which inevitably raises its price. Currently, commercial transportation of
methane is accomplished through pipelines while liquefied natural gas is shipped. These
methods can only be applied to large natural gas reservoirs. Therefore, to utilize a large
number of small natural gas wells, the conversion of methane into a more transportable
chemical is necessary [5,6].

The present commercial methane conversion technology is based on indirect methane
conversion, in which syngas (a mixture of H2 and CO) is first synthesized via methane steam
reforming, methane autothermal reforming, or methane dry reforming reaction, and is sub-
sequently converted into various platform chemicals such as methanol, olefins, aromatics,
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and synthetic fuels via well-established C1 chemical processes, including Fisher-Tropsch
synthesis [7–9]. Because this process involves an energy-intensive syngas synthesis step,
economic benefits are only possible with large-scale processes [10]. Due to its drawbacks,
including enormous production costs, massive energy consumption, and high capital costs,
the direct conversion of methane into value-added products has attracted much attention
as a replacement for the present indirect routes.

Various approaches have been reported for the direct conversion of methane (Figure 1).
They can be classified as liquid- and gas-phase reactions. Some routes involve intermediates
between methane and its final products. For example, methane halides can first be synthe-
sized from methane and halogen compounds and then further converted into methanol
and olefins through hydrolysis and oligomerization, respectively. Under non-oxidative
conditions, olefins and aromatic compounds (e.g., benzene, toluene, and xylene (BTX))
can be produced via catalytic or non-catalytic pyrolysis [11]. Even though the operating
temperatures are relatively higher because of their thermodynamic limitations, hydrogen
can be obtained as a co-product in these processes. Conversely, oxidative coupling of
methane is known to directly produce olefins from methane using O2 [12,13]. We can
obtain some value-added methane oxygenates, including methanol and formaldehyde, at
moderate temperatures through selective methane oxidation [13–15].

Figure 1. Various routes in the direct conversion of methane technologies.

In the case of partial methane oxidation, there are two problems. First, the C-H bond
of methane is so stable that activating it under mild conditions is challenging (Figure 2).

Figure 2. The first dissociation energies for the C-H bond of some hydrocarbons and reaction
intermediates during partial oxidation of methane.

Therefore, methane oxidation requires highly reactive reactants or harsh reaction
conditions. Second, the C-H bonds of intermediates during methane oxidation are much
weaker than those of methane, resulting in low product yields because of over-oxidation of
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these intermediates. Generally, the product selectivity decreases with increasing methane
conversion for the partial oxidation of methane as well as the oxidative coupling of methane
(Figure 3). Therefore, the development of highly active catalysts capable of selectively
converting methane into the desired product under mild conditions is necessary for com-
mercializing processes of its direct conversion.

Figure 3. The relationship between product selectivity and methane conversion for partial oxidation
of methane [16] and oxidative coupling of methane [17]. Copyright 2011, with permission from
Elsevier. Copyright 2011, with permission from Wiley.

Much research has been devoted to the direct partial oxidation of methane, and several
available paths are as follows [10].

1. Homogeneous radical gas-phase reaction [18].
2. Liquid-phase selective oxidation reaction [5,19].
3. Heterogeneous gas-phase reaction [20,21].
4. Enzymatic methane oxidation [22].

In the 1970s, Gol’Dshleger et al. [23], first reported the use of homogeneous catalysts
for the liquid-phase oxidation of methane into methanol using platinum complexes. Later,
sulfuric acid- and trifluoroacetic acid-based systems were developed to achieve a high
yield of methanol precursors, such as methyl bisulfate [24] and methyl trifluoroacetate [25],
respectively, which needs to be further hydrolyzed into methanol. However, separation of
the product is challenging, and the introduction of sulfuric acid and trifluoroacetic acid,
which are highly corrosive substances, is not environmentally friendly. To exacerbate to the
situation, expensive and highly strong oxidizing agents, such as SO3 [26,27], K2S2O8 [28,29],
and H2O2 [30] are required to proceed under mild conditions. Compared with liquid-phase
methane oxidation, gas-phase reactions over heterogeneous catalysts have the advantages
of easy product separation, simple operation, and the potential use of oxygen as an oxi-
dant. Therefore, heterogeneous catalysts have been extensively studied for this purpose.
Since methane monooxygenase (MMO) was found to activate methane even under mild
natural conditions, the direct activation of methane has been investigated using biomimetic
transition metal ions [31], especially iron ions stabilized by zeolite matrices. Although the
path for the direct oxidation of methane into methane oxygenates remains meandering,
significant progress has been made in the partial oxidation of methane into chemicals,
particularly methanol and formaldehyde. Herein, we focus on the recent advances and
forthcoming challenges in the gas-phase partial oxidation of methane into methane oxy-
genates in the past decades. They are classified into two categories based on the product
(e.g., formaldehyde and methanol): selective oxidation of methane into formaldehyde and
selective oxidation of methane into methanol.
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2. Catalytic Gas-Phase Partial Oxidation of Methane into Formaldehyde

Various metal oxides have been reported for the partial oxidation of methane to
formaldehyde, which is a thermodynamically favorable exothermic reaction, as shown in
Equation (1).

CH4(g) + O2(g) → HCHO(g) + H2O(g) ∆G0
298K = −281 kJ/mol, ∆H0

298K = −276 kJ/mol (1)

Here, we focus on catalysts based on molybdenum, vanadium, iron, and copper oxides.
Table 1 summarizes some catalysts used for the gas-phase partial oxidation of methane
into formaldehyde in recent decades. Generally, most formaldehyde yields have been
reported to be less than 10% and they were obtained with low methane conversions in the
temperature range of 450–700 ◦C. The high formaldehyde yields above 10% were achieved
only with relatively high methane conversions over specific V- and Fe-based catalysts.

2.1. Molybdenum-Based Catalyst
2.1.1. Mechanism

MoOx supported on SiO2 is one of several most studied catalysts for the partial
oxidation of methane to formaldehyde. Since the transition metal Mo can have various
oxidation states, it can create a redox cycle between high and low oxidation states. This is
required in the Mars-Van Krevelen mechanism, which has been proposed for the selective
oxidation of olefins to oxygenates [32–36]. Recent studies have indicated that peroxide
species produced by the activation of O2 on isolated reduced Mo(IV), rather than lattice
oxygen are the active species for methane oxidation [37,38]. The kinetics of partial methane
oxidation into formaldehyde and structural analysis of the catalyst [37–42] show that
multiple molybdenum centers convert methane to formaldehyde. Ohler et al. [43] reported
that molybdenum atoms in MoOx/SiO2 were isolated pentacoordinate molybdate species
containing a single Mo=O bond. One possible mechanism for methane oxidation by
isolated MoOx/SiO2 is shown in Figure 4. First, the pentacoordinate molybdate species
is reduced by H2, which exists at low concentrations under steady conditions owing to
formaldehyde decomposition [44,45], and the oxidation state of molybdenum changes
from MoVI to MoIV. Furthermore, the reduced molybdenum species were oxidized by
oxygen to form oxides. This peroxide then combines with methane to produce HCHO
and H2O, which is a reversible and quasi-equilibrated reaction. Peroxide can also react
with H2 to regenerate primitive molybdenum species. Because the extraction of a proton
from the methoxide species formed by CH4 adsorption is difficult, it is considered to be the
rate-determining step for the methane-to-formaldehyde reaction. In contrast, no noticeable
change in the Mo K-edge was observed, indicating that the MoOx species were not reduced
by the methane [44]. As H2O is produced during this catalytic process, it is necessary to
discuss the effect of steam on the reaction rate for HCHO synthesis. Outside the dotted
line in Figure 4, H2O exhibited reversible hydrolysis of the Mo-O-Si bond, which may
be in quasi-equilibrium under these reaction conditions [46]. Low concentrations of H2O
can positively enhance the rate of formaldehyde generation because of an increase in the
concentration of hydroxide groups on the catalyst surface. However, excessive H2O in
the feed hydrolyzes all Mo-O-Si bonds, resulting in the removal of Mo from the silica as
volatile MoO2(OH)2 [46].
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Figure 4. The mechanism of CH4 oxidation at isolated, SiO2-supported MoOx sites, including parallel
pathways enabled by the presence of H2O [43]. Copyright 2006, with permission from American
Chemical Society.

Chempath et al. [47] proposed another parallel mechanism through density func-
tional theory (DFT) study, as shown in Figure 5. This mechanism also indicates that the
appearance of peroxide species is vital for methane activation, and they considered that
the active centers were di-oxo molybdate species (=Mo(O)2). These theoretical results are
consistent with the Raman studies of Lee and Wachs [48,49]. Handzlik et al. [50] stud-
ied the structure of monomeric molybdenum oxide species in amorphous silica systems
using DFT. The results showed that as long as the local structure of silica could be well
four-fold bonding to the surface, the monooxo Mo(VI) species would be more stable than
the dioxospecies under dehydration conditions, which are rare. Conversely, the majority
of positions favor the presence of dioxo Mo(VI) species with two-fold bonding; as such,
monooxo Mo(VI) species constitute only a small fraction, which is consistent with other
experimental results [48,49,51].

Figure 5. Proposed reaction mechanism based on the assumption of =Mo(O)2 as the active center.
Transition state structures are enclosed within dotted lines [47]. Copyright 2007, with permission
from Elsevier.
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Table 1. Summary of catalysts and their catalytic activity for gas-phase partial oxidation of methane into formaldehyde.

Catalysts BET Surface
(m2/g)

Active Species
Loading (wt%) T (◦C) CH4

Conversion (%)
HCHO

Selectivity (%)
CO

Selectivity (%)
HCHO

Yield (%)
GHSV

(mLgcat−1·h−1) Ref.

SiO2 475 / 590 0.10 100 0 0.08 60,000 [52]
WO3/SiO2 160 2.0 650 1.2 17 51.3 0.02 5640 [53]

MoO3 3 / 600 1.0 85 / 0.85 1000–48,000 [54]
MoO3/SiO2 / / 600 8.2 35 17.0 2.9 2800 b [55]

Li-MoOx/SiO2 / 1.0 650 4.8 65 0 3.1 5600 [56]
Mo/KIT-6 559 4.6 675 7.3 13 72.9 0.9 36,000 [57]
Mo-KIT-6 569 8.0 675 7.3 29 60.1 2.1 36,000 [57]

eMoOx/SBA-15 / 20 600 1.9 70 28.0 1.4 33,000 [58]
PMoV-mesoSiO2 526 3.4 640 5.9 52 / 3.1 36,200 [59]

Mo/ZrO2 34.3 12 400 8.3 48 17.5 4.0 12,000 [60]
Cu-MoOx / / 700 1.6 62 28.0 1.0 84,000 [61]
Mo-SBA-1 1271 9.9 680 8.2 20 / / 15,600 [62]

P-MoOx/SBA-15 382 5.0 675 5.8 90 / 5.2 35,840 [63]
K2MoO4/SiO2 / 2.0 650 1.3 32 21.0 0.42 6000 [64]

V2O5/SiO2 / / 620 4.8 24 65.0 1.1 3500 [65]
VOx/MCF-17 750 1.0 600 20 46 24.0 9.2 24,000 [66]

SiO2@V2O5@Al2O3 14 / 600 22 58 27.0 12.8 24,000 [67]
V/SBA-15 762 1.7 640 4.7 42 / 2.0 480,000 [68]

VOx/α-Al2O3 / 0.4 450 9.0 60 18.0 5.4 10,000 [69]
V/MCM-41 682 2.8 600 4.7 26 / 1.2 180,000 [70]
V/MCM-48 878 2.8 600 4.0 26 / 1.0 180,000 [70]

FePO4 22 / 500 0.51 39 / 0.2 36,000 [71]
FePO4/MCM-41 a 310 40 450 3.0 50 / 1.5 7200 [32]

FeOx/SBA-15 601 0.05 650 5.0 37 39.0 1.9 72,000 [33]
FeOx/SiO2 597 / 650 37 33 29.0 12.2 60,000 [34]

CuOx/SBA-15 617 0.008 625 2.3 58 32.0 1.3 144,000 [35]
B2O3/Al2O3 / 20 550 6.8 46 50.4 3.1 4650 [36]
SbOx/SiO2 237 20 600 1.1 25 52.5 0.28 7840 [72]

Co/SiO2 333 0.1 500 / 38 / / 132,000 [73]
a The oxidant is N2O. b Space velocity (h−1).
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The performance of a supported MoOx catalyst for the partial oxidation of methane has
been reported to be significantly affected by the support, promoter, and preparation method.

2.1.2. Support

Unsupported MoO3 was first applied to the partial oxidation of methane with little suc-
cess [74]. Subsequently, due to increasing research on supported catalysts, Mo-based sup-
ported catalysts have been studied extensively [53,75–77]. During the 1980s, Liu et al. [78]
studied the catalytic performance of MoO3/SiO2 for the partial oxidation of methane with
N2O and reported that the selectivity of methane oxygenates was enhanced in the presence
of steam because of the formation of H4SiMo12O40, which further limited oxidation of
methane oxygenates. Banares et al. [75] reported that the selectivity for formaldehyde
varied in a “volcano-type” curve with increasing Mo atom density in MoO3/SiO2 catalysts.
Molybdenum oxides are not limited to MoO3; other molybdenum compounds have also
been studied. For instance, Erdohelyi et al. [63] investigated the catalytic performance of
K2MoO4 on different supports. The results showed that the composition of molybdate
was closely related to the pH of the slurry containing the support. Low pH values favor
K2Mo2O7 formation. Moreover, they observed a significant effect of support on the product
distribution. Methane conversion was highest when magnesium oxide was used as a
support, but no partial oxidation products were observed. In contrast, more formalde-
hyde was obtained over the catalyst with silica and ZSM-5 as the supports. Therefore,
the importance of the support cannot be overlooked because unreasonable selection of a
support can contribute to undesired overoxidation of methane. SiO2 is the best material
for formaldehyde formation among SiO2, Al2O3, TiO2, and various zeolites [48]. Plyuto
et al. [79] analyzed the structures of MoO3/Al2O3 and MoO3/SiO2 using X-ray photoelec-
tron spectroscopy (XPS) and found that only one type of molybdenum oxide interacted
strongly with the alumina surface because a single Mo 3d5/2-Mo 3d3/2 doublet shift had
higher binding energies than those of bulk MoO3 in MoO3/Al2O3. In contrast, monomeric
or two-dimensional Mo oxides, which are capable of strong electronic interactions with
the silica surface, were observed in MoO3/SiO2. Thomas et al. [80] indicated that SiO2
exhibited more pronounced formaldehyde selectivity than Al2O3 because of the high rate
of successive methane oxidation on alumina. Zhang et al. [59] reported that the methane
conversion and selectivity of formaldehyde were related to the density of molybdenum
oxide; the higher its density, the higher its catalytic activity for methane conversion. The
Mo=O of Zr(MoO4)2 was reported to be responsible for formaldehyde production, whereas
excess lattice oxygen and bulk MoO3 cause successive oxidation of methane [59].

Since the advent of ordered mesoporous silica, these materials have been used to
replace amorphous silica as a support because of their specific properties, including meso-
porous structure, large surface area, and high thermal stability [81–83]. Several reports have
revealed that MoO3 and V2O5 supported on MCM-41 [69], SBA-1 [61], SBA-15 [84], and
KIT-6 [56] have better catalytic activity than MoO3 and V2O5 supported on amorphous sil-
ica. The high specific surface area of silica is plausible for the high dispersion of active sites,
and its inert surface can facilitate the desorption of the target product, which is essential for
avoiding over-oxidation of methane. Pei et al. [58] prepared a mixed-oxide mesoporous
silica catalyst (PMoV-mesoSiO2) using a one-pot method. By controlling the content of
the active component and porosity of the mesoporous silica, the highly dispersed catalyst
demonstrated adequate selectivity and yield for formaldehyde in the selective methane oxi-
dation reaction. Chen et al. [56] synthesized highly dispersed molybdenum-incorporated
(Mo-KIT-6) catalysts through a one-pot hydrothermal synthesis method, which demon-
strated very high selectivity for partial oxidation products (nearly 90% total selectivity
for CO and formaldehyde), which was explained by molybdenum atoms inserted into
the framework of KIT-6 and highly dispersed M=O bonds, leading to high selectivity
for formaldehyde. However, for the corresponding supported catalyst (Mo/KIT-6) pre-
pared by the incipient wetness impregnation method, the polymeric MoOx species and
MoO3 nanoparticles mainly existed on the surface of KIT-6 in the form of Mo-O-Mo bonds,
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which could cause the over-oxidation of methane owing to the polymeric MoOx species,
facilitating the decomposition of formaldehyde to generate CO.

2.1.3. Promoter

In addition to the support, the promoter is also an important factor affecting catalytic
activity. The promoter can be selected from alkali metals [84–89], phosphorus [62], and
transition metals, such as Cu [60], Ti [90], and Ga [51]. The promoter can modify catalyst
properties, such as acidity [91], reduction pattern [55], oxygen species [92], and the rate of
electron transfer between the adsorbed reactants and catalysts [92]. In most cases, alkali
metal promoters poison the catalytic activity owing to geometric blocking of the active
center; nevertheless, they can boost the selectivity of methane oxygenates by decreasing the
acidity of the support [93]. Moreover, the effect of the promoter may vary depending on its
location in the catalyst [92]. Yang et al. [62] used SBA-15 with a larger pore size and higher
thermal stability to study the effect of phosphorus as a promoter on the performance of the
MoOx/SBA-15 catalyst and found that phosphorus-modified MoOx/SBA-15 could increase
methane conversion while keeping formaldehyde selectivity unchanged. Liu et al. [94]
reported that adding potassium to Mo-KIT-6 catalysts with a low Mo content could improve
the catalytic performance for the selective oxidation of propane to acrolein. The addition of
potassium to Mo-based catalysts usually alters the structure of the MoOx active sites [95,96].
When the Mo content is low, increasing the K/Mo ratio contributes to the formation of
a distorted Mo-O bond (892 cm−1), implying that K interacts with Mo-KIT-6 to alter its
original structure, which promotes selective oxidation.

Inspired by the specific properties of molybdenum oxide, which can be used as a
cathode material in lithium-ion battery systems, Kim et al. [55] inserted lithium ions into
molybdenum oxide with a silica support to form lithium-molybdenum oxide nanoclusters
and redox-driven restructuring of active molybdenum sites to increase the production of
formaldehyde significantly. The oxidation state of molybdenum changes owing to the redox
migration of Li ions. Under conditions of reduction, lithium ions migrate to molybdenum
oxide to produce LiyMoO3 nanoclusters. Under oxidation conditions, lithium ions separate
from the molybdenum oxide phase to form dispersed MoOx. The XPS spectra revealed
that for the 0.7Li-Mox/SiO2 treated by high-temperature oxidation, the Mo5+ component
was significantly oxidized to Mo6+ compared with the case of MoOx/SiO2. For 0.7Li-
MoOx/SiO2 treated with H2, the Mo5+ component was significantly increased compared to
that of MoOx/SiO2. Moreover, the Li 1 s XPS spectrum showed that lithium was present in
the form of Li2O after the O2 treatment. A new binding energy peak appears at 56.2 eV
after 0.7Li-Mox/SiO2 was treated with H2, indicating that the lithium ions incorporated
molybdenum oxide to generate LiyMoO3 nanoclusters. Thus, the effective conversion
between MoOx and LiyMoO3 led to a significant increase in the formaldehyde yields.

Akiyama et al. [60] prepared the copper-molybdenum complex oxide catalysts (Cu-
MoOx catalysts) for partial oxidation of methane to formaldehyde, which exhibited high
selectivity to formaldehyde when water vapor was introduced into the catalytic reaction.
In Cu-MoOx catalysts, the Cu3Mo2O9 phase is the active phase for the partial oxidation of
methane, which can also restrain the successive oxidation of methane. However, without
water vapor, the performance of the Cu-MoOx catalysts was poor. Developing molybdenum
oxide-based catalysts as commercial catalysts remains challenging because of their volatility
and the fact that molybdenum oxide transforms into gaseous hydroxide in the presence of
water vapor [97].

2.2. Vanadium-Based Catalyst

Vanadium-based catalysts have also been considered promising candidates because
they provide relatively higher formaldehyde yields at lower temperatures than molybdenum-
based catalysts. Due to the unique catalytic properties of vanadium oxide, vanadium-based
catalysts have been comprehensively studied in recent years, with extensive developments
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in the fields of oxidative dehydrogenation of short-chain alkanes [98], partial oxidation of
methanol [93], and partial oxidation of methane [67].

The difference between the V -and Mo-based catalysts is that methane is directly
oxidized to form CO2 over the Mo-based catalysts [19]. In contrast, methane is first
oxidized to formaldehyde, which is then further oxidized to CO2 over a V-based catalyst
under oxidizing conditions [19]. The activity of methane conversion may be strongly
related to the isolated dispersed surface metal oxide species, which makes the vanadium
oxide species more reactive than molybdenum oxide because of the different nature of the
interaction of vanadium oxide with oxygen from that of molybdenum oxide [99]. Moreover,
V2O5 was more stable than MoO3. Therefore, V-based catalysts are expected to replace
Mo-based catalysts for the selective oxidation of methane to formaldehyde.

2.2.1. Mechanism

Many studies on the different oxidation reactions over V-based catalysts have shown
that monomeric and polymeric surface VO4 species in supported vanadium catalysts are
usually active sites because there are a few exposed active surface sites in the crystalline
phases [100–102]. Raman spectroscopy and in situ infrared (IR) analysis revealed that only
one terminal V=O bond existed in the dehydrated surface VO4 species [48].

In the isolated VOx tetrahedron, the V=O bond is considered to be the active site, while
the surface VOx species without the V=O bond would cause the formation of successive
oxidation products; however, it has also been suggested that the bridging V-O-Si bonds
may also be involved in the catalytic reaction, and that a large number of Si-OH groups on
the surface of the catalyst also participated in the redox process of the active site, extracting
the H atoms from the CH4 molecule to stabilize the V4+=O center [103]. Ding et al. [104]
investigated the gas-phase reaction of methane with V-Si heteronuclear oxide clusters using
DFT calculations and mass spectrometry experiments. They pointed out that there is a ter-
minal oxygen-centered radical Ot

. in the stoichiometric clusters [(V2O5)n(SiO2)m]+, which
can extract an H atom from methane to form a methyl radical, as shown in Equation (2).
Hydrogen capture is thermodynamically and kinetically favorable. Therefore, the Ot

. radi-
cal was deemed to activate methane in the stoichiometric cluster. Interestingly, the authors
noted that the Ot

. radical in the stoichiometric cluster was connected to the Si atoms instead
of the V atoms [103].

[(V2O5)n(SiO2)m]+ + CH4 → [(V2O5)n(SiO2)mH]+ + ·CH3 (2)

The acidity of the surface vanadia species is also important for catalytic performance.
Typically, oxide supports have only surface Lewis acid sites, and the relative intensity of
the acid sites is Al2O3 > TiO2 > ZrO2. However, for SiO2, no surface Lewis acid sites were
detected [105]. IR investigation indicated that methane can be adsorbed onto SiO2 via
hydroxyl groups or coordinatively unsaturated lattice oxygen, and the Td symmetry of
methane is distributed during adsorption, similar to that of basic oxides [5]. In contrast,
there are both surface Lewis and Brønsted acid sites in the crystalline powders of V2O5,
and the ratio of Brønsted and Lewis acid sites increases with the loading of vanadia [106].
Hu et al. [107] determined the acidity of V-SiO2 catalysts by NH3-TPD measurements and
showed that all V-SiO2 catalysts contained weak acid sites corresponding to monomeric or
low-polymerized VOx species [108].

Decreasing the reaction temperature while maintaining the methane conversion to
increase the yield of methane oxygenates is more effective because nonselective oxidation
can be dominant at high temperatures. Ghampson et al. [109] achieved selective oxidation
of methane at low temperatures (300–400 ◦C) with O2 using a NO/NO2 oxygen atom
shuttle over vanadium oxide catalysts and suggested possible reaction pathways, as shown
in Figure 6. Isolated vanadium species with three bridging siloxy bonds interact with NO2
to generate a monodentate nitrate species, which can be rearranged to a reactive bidentate
nitrate; moreover, when the bidentate nitrate combines with methane, NO and methoxy
species are released, which can hydrogenate with vanadium to form formaldehyde through
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electron rearrangement [109]. Some studies have suggested that NO may act as a free
radical initiator to facilitate the gas-phase reaction, and the conversion between NO and
NO2 drives the transfer of oxygen atoms for the partial oxidation of methane [110,111].

Figure 6. Possible scheme for the formation of HCHO during the CH4 partial oxidation by NO + O2

involving the terminal V=O bond and the Si-O-V bond [109]. Copyright 2021, with permission
from Elsevier.

2.2.2. Support

In the previous section, we mentioned that the highly dispersed VOx species are
active for the partial oxidation of methane. Although TiO2, ZrO2, and Al2O3 are common
supports for supported catalysts, with increasing VOx loading or after high-temperature
calcination, vanadia is mainly present as polyvanadate species. It was demonstrated that
bulk vanadia would be present in VOx/α-Al2O3, decreasing both the activity and selectivity
during the partial oxidation of methane [68], but not when SiO2 is used as a support. Arena
et al. [112] reported that when TiO2 was used as a support, the main product was CO, and
its ability to activate methane was lower than that of SiO2. Therefore, many studies have
been devoted to studying vanadium catalysts with ordered mesoporous silica supports,
such as MCM-41 [69], MCM-48 [69], SBA-15 [67,113], and MCF-17 [65].

A possible pathway for the formation of the active site and its interaction with methane
and oxygen is proposed (Figure 7). To optimize the partial oxidation of methane to formalde-
hyde over the V-MCM-41 catalysts, Du et al. [114] developed a statistical model using an
appropriate experimental design. This statistical model provided a reasonable prediction
of methane conversion, formaldehyde selectivity, and space-time yield, and showed that
temperature, the feed ratio of methane to oxygen, and pressure were the most critical
factors affecting formaldehyde selectivity. Therefore, Dang et al. [115] explored the in-
fluence of V sources on the catalytic performance of VMCM-41. They found that when
VO(acac)2 was used as VMCM-41 precursor, mainly VOx monomers were generated, while
VOSO4 as VMCM-41 precursor, oligomeric VOx species were formed. The highly dispersed
VOx monomer enhanced formaldehyde selectivity. The space-time yield of formaldehyde
reached 5.3 kgCH2O·kgcat

−1·h−1 at 873 K, which was significantly better than that of the
VMCM-41 catalyst prepared with VOSO4 as the vanadium source [115].
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Figure 7. Scheme of the formation of the active sites and their interaction with O2 and CH4: (Ia,b)
coordinatively saturated VvOx species in the stored catalyst, (Ic) bridged VvOx species in the catalyst,
(II) isolated VvOx species, (III) acidic VvOx species, (IV) acidic VIVOx species, (V) adsorption complex
of O2 and CH4 on one active species, (VI) adsorption complex on neighboring “reduced site” and
acid site, (A) reversible dehydration, (B) partial hydrolysis by water formed, (C) reduction to VIVOx

species under catalytic condition, (D) coordination and activation of O2 on a VIV site and of CH4 on
an acidic VIV or VV site [69]. Copyright 2000, with permission from Elsevier.

Most preparation methods described in the literature involve the wet impregnation of
SiO2. However, because the aqueous solution of silica is acidic, this causes the vanadium
species to exist in a multi-nuclear form, which is not beneficial for forming dispersed
vanadium species. To form highly active and selective isolated species of V, Nguyen
et al. [103] used mononuclear precursors to prepare a series of V-based catalysts. The
results showed that in the more active catalysts, there are more silanol groups that may
participate in the redox process of the active site, making it possible for the vanadium oxide
center (V4+-O−) to extract H atoms from methane. In the reaction process of traditional
supported V-based catalysts, the dispersed VOx species may be gradually polymerized,
resulting in a decrease in the performance of the catalyst. Yang et al. [66] prepared novel
SiO2@V2O5@Al2O3 core-shell catalysts via hydrothermal synthesis followed by atomic
layer deposition (ALD). After 50 ALD cycles, the core-shell catalyst exhibited the best
catalytic activity. Methane conversion and formaldehyde selectivity were as high as 22.2%
and 57.8%, respectively. The catalyst remained active for 35 h reaction, which is attributed
to the formation of new tetrahedral monomeric vanadium species and V-O-Al bonds during
the ALD process.

Ordered hexagonal mesoporous pure silica SBA-15 has been regarded as a promising
support for supported catalysts. Fornés et al. [84] synthesized the first VOx/SBA-15 catalyst
for partial oxidation of methane. They indicated that due to the high specific surface area
of the SBA-15 material, the monolayer capacity would reach a higher V loading than that in
amorphous silica. Wallis et al. [113] explored the effects of morphology and pore structure
on the performance of VOx/SBA-15 by varying the aging temperature. It was observed
that an optimum aging temperature (e.g., 70 ◦C) contributed to the formation of more
monomers and lower oligomeric VOx species on SBA-15, thus outperforming the catalytic
performance of the other two samples.

Kunkel et al. [116] used an artificial neural network modeling to enhance the catalytic
performance of V-SBA-15. The results showed that the pH significantly affected the catalyst
activity during catalyst preparation. Methane conversion and formaldehyde selectivity
were highest at pH 2.5. After analyzing over 200 samples, the artificial neural network
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modeling was used to obtain the optimal response parameters and ultimately an excellent
space-time yield of 13.6 kgCH2O·kgcat·h−1 [116]. The higher the temperature and partial
pressure of water in a given temperature range, the greater the conversion of methane.
However, lower partial pressures of water would more significantly inhibit formaldehyde
oxidation. Therefore, the active sites leading to methane activation and formaldehyde
oxidation are different [67]. Yang et al. [65] compared the effect of supports (SBA-15 and
MCF-17) on the catalytic oxidation of methane to formaldehyde. Compared with SBA-15,
MCF-17 has a larger specific surface area and a more pronounced mesoporous structure,
resulting in higher methane conversion over VOx/MCF-17.

2.2.3. Promoter

Few reports on the effect of the promoter in V-based catalysts on the partial oxidation
of methane exist. The Sb-V-O/SiO2 catalyst was reported to be better than single metal
oxide catalysts, such as VOx/SiO2 and SbOx/SiO2, in terms of formaldehyde yield [117].
Formaldehyde yields of up to 3% were achieved at 650 ◦C with the Sb-V-O/SiO2 catalyst;
moreover, the Sb/V ratio also influences the catalyst performance owing to the phase
transformation of the Sb-V mixed oxide [117]. Wallis et al. [90] prepared V/Ti-SBA-15
catalysts and found that the Ti promoter contributed to the dispersion and reduction of the
VOx species, thereby increasing the activity of the catalyst. Shimura et al. [51] comparatively
investigated the effect of promoter (Ga) incorporation on catalytic performance. They
showed that V(2–3 wt%)/Ga(0.1–0.5 wt%)/SiO2, prepared by sequential impregnation,
had the highest formaldehyde yield at 863 K.

2.3. Iron-Based Catalyst

Iron has been extensively studied because of its excellent catalytic properties and
price advantages, especially since it was revealed that zeolites, such as mordenite and
ZSM-5, are capable of stabilizing dinuclear iron centers in a form similar to that found in
MMO [118,119]. On the surface of transition metal oxides, isolated active lattice oxygen
atoms are favorable for suppressing the over-oxidation of intermediates during methane
oxidation [40]. Therefore, the design and preparation of catalysts with isolated active sites
can efficiently improve formaldehyde yield. However, the structure and nature of the
active sites are strongly influenced by active metal loading, preparation method, support,
and promoter.

Kobayashi et al. [120] found that highly dispersed tetrahedrally coordinated Fe3+

species on SiO2 could significantly boost formaldehyde yields. A study on the effects of
direct hydrothermal synthesis (DHT) and template-ion exchange (TIE) methods on the
catalytic performance of Fe-MCM-41 catalysts revealed that the DHT method resulted in
isolated tetrahedrally coordinated Fe-O species within the support skeleton, whereas the
catalysts prepared by the TIE method provided predominantly polymeric, octahedrally
coordinated iron oxide clusters. Therefore, Fe-MCM-41 prepared by the DHT method
exhibited higher catalytic performance [121]. These studies further indicate that for ob-
taining high formaldehyde selectivity, highly dispersed Fe sites are vital. However, there
is no consensus regarding the structure of the active Fe species. Therefore, it is of great
significance to further modify FeOx-SiO2 to boost its catalytic performance and investigate
the relationship between its structure and catalytic performance.

The sol-gel method can be used to prepare supported catalysts with evenly distributed
active phases [122]. Therefore, He et al. [123] prepared the FeOx-SiO2 by the sol-gel method
and found it to be more active than the catalysts prepared by the impregnation method.
Moreover, they noted that the strong interaction between iron and phosphorus in the
P-FeOx-SiO2 catalysts resulted in the formation of FePO4 nanoparticles. The peculiar
structure of iron, tetrahedral Fe3+ isolated by phosphate groups, in the FePO4 nanoclus-
ters contributes to enhancing the selectivity of formaldehyde, and the one-pass yield of
formaldehyde over the P-FeOx-SiO2(P/Fe = 0.5) catalyst up to 2.4% at 898 K, which is
consistent with studies showing that the support of FePO4 onto SiO2 boosted the conver-
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sion of methane [124,125]. Further research has shown that in the process of preparing
FeOx-SiO2 by the sol-gel method, the pH affects the dispersion of the active species on
the silica, and a low pH value leads to an increased product yield [126]. Moreover, metal
phosphates have unique acid-base properties allowing them to be used not only for the
oxidative coupling of methane but also for efficient acetalization reactions; therefore, the
surface acid-base properties of FePO4 are also critical for determining the selectivity for
methane oxidation [127,128]. Thus, Matsuda et al. [70] proposed a possible mechanism
for methane oxidation by investigating the effect of redox and acid-base properties on the
surface of various types of crystalline Fe-based phosphates as well as oxide catalysts, as
shown in Figure 8. The use of methane as a reducing agent and oxygen as an oxidizing
agent allows the catalyst to convert between two forms, FePO4 and FePO4−δ, creating
a catalytic cycle that produces a continuous stream of formaldehyde. The Lewis acid
and weakly basic sites of FePO4 are responsible for the activation of C-H, which directly
contributes to the formation of formaldehyde. Further studies have shown that in the
steady state, this kind of cycle is not involved in the catalytic process and that methane
is oxidized on the surface of FePO4, maintaining the morphological structure of FePO4.
A possible mechanism for the direct oxidation of methane by Fe2O3 to produce CO2 is
shown in Figure 8, which is similar to that described above. However, this explanation
is the exact opposite of the conclusions of Krisnandi et al. [129]. They concluded that the
Fe2O3/NaY catalyst could oxidize methane to formaldehyde, even when the selectivity
of formaldehyde exceeded 80%. Therefore, the mechanism and active sites of Fe-based
catalysts for the selective oxidation of methane to formaldehyde remain controversial, and
further research is needed.

Figure 8. Proposed reaction mechanism for the oxidation of CH4 over FePO4 into HCHO with O2

using FePO4-MA and complete oxidation of CH4 over Fe2O3 into CO2 with O2 using Fe2O3 [70].
Copyright 2021, with permission from Royal Society of Chemistry.

Due to the confined effect of the ordered mesoporous channels, the growth of highly
dispersed Fe species and FeOx nanoclusters toward Fe2O3 particles is limited [33]. Thus,
SBA-15 is a promising support for preparing more efficient Fe-based catalysts. Zhang
et al. [33] investigated the catalytic behavior and kinetic features of FeOx/SBA-15. These
results suggest that the selectivity of formaldehyde decreases with increasing Fe content.
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Structure–performance correlation and pulse reaction studies clarified that crystalline
Fe2O3 accounted for the complete oxidation of methane. The lattice oxygen is not rel-
evant to the formation of formaldehyde, as the products are only CO and CO2, similar
to the Mo-based catalyst. Furthermore, metal phosphates have received considerable
attention [128,130–133], and optimized catalyst design and process modifications may
enable these metal salts to becoming promising alternatives to metal oxide catalysts.

2.4. Copper-Based Catalyst

Copper has been intensively studied as the active center of particulate methane
monooxygenase in methanogenic bacteria, and has received extensive attention concerning
the catalytic partial oxidation of methane with O2 [134–138]. Li et al. [35] studied the cat-
alytic behavior and mechanism of CuOx/SBA-15 for the selective oxidation of methane by
oxygen, as shown in Figure 9. The Cu loading had a considerable effect on the performance
of the catalyst. CuOx/SBA-15 with a copper content of 0.008 wt% exhibited the best specific
site rate for formaldehyde formation, 5.6 mol (mol Cu)−1s−1). The lattice oxygen linked
to Cu interacts with methane to directly produce CO and CO2. Simultaneously, CuII is re-
duced to CuI, which acts as the active center for the activation of O2, forming active oxygen
(O*) and accounting for the selective conversion of methane to formaldehyde. Thus, the
lattice oxygen is not the active oxygen species for producing formaldehyde, but is essential
for the system because a certain amount of methane typically has to be foregone to reduce
CuII. In other words, in this system, formaldehyde production is accompanied by COx
generation at all times. Therefore, we can achieve a significant increase in formaldehyde
selectivity by optimizing the catalyst preparation process and eliminating the effects of
lattice oxygen.

Figure 9. Reaction mechanism for selective oxidation of CH4 to HCHO over the CuOx/SBA-15
catalyst [35]. Copyright 2008, with permission from American Chemical Society.

An et al. [139] studied CuOx/SBA-15 and determined that the activity of CuOx/SBA-15
prepared using the grafting approach was significantly higher than that of CuOx/SBA-
15 prepared using the impregnation method, which seems to be closely related to the
proportion of CuII in each catalyst at low Cu loadings.

2.5. Other Catalysts

In addition to the aforementioned types of catalysts, other transition metal and non-
metal catalysts have also attracted attention. Chemical similarities between WO3 and
MoO3 overlayers in silica-supported catalysts have been reported [140,141]. In addition,
De Lucas et al. [52,142] investigated the catalytic properties of W/SiO2 for partial oxida-
tion of methane to formaldehyde. The terminal W=O sites would lead to formaldehyde
formation, and the W-O-W bridging functionalities cause complete oxidation of CH4 and
CO. Moreover, the introduction of potassium resulted in higher C2 hydrocarbon yields [52].
Cobalt-containing zeolites have broad application prospects, and the form of Co determines
the selectivity and activity of Co-ZSM-5 [143]. The enhanced selectivity of formaldehyde
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after acid treatment of ZSM-5 by Beznis et al. [144] was attributed to the increased amount
of Co2+ in the ZSM-5 channel, which was responsible for the generation of formaldehyde.
Recent studies have shown that non-metallic boron-based catalysts exhibit outstanding
catalytic performance in dehydrogenation [145,146]. Based on this finding, Tian et al. [36]
reported that B2O3 catalysts were highly stable and selective for the partial oxidation of
methane to HCHO and CO. The mechanism of methane activation on a B2O3 surface
adequately explains the generation process of HCHO and CO, as shown in Figure 10, which
reveals that molecular O2 is bound to the electron-deficient B centers on the B2O3 surfaces
which are moderate oxidants accounting for methane activation and suppress the formation
of CO2.

Figure 10. Schematic diagram of the plausible pathway of partial oxidation of methane to formalde-
hyde on B2O3 catalysts [36]. Copyright 2020, with permission from Nature.

3. Catalytic Gas-Phase Partial Oxidation of Methane into Methanol

From a thermodynamic viewpoint, the selective oxidation of methane into methanol
can proceed spontaneously even at room temperature (Equation (3)). However, methanol
is more reactive than methane and susceptible to over-oxidation leading to CO and CO2.
Therefore, the design of catalysts with high activity and selectivity and the adoption of
specific methanol protection methods are critical measures for improving methanol yield.
Herein, we discuss heterogeneous catalysts based on molybdenum, vanadium, iron, and
copper. Some of the catalytic activity data for the partial oxidation of methane to methanol
are presented in Table 2.

CH4(g) + 1/2O2(g) → CH3OH(g) ∆Go
298K = −111 kJ/mol, ∆H0

298K = −126 kJ/mol (3)

3.1. Molybdenum-Based Catalyst

Atroshchenko et al. [147] discovered that MoO3 can catalyze the partial oxidation of
methane into methanol at high temperatures and pressures. Dowden et al. [148] reported
that loading MoO3 onto a support could improve the catalytic performance of this reac-
tion. The most active catalyst (Fe2O3 (MoO3)) permitted methanol productivity of up to
869 g·kg−1·h−1 methanol at 5 MPa and temperatures of 703–773 K [148]. Zhang et al. [149]
comparatively studied the effects of ZrO2 and La-Co-O as supports on the selective oxida-
tion of methane to methanol over a MoO3 catalyst. MoO3/ZrO2 only catalyzed methane to
produce traces of methanol, the main product being formaldehyde, while 7 wt% MoO3/La-
Co-O enabled the conversion of methane up to 11.2% and methanol selectivity up to 60%.
The characterization results showed that molybdenum oxide in the amorphous state was
well dispersed on the catalyst surface, and there was no crystal phase or molybdate. More
importantly, the authors indicated that proper reducibility and O−/O2− ratios favored
methanol production, which is consistent with Liu et al. [78]. The presence of steam in the
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reaction atmosphere affects the performance of the catalyst. Sugino et al. [150] reported
that molybdate (H4SiMo12O40) was formed on the SiO2 surface as the amount of steam
increased, which inhibited the deep oxidation of products such as CH3OH, indicating that
the catalytic performance of MoO3 prepared by the sol-gel method was superior to that of
the impregnation method. At 873 K, methane conversion and methanol selectivity were
8.2% and 11%, respectively [150].

Table 2. Summary of catalysts and their catalytic activity for continuous gas-phase partial oxidation
of methane into methanol.

Catalysts T (◦C) Oxidant
CH3OH

Productivity
(mmol/molmetal/h)

CH3OH
Selectivity

(%)
Ref.

Mo/SiO2 600 N2O + H2O 0.36 a 60 [151]
MoOx/La-Co-O 420 O2 / 60 [149]

V2O5/SiO2 460 O2 0.55 a 34 [152]
Cu/CHA 300 H2O + O2 542 91 [153]
Cu/CHA 270 H2O + O2 26 53 [154]

Cu-H-MOR 400 H2O + O2 143 99 [155]
Cu-H-MOR 350 H2O 29 100 [155]

Cu-Fe/Al2O3 450 H2O + O2 1.3 a / [156]
Fe-Cu-BEA 270 N2O + H2O 0.26 a 72 [157]

Rh-dB-ZSM-5 150 O2 + H2O + CO 0.80 a 44 [158]
NiFeO/CZ 250 H2O 3.2 × 10−3 a 1.24 [159]
Cu-SSZ-39 325 N2O + H2O 1044 34 [160]
Cu-MOR 350 H2O 332 / [161]

ZnO/Cu2O/Cu 177 H2O + O2 7.02 × 1017 b 87.5 [162]
Cu-CHA 300 H2O + O2 0.68 a 45 [163]

a CH3OH yield (mmolCH3OH/gcat/h). b CH3OH yield (molecules cm−2 s−1).

3.2. Vanadium-Based Catalyst

In Section 2, we stated that promoters, supports, preparation methods, and loading are
crucial parameters affecting the performance of V-based catalysts for the partial oxidation
of methane and directly determine the structure and properties of the active vanadium
species [152]. The methanol selectivity of the 8 wt% vanadium catalyst was only 6.8%,
whereas that of the 2 wt% vanadium catalyst reached 57% [152]. It has been reported that
radical production may be one of the factors controlling methane conversion [164]. Barbero
et al. [110] added NO to the feedstock, which changed the CH3-CH3O2 radical ratio and
thus promoted methane activation because the introduction of NO may trigger the chain
propagation of the radical reaction. The yields of CH3OH and HCHO reached 16% in the
presence of 1% NO in the feed solution [110]. The selectivity for methanol decreased with
increasing vanadium loading, owing to the influence of the vanadium oxide size [152].

3.3. Iron-Based Catalyst

In recent years, the focus of research has shifted from vanadium- and molybdenum-
based catalysts to iron- and copper-containing zeolites [165–168]. To achieve efficient
conversion of methane at low temperatures, researchers expect to prepare metal molecular
sieve catalysts by mimicking MMO to form active binuclear Fe or Cu centers [169–174].
In general, Fe-zeolite catalysts require N2O to effectively activate methane [167,175]. The
surface oxygen generated by N2O played a key role in both CO and CH4 oxidation. Further
studies elaborated on the reaction process, as shown in the following equations, and
suggested that this surface oxygen species, α-O, leads to methoxy and hydroxy groups
bound to α-sites [176].

N2O + (FeII)α→ (FeIII − O−)α + N2 (4)
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CH4 + (FeIII − O−)α→ (FeII − CH3OH)α (5)

(FeII − CH3OH)α→ (FeII)α + CH3OHads (6)

Eugeny et al. [177] confirmed by IR spectroscopy that the surface reaction of CH4 and
α-O proceeds through a hydrogen extraction mechanism. Magnetic circular dichroism
suggests that α-Fe(II) is a mononuclear, high-spin, square-planar Fe(II) site [178]. The
reaction of this species with the oxygen atom in N2O forms a mononuclear, high-spin
Fe(IV)=O species, whose exceptional reactivity is derived from a constrained coordination
geometry effect on the zeolite lattice [178]. Bols et al. [179] increased the percentage of α-Fe
(II) in the total Fe species to 72%, which was attributed to the one-pot synthesis strategy
that enabled the well-dispersed mononuclear iron cations into the zeolites. Characterized
by variable-temperature Mössbauer, diffuse reflectance UV-vis-NIR, and Fourier transform
IR spectroscopy, weak Fe-N2O interaction facilitates isomerization to the O-bound form at
higher temperatures, resulting in O-atom transfer. However, at lower temperatures, N2O
enables numerous backbonds by binding terminal nitrogen atoms to Fe(II) centers [180].
Very recently, Snyder et al. [181] studied the cage effects on methane hydroxylation in
zeolites in detail, and indicated that the local pore environment of heterogeneous active
sites was a critical factor in selecting the reaction pathway with a low activation barrier,
which was verified by comparing the local environments of α-Fe(IV)=O sites in BEA and
CHA, in which the constricted pore apertures of CHA promoted selective hydroxylation
and precluded deactivating side reactions.

Comparing the performance of the three catalysts, Fe-ZSM-5, Fe-Beta, and Fe-FER,
Fe-FER is the most active catalyst for methane conversion because numerous framework Al
atoms in H-FER are essential for the generation of active extra-framework Fe species [182].
Fe-ZSM-5 is significantly deactivated owing to coke formation, which is believed that the
low Lewis acidity and small pore size would accelerate the methanol to olefin reaction
to form coke [182]. Parfenov et al. [183] reported that the addition of steam to feedstock
significantly inhibited coke formation and boosted methanol selectivity. More importantly,
they indicated that methanol generated by α-O oxidation then migrated from the α-sites,
initiating new reaction cycles, which was the first to find the cut-off point between the
quasicatalytic and catalytic modes in the same system. Electron paramagnetic resonance
(EPR) spectra and UV-vis spectra results demonstrate that by increasing the content of extra-
framework Al, the proportion of iron in tetrahedral or octahedral coordination increases,
while the clustered Fe species decreases, which is responsible for the increase in methane
conversion and methanol yield [184]. Moreover, Zhao et al. [185] reported that modification
of the CH4/N2O ratio could balance coke formation and deep oxidation to optimize the
generation of the desired products.

By mimicking the structure of enzymes catalyzing selective oxidation at low tem-
peratures, Simons et al. [186] studied the conversion of methane to methanol with N2O
catalyzed by Fe(II) sites within Fe3-µ3-oxo nodes in the metal-organic frameworks (MOFs).
The selectivity of methanol was improved by adding protonic zeolite in the MOF because
methanol generated on Fe(II) sites could be protected from over-oxidation in the presence
of zeolitic Brønsted acid groups.

3.4. Copper-Based Catalyst

Although the attribution of the active species in Cu zeolite catalysts remains con-
troversial, unlike Fe zeolite catalysts, Cu zeolite catalysts can directly oxidize methane
to methanol with O2 [27,166,187,188]. Figure 11A demonstrates the proposed various
copper active species formed inside the zeolite pores, such as monovalent copper oxygen
species attached to one zeolite framework Al [189], a divalent copper-oxo cluster forming
one extra framework µ-oxo bridge attached to two zeolite frameworks Al [189], a divalent
copper-oxo cluster forming two extra framework µ-oxo bridges attached to two zeolite
frameworks Al [188], and a divalent copper-oxo cluster forming three extra framework
µ-oxo bridges attached to two zeolite frameworks Al [187,190,191].
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Figure 11. (A) Various proposed copper active species formed inside the zeolite pores and (B) Schemes
for direct methane oxidation to methanol [187]. Copyright 2019, with permission from Frontiers.

Groothaert et al. [192] reported that Cu-ZSM-5 could be directly reacted with methane
by pretreating it in an oxygen atmosphere, realizing methanol production without contact
between methane and oxygen. The bis(µ-oxo) dicopper core detected by UV-vis spec-
troscopy, characterized by an intense band at 22,700 cm−1, was proposed as the active
site [188]. Woertink et al. [193] presented a bent mono-(µ-oxo) dicupric site in Cu-ZSM-5
based on DFT and normal coordinate analysis calculations. Interestingly, Li et al. [194]
proposed that trinuclear copper-oxo clusters are highly reactive for the activation of C-H
bonds in methane and their subsequent conversion to methanol. Moreover, similar trin-
uclear Cu-oxo clusters were found in the Cu-MOR for partial methane oxidation [195].
Vanelderen et al. [196] identified two distinct [Cu-O-Cu]2+ sites in the Cu-MOR that are
responsible for methane conversion. Mordenite micropores have been proven to provide
a confined environment for highly stabilized trinuclear copper-oxo clusters [195]. The
substitution of the weak oxidant N2O for O2 can convert 94% of the inactive Cu-O species
into active Cu, and the methanol yield at 873 K is 1.5 times that of the O2 atmosphere [197].
Ipek et al. [198] reported that the methanol generation rate over Cu-SSZ-15 in an N2O
atmosphere was more than twice that of Cu-mordenite and more than four times that of
Cu-ZSM-5. The promoter also affects the performance of the Cu zeolite catalysts. Tomkins
et al. [199] reported that Pt- and Pd-doped Cu-MOR catalysts exhibited higher reactivity
under isothermal conditions (e.g., 200 ◦C) than after high-temperature activation, which
is contrast to traditional Cu-zeolites. This was attributed to the aggregation of Pt and
Pd precursors and Cu species to form bimetallic Cu clusters, facilitating the reduction
of Cu oxides. Cu-SiO2 has been reported to directly convert methane to methanol in a
stepwise manner [200]. Although it can achieve the same methanol yield at 1073 K as
Cu-MOR and Cu-ZSM-5 catalysts at 673 K, the results of this study contradict the previous
view that reactive copper-oxygen species can only be generated on zeolites. Moreover,
other active copper species or reaction mechanisms for the direct conversion of methane to
methanol via the partial oxidation of methane over metal-containing zeolite catalysts have
also been proposed [190,201,202].

Figure 11B shows the multistep processes in which Cu-based catalysts are first oxidized
with O2 at high temperatures, which are in contact with methane to form a methanol
precursor adsorbed onto the active sites, and methanol can be extracted with H2O to
increase the methanol selectivity by separating the oxidation and methanol extraction
steps. Even though optimum temperatures at each step vary according to the activation
barrier for each reaction, from a practical point of view, a continuous process can be made
without much difficulty [203]. These multi-step processes can be simplified by sacrificing
the methanol yield, and finally, continuous one-step methanol synthesis from methane,
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oxygen, and steam can be achieved by adjusting the reaction temperature and oxygen
concentration [166,186,193]. Some catalytic activity data for the methane-to-methanol
process are presented in Table 3. It is interesting that the active Cu species can be formed
at much higher temperatures than that of the synthesis of the methoxy group and its
desorption as methanol through hydrolysis. This is closely related to the fact that adsorbed
water can be removed and active Cu species can be generated with oxygen only at high
temperatures. The low fraction of active Cu species, which is responsible for the low
methanol yield per total Cu, should be overcome in catalyst design.

Table 3. Summary of catalysts and their catalytic activity for gas-phase multi-step conversion of
methane into methanol.

Catalysts
Pretreatment

(gas/P/T/t)
Reaction

(gas/P/T/t)

Methanol
Extraction
(gas/P/T/t)

Methanol Yield

Ref.
Name

Active Metal
(Me) Loading

(Wt%)
Me/Al Si/Al mmol/gcat mmol/molCu

Cu-
ZSM-5
(MFI)

4.0 0.58 12 O2/1 bar/
500 ◦C

CH4/1 bar/
200 ◦C/
0.25 h

Liquid
water/1 bar/

RT/1 h
8.2 13.1 [192]

Cu-
mordenite
(MOR)

4.3 0.4 11 O2/1 bar/
400 ◦C/4 h

CH4/1 bar/
200 ◦C/
0.33 h

Steam in
He/1 bar/RT/

2 h
13 19.3 [204]

Cu-
mordenite
(MOR)

/ 0.4 6.5 He/1 bar/
400 ◦C/1 h

CH4/7 bar/
200 ◦C/0.5 h

2.4% steam in
He/1 bar/

200 ◦C/2–4 h
/ 204 [205]

Cu-
mordenite
(MOR)

/ 0.6 46 O2/1 bar/
400 ◦C/1 h

CH4/7 bar/
200 ◦C/0.5 h

2.4% steam in
He/1 bar/

200 ◦C/2–4 h
/ 316 [206]

Cu-
mordenite
(MOR)

2.0 0.4 20
10%

N2O/1 bar/
600 ◦C/2 h

CH4/1 bar/
150 ◦C/1 h

7% steam in
N2/1 bar/

135 ◦C
97 310 [197]

Cu-
mordenite
(MOR)

2.0 0.4 20 O2/1 bar/
450 ◦C/2 h

CH4/1 bar/
150 ◦C/1 h

7% steam in
N2/1 bar/

135 ◦C
67 214 [197]

Cu-
mordenite
(MOR)

4.1 0.38 8.5 O2/1 bar/
450 ◦C/4 h

5%
CH4/1 bar/
200 ◦C/0.5 h

Liquid
water/1 bar/

25 ◦C/2 h
19 29.7 [134]

Cu-
mordenite
(MOR)

2.3 0.18 7 O2/1 bar/
500 ◦C/8 h

CH4/1 bar/
200 ◦C/6 h

10%
steam/1 bar/
200 ◦C/1 h

169 470 [207]

Cu-SSZ-
13

(CHA)
3.9 0.5 5 O2/1 bar/

500 ◦C/2 h
CH4/1 bar/
200 ◦C/1 h

10%
steam/1 bar/
200 ◦C/2 h

125 200 [208]

Cu-
ZSM-5
(MFI)

3.3 0.5 17 O2/1 bar/
450 ◦C/1 h

CH4/1 bar/
200 ◦C/8 h

Steam/1 bar/
135 ◦C/2 h 89 172 [209]

Cu-
mordenite
(MOR)

2.2 0.28 10 O2/1 bar/
450 ◦C/2 h

CH4/35 bar/
200 ◦C/20 h

Steam/1 bar/
200 ◦C/2 h / 390 [210]

Cu-SSZ-
13

(CHA)
2.2 0.25 11 He/1 bar/

400 ◦C/0.5 h
CH4/1 bar/
200 ◦C/5 h

3.2% steam in
He/1 bar/

200 ◦C
60 174 [211]

Cu-SSZ-
13

(CHA)
2.0 0.22 10 He/1 bar/

400 ◦C/0.5 h
CH4/1 bar/
200 ◦C/15 h

3.2% steam in
He/1 bar/

200 ◦C
25 76.3 [212]

Cu-
SUZ-4
(SZR)

4.3 0.43 8.2 O2/1 bar/
450 ◦C/4 h

CH4/1 bar/
200 ◦C/0.5 h

Liquid
water/1 bar/

RT/2 h
14.4 11.5 [213]
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Table 3. Cont.

Catalysts
Pretreatment

(gas/P/T/t)
Reaction

(gas/P/T/t)

Methanol
Extraction
(gas/P/T/t)

Methanol Yield

Ref.
Name

Active Metal
(Me) Loading

(Wt%)
Me/Al Si/Al mmol/gcat mmol/molCu

Cu-
omega
(MAZ)

5.9 0.29 3.2 O2/1 bar/
450 ◦C/4 h

CH4/1 bar/
200 ◦C/0.5 h

Liquid
water/1 bar/

RT/2 h
86.1 92.6 [213]

Cu-
UZM-

22
(MEI)

4.3 0.32 4.8 O2/1 bar/
550 ◦C/4 h

CH4/1 bar/
200 ◦C/0.5 h

Liquid
water/1 bar/

RT/2 h
16.1 23.8 [213]

Cu-
omega
(MAZ)

4.64 / 4.0 O2/1 bar/
450 ◦C/4 h

CH4/6 bar/
200 ◦C/0.5 h

Liquid
water/1 bar/

RT/2 h
144.8 210 [214]

Cu-
mordenite
(MOR)

1.8 / 9.3 O2/1 bar/
500 ◦C/1 h

CH4/1 bar/
200 ◦C/4 h

50%
Steam/1 bar/

135 ◦C
160 565 [215]

Cu-
ZSM-5
(MFI)

2.5 0.37 11.5 O2/1 bar/
550 ◦C/0.5 h

CH4/1 bar/
210 ◦C/0.5 h

H2O + O2 +
CH4/1 bar/
210 ◦C/0.5 h

82 210 [169]

Cu-SSZ-
13

(CHA)
3.2 0.4 12 O2/1 bar/

450 ◦C/2 h
CH4/1 bar/
200 ◦C/1 h

Steam/1 bar/
200◦C/1 h 45 90 [198]

Cu-SSZ-
13

(CHA)
3.2 0.4 12 N2O/1 bar/

450 ◦C/2 h
CH4/1 bar/
200 ◦C/1 h

Steam/1 bar/
200◦C/1 h 35 70 [198]

Ni-
ZSM-5
(MFI)

5.0 0.1 15 O2/1 bar/
550 ◦C/3 h

CH4/1 bar/
175 ◦C/0.75 h

Liquid
water/1 bar/

RT/24 h
5.8 6.9 [216]

Ni-
ferrierite

(FER)
1.0 0.1 8.6

Ar/1 bar/
450 ◦C/3 h—

O2/1 bar/
RT/1 h

CH4/1 bar/
RT / 116 680 [217]

Cu@UiO-
bpy 19.2 / / O2/1 bar/

200 ◦C/3 h
CH4/1 bar/
200 ◦C/3 h

Steam with
He/1 bar 24.3 8.1 [218]

Fe-SSZ-
13

(CHA)
2.7 0.43 13

He/1 bar/
900 ◦C/5 h—
N2O/1 bar/

180 ◦C/0.42 h

CH4/1 bar/
RT/0.17 h

Steam with
He/1bar/
RT/25 h

134 270 [179]

Recently, the anaerobic oxidation of methane into methanol has also been reported
by several groups [155,205]. Because steam is used as an oxidant in this case, it is not
thermodynamically favorable (Equation (7)) compared to the aerobic oxidation of methane,
especially at lower temperatures. However, the coproduction of hydrogen is advantageous
for the anaerobic oxidation of methane.

CH4(g) + H2O(g) → CH3OH(g) + H2(g) ∆Go
298K = 117 kJ/mol, ∆H0

298K = 116 kJ/mol (7)

4. Conclusions and Outlook

Methane is a clean and abundant resource; therefore, its usage only as fuel is not
plausible. Although methane is also currently utilized as a chemical feedstock via indirect
energy-intensive pathways, the development of direct methane conversion technologies can
pave the way for the active utilization of methane found in various small-scale natural gas
resources. The selective oxidation of methane is a promising candidate for direct methane
conversion from a thermodynamic perspective. The major hurdle for its commercialization
is catching two rabbits simultaneously, that is, high methane conversion and product
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selectivity should be achieved simultaneously. Therefore, novel catalysts and processes
must be developed. In this review, we assessed some catalysts for two typical reactions
(methane-to-formaldehyde and methane-to-methanol).

The active catalysts for the gas-phase selective oxidation of methane into formaldehyde
have highly dispersed, isolated active species that are responsible for the high formaldehyde
selectivity but low methane conversion. At present, the commercial operation of this system
is far flung. In addition, the structure of the active site and reaction mechanism have not
been sufficiently resolved. Recent developments in computational chemistry will be helpful
in understanding the detailed reaction mechanism of active site for each catalyst. Based on
these results, well-defined active catalysts can be designed and prepared by considering
various factors such as promoters, loadings, supports, and catalyst precursors.

Similar scientific issues have been confronted with the gas-phase selective oxidation of
methane into methanol. A high methanol selectivity can only be achieved at low methane
conversion levels. Although there are numerous studies on the gas-phase oxidation of
methane into methanol over heterogeneous catalysts, including the incorporation of transi-
tional metals into zeolites mimicking the MMO structure, the catalytic performance still
does not meet the requirements for commercialization. Although Fe-zeolites exhibit com-
paratively meaningful performance with N2O as an oxidant, N2O is not an ideal oxidant
for environmental and economic reasons. The direct use of oxygen as an oxidant is a critical
advantage of Cu-based catalysts for direct methanol synthesis from methane under milder
conditions. However, the methanol productivity is still much lower than that of commercial
methanol synthesis processes [219].

It appears there is a limitation to the gas-phase partial oxidation of methane into
methane oxygenates. What about the liquid-phase selective oxidation of methane? It
bypasses this difficulty by using protecting groups against over-oxidation of methane.
Methyl bisulfate and methyl trifluoroacetate are stable methanol precursors in sulfuric acid
and trifluoroacetic acid, respectively. This concept cannot be directly applied to gas-phase
partial oxidation of methane. However, other engineering concepts, including a membrane
reactor in which the concentration of oxygen in the reactor can be controlled to be low so
as not to cause overoxidation, can be proposed and examined. The separation between
methane oxidation and product recovery was also proposed but not much successful in
achieving high productivity of methane oxygenates. To date, we have focused on the
development of active catalysts in terms of methane conversion and product selectivity,
which are not the only factors determining the economic feasibility of this direct methane
conversion process. The approach from the overall process system, including the reactor
and separation units, can provide other reaction conditions where new catalysts are more
plausible than the conventional catalysts reported previously.
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53. Erdőhelyi, A.; Németh, R.; Hancz, A.; Oszkó, A. Partial Oxidation of Methane on Potassium-Promoted WO3/SiO2 and on

K2WO4/SiO2 Catalysts. Appl. Catal. A Gen. 2001, 211, 109–121. [CrossRef]
54. Hargreaves, J.S.J.; Hutchings, G.J.; Joyner, R.W. Control of Product Selectivity in the Partial Oxidation of Methane. Nature 1990,

348, 428–429. [CrossRef]
55. Aoki, K.; Ohmae, M.; Nanba, T.; Takeishi, K.; Azuma, N.; Ueno, A.; Ohfune, H.; Hayashi, H.; Udagawa, Y. Direct Conversion of

Methane into Methanol over MoO3/SiO2 Catalyst in an Excess Amount of Water Vapor. Catal. Today 1998, 45, 29–33. [CrossRef]
56. Kim, Y.; Kim, T.Y.; Song, C.K.; Lee, K.R.; Bae, S.; Park, H.; Yun, D.; Yun, Y.S.; Nam, I.; Park, J.; et al. Redox-Driven Restructuring of

Lithium Molybdenum Oxide Nanoclusters Boosts the Selective Oxidation of Methane. Nano Energy 2021, 82, 105704. [CrossRef]
57. Chen, P.; Xie, Z.; Zhao, Z.; Li, J.; Liu, B.; Liu, B.; Fan, X.; Kong, L.; Xiao, X. Study on the Selective Oxidation of Methane over

Highly Dispersed Molybdenum-Incorporated KIT-6 Catalysts. Catal. Sci. Technol. 2021, 11, 4083–4097. [CrossRef]
58. Lou, Y.; Tang, Q.; Wang, H.; Chia, B.; Wang, Y.; Yang, Y. Selective Oxidation of Methane to Formaldehyde by Oxygen over

SBA-15-Supported Molybdenum Oxides. Appl. Catal. A Gen. 2008, 350, 118–125. [CrossRef]
59. Pei, S.; Yue, B.; Qian, L.; Yan, S.; Cheng, J.; Zhou, Y.; Xie, S.; He, H. Preparation and Characterization of P–Mo–V Mixed

Oxide-Incorporating Mesoporous Silica Catalysts for Selective Oxidation of Methane to Formaldehyde. Appl. Catal. A Gen. 2007,
329, 148–155. [CrossRef]

60. Zhang, X.; He, D.H.; Zhang, Q.J.; Ye, Q.; Xu, B.Q.; Zhu, Q.M. Selective Oxidation of Methane to Formaldehyde over Mo/ZrO2
Catalysts. Appl. Catal. A Gen. 2003, 249, 107–117. [CrossRef]

61. Akiyama, T.; Sei, R.; Takenaka, S. Partial Oxidation of Methane to Formaldehyde over Copper–Molybdenum Complex Oxide
Catalysts. Catal. Sci. Technol. 2021, 11, 5273–5281. [CrossRef]

62. Dai, L.X.; Teng, Y.H.; Tabata, K.; Suzuki, E.; Tatsumi, T. Catalytic Application of Mo-Incorporated SBA-1 Mesoporous Molecular
Sieves to Partial Oxidation of Methane. Microporous Mesoporous Mater. 2001, 44–45, 573–580. [CrossRef]

63. Yang, W.; Wang, X.; Guo, Q.; Zhang, Q.; Wang, Y. Superior Catalytic Performance of Phosphorus-Modified Molybdenum Oxide
Clusters Encapsulated inside SBA-15 in the Partial Oxidation of Methane. New J. Chem. 2003, 27, 1301. [CrossRef]

64. Erdohelyi, A.; Fodor, K.; Solymosi, F. Partial Oxidation of Methane on Supported Potassium Molybdate. J. Catal. 1997, 166,
244–253. [CrossRef]

65. Kastanas, G.N.; Tsigdinos, G.A.; Schwank, J. Selective Oxidation of Methane over Vycor Glass, Quartz Glass and Various Silica,
Magnesia and Alumina Surfaces. Appl. Catal. 1988, 44, 33–51. [CrossRef]

66. Yang, E.; Lee, J.G.; Park, E.D.; An, K. Methane Oxidation to Formaldehyde over Vanadium Oxide Supported on Various
Mesoporous Silicas. Korean J. Chem. Eng. 2021, 38, 1224–1230. [CrossRef]

http://doi.org/10.1016/S0009-2509(54)80005-4
http://doi.org/10.1023/A:1016696400146
http://doi.org/10.1023/A:1020556131984
http://doi.org/10.1016/S0920-5861(98)00418-0
http://doi.org/10.1006/jcat.1999.2764
http://doi.org/10.1021/jp058229u
http://www.ncbi.nlm.nih.gov/pubmed/16471874
http://doi.org/10.1016/j.jcat.2004.12.024
http://doi.org/10.1016/0166-9834(91)90014-Y
http://doi.org/10.1021/jp058230t
http://www.ncbi.nlm.nih.gov/pubmed/16375315
http://doi.org/10.1016/j.jcat.2007.01.012
http://doi.org/10.1021/jp076485w
http://doi.org/10.1021/jp0735482
http://doi.org/10.1021/jp207385h
http://doi.org/10.1021/jp103269w
http://doi.org/10.1016/j.apcata.2019.03.014
http://doi.org/10.1016/S0926-860X(00)00859-0
http://doi.org/10.1038/348428a0
http://doi.org/10.1016/S0920-5861(98)00236-3
http://doi.org/10.1016/j.nanoen.2020.105704
http://doi.org/10.1039/D1CY00311A
http://doi.org/10.1016/j.apcata.2008.08.006
http://doi.org/10.1016/j.apcata.2007.07.008
http://doi.org/10.1016/S0926-860X(03)00185-6
http://doi.org/10.1039/D1CY00511A
http://doi.org/10.1016/S1387-1811(01)00236-0
http://doi.org/10.1039/b305929d
http://doi.org/10.1006/jcat.1997.1519
http://doi.org/10.1016/S0166-9834(00)80043-3
http://doi.org/10.1007/s11814-021-0758-8


Catalysts 2022, 12, 314 24 of 29

67. Yang, E.; Lee, J.G.; Kim, D.H.; Jung, Y.S.; Kwak, J.H.; Park, E.D.; An, K. SiO2@V2O5@Al2O3 Core–Shell Catalysts with High
Activity and Stability for Methane Oxidation to Formaldehyde. J. Catal. 2018, 368, 134–144. [CrossRef]

68. Kunkel, B.; Wohlrab, S. Enhancement and Limits of the Selective Oxidation of Methane to Formaldehyde over V-SBA-15: Influence
of Water Cofeed and Product Decomposition. Catal. Commun. 2021, 155, 106317. [CrossRef]

69. Volpe, M.A. Partial Oxidation of Methane over VOx/α-Al2O3 Catalysts. Appl. Catal. A Gen. 2001, 210, 355–361. [CrossRef]
70. Berndt, H.; Martin, A.; Brückner, A.; Schreier, E.; Müller, D.; Kosslick, H.; Wolf, G.U.; Lücke, B. Structure and Catalytic Properties

of VOx/MCM Materials for the Partial Oxidation of Methane to Formaldehyde. J. Catal. 2000, 191, 384–400. [CrossRef]
71. Matsuda, A.; Tateno, H.; Kamata, K.; Hara, M. Iron Phosphate Nanoparticle Catalyst for Direct Oxidation of Methane into

Formaldehyde: Effect of Surface Redox and Acid–Base Properties. Catal. Sci. Technol. 2021, 11, 6987–6998. [CrossRef]
72. Zhang, H.; Sun, K.; Feng, Z.; Ying, P.; Li, C. Studies on the SbOx Species of SbOx/SiO2 Catalysts for Methane-Selective Oxidation

to Formaldehyde. Appl. Catal. A Gen. 2006, 305, 110–119. [CrossRef]
73. Ohyama, J.; Abe, D.; Hirayama, A.; Iwai, H.; Tsuchimura, Y.; Sakamoto, K.; Irikura, M.; Nakamura, Y.; Yoshida, H.;

Machida, M.; et al. Selective Oxidation of Methane to Formaldehyde over a Silica-Supported Cobalt Single-Atom Catalyst. J.
Phys. Chem. C 2022, 126, 1785–1792. [CrossRef]

74. Foster, N.R. Direct Catalytic Oxidation of Methane to Methanol—A Review. Appl. Catal. 1985, 19, 1–11. [CrossRef]
75. Banares, M.A.; Fierro, J.L.G.; Moffat, J.B. The Partial Oxidation of Methane on MoO3/SiO2 Catalysts: Influence of the Molybdenum

Content and Type of Oxidant. J. Catal. 1993, 142, 406–417. [CrossRef]
76. Spencer, N. Partial Oxidation of Methane to Formaldehyde by Means of Molecular Oxygen. J. Catal. 1988, 109, 187–197. [CrossRef]
77. Barbaux, Y.; Elamrani, A.R.; Payen, E.; Gengembre, L.; Bonnelle, J.P.; Grzybowska, B. Silica Supported Molybdena Catalysts. Appl.

Catal. 1988, 44, 117–132. [CrossRef]
78. Liu, H.F.; Liu, R.S.; Liew, K.Y.; Johnson, R.E.; Lunsford, J.H. Partial Oxidation of Methane by Nitrous Oxide over Molybdenum on

Silica. J. Am. Chem. Soc. 1984, 106, 4117–4121. [CrossRef]
79. Plyuto, Y.V.; Babich, I.V.; Plyuto, I.V.; van Langeveld, A.D.; Moulijn, J.A. XPS Studies of MoO3/Al2O3 and MoO3/SiO2 Systems.

Appl. Surf. Sci. 1997, 119, 11–18. [CrossRef]
80. Thomas, D.J.; Willi, R.; Baiker, A. Partial Oxidation of Methane: The Role of Surface Reactions. Ind. Eng. Chem. Res. 1992, 31,

2272–2278. [CrossRef]
81. Liu, Y.M.; Cao, Y.; Yi, N.; Feng, W.L.; Dai, W.L.; Yan, S.R.; He, H.Y.; Fan, K.N. Vanadium Oxide Supported on Mesoporous SBA-15

as Highly Selective Catalysts in the Oxidative Dehydrogenation of Propane. J. Catal. 2004, 224, 417–428. [CrossRef]
82. Nieminen, V.; Kumar, N.; Salmi, T.; Murzin, D.Y. N-Butane Isomerization over Pt–H–MCM-41. Catal. Commun. 2004, 5, 15–19.

[CrossRef]
83. Solsona, B.; Blasco, T.; López Nieto, J.M.; Peña, M.L.; Rey, F.; Vidal-Moya, A. Vanadium Oxide Supported on Mesoporous MCM-41

as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. J. Catal. 2001, 203, 443–452. [CrossRef]
84. Fornés, V.; López, C.; López, H.H.; Martínez, A. Catalytic Performance of Mesoporous VOx/SBA-15 Catalysts for the Partial

Oxidation of Methane to Formaldehyde. Appl. Catal. A Gen. 2003, 249, 345–354. [CrossRef]
85. Chen, K.; Xie, S.; Bell, A.T.; Iglesia, E. Alkali Effects on Molybdenum Oxide Catalysts for the Oxidative Dehydrogenation of

Propane. J. Catal. 2000, 195, 244–252. [CrossRef]
86. Zhao, Z.; Liu, J.; Duan, A.; Xu, C.; Kobayashi, T.; Wachs, I.E. Effects of Alkali Metal Cations on the Structures, Physico-Chemical

Properties and Catalytic Behaviors of Silica-Supported Vanadium Oxide Catalysts for the Selective Oxidation of Ethane and the
Complete Oxidation of Diesel Soot. Top. Catal. 2006, 38, 309–325. [CrossRef]

87. Ivars, F.; Solsona, B.; Botella, P.; Soriano, M.D.; López Nieto, J.M. Selective Oxidation of Propane over Alkali-Doped Mo-V-Sb-O
Catalysts. Catal. Today 2009, 141, 294–299. [CrossRef]

88. Grant, J.T.; Carrero, C.A.; Love, A.M.; Verel, R.; Hermans, I. Enhanced Two-Dimensional Dispersion of Group V Metal Oxides on
Silica. ACS Catal. 2015, 5, 5787–5793. [CrossRef]

89. Teng, Y.; Kobayashi, T. Reaction Pathways for the Oxygenates Formation from Propane and Oxygen over Potassium-modified
Fe/SiO2 Catalysts. Catal. Lett. 1998, 55, 33–38. [CrossRef]

90. Wallis, P.; Schönborn, E.; Kalevaru, V.N.; Martin, A.; Wohlrab, S. Enhanced Formaldehyde Selectivity in Catalytic Methane
Oxidation by Vanadia on Ti-Doped SBA-15. RSC Adv. 2015, 5, 69509–69513. [CrossRef]

91. Grzybowska, B.; Mekšs, P.; Grabowski, R.; Wcisto, K.; Barbaux, Y.; Gengembre, L. Effect of Potassium Addition to V2O5/TiO2
and MoO3/TiO2 Catalysts on Their Physicochemical and Catalytic Properties in Oxidative Dehydrogenation of Propane. In
New Developments in Selective Oxidation II; Corberán, V.C., Bellón, S.V.B.T.-S., Eds.; Elsevier: Amsterdam, The Netherlands, 1994;
Volume 82, pp. 151–158.
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