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Abstract: Compared to the Claus process, selective H2S catalytic oxidation to sulfur is a promising
reaction, as it is not subject to thermodynamic limitations and could theoretically achieve ~100%
H2S conversion to sulfur. In this study, we investigated the effects of Co and Fe co-doping in ABO3

perovskite on H2S selective catalytic oxidation. A series of LaFexCo1−xO3 (x = 0, 0.2, 0.4, 0.6, 0.8,
1.0) perovskites were synthesized by the sol-gel method. Compared to LaFeO3 and LaCoO3, co-
doped LaFexCo1−xO3 significantly improved the H2S conversion and sulfur selectivity at a lower
reaction temperature. Nearly 100% sulfur yield was achieved on LaFe0.4Co0.6O3 under 220 ◦C with
exceptional catalyst stability (above 95% sulfur yield after 77 h). The catalysts were characterized
by XRD, BET, FTIR, XPS, and H2-TPR. The characterization results showed that the structure of
LaFexCo1−xO3 changed from the rhombic phase of LaCoO3 to the cubic phase of LaFeO3 with Fe
substitution. Doping with appropriate iron (x = 0.4) facilitates the reduction of Co ions in the catalyst,
thereby promoting the H2S selective oxidation. This study demonstrates a promising approach for
low-temperature H2S combustion with ~100% sulfur yield.

Keywords: hydrogen sulfide; selective oxidation; perovskite oxides; oxygen vacancy

1. Introduction

Natural gas processing/utilizing processes, petroleum refining processes, and coal
chemistry produce H2S-containing waste gas [1–3].The removal of H2S from industry
waste gas is crucial as H2S is a toxic and corrosive gas, leading to severe pollution and
equipment/pipeline corrosion [4]. Numerous efforts have been conducted to remove H2S
and the most widely used technology is called the Claus process, which recovers elemental
sulfur from H2S-containing gas [5,6]. However, due to thermodynamic limitations, the
Claus process cannot achieve 100% H2S conversion, leaving 2–5% unconverted H2S gas
remaining after the treatment [7]. Selective H2S catalytic oxidation could be added as a sec-
ondary process after the Claus process apparatus to oxidize the residual, low-concentration
H2S-containing gas to elemental sulfur with increased overall sulfur yield. The design of
a catalyst with high H2S conversion and high sulfur selectivity is the key to the selective
catalytic oxidation. So far, H2S selective oxidation catalysts mainly include active carbon
(AC)-based catalysts [8], carbon nanotube-based catalysts [9], clay-supported catalysts [10],
and metal oxide-based catalysts [11]. Nevertheless, most of these H2S selective oxida-
tion catalysts face challenge on the needs of excessive oxygen feed, which is produced
from economically expensive air separation units. For instance, Fang et al. [8] found that
the Mn/AC catalyst can achieve optimal catalytic activity at 180 ◦C, but it needs excess
amounts of oxygen to participate in the H2S oxidation process. Ba et al. [9] found that
the H2S conversion over nitrogen-doped carbon nanotubes dropped from 100% to 92% as
the O2/H2S ratio decreased from 2.5 to 0.6. Soriano et al. [11] observed that VNa-0.1 had
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high sulfur selectivity at 200 ◦C under the H2S/air/He molar ratio of 1.2/5.0/93.8, with an
excess of O2. Moreover, the durations of the catalyst stability in the literature were usually
not long, less than 20 h [12–14]. Thus, a catalyst with remarkable catalytic activity, excellent
selectivity, outstanding stability, and desired stoichiometric H2S/O2 operating conditions
is urgently needed.

Perovskite oxides such as ABO3 have been extensively investigated. The typical struc-
ture of perovskite oxides is cubic, with one A-site cation coordinated by 12 anions and eight
B-site cations (belonging to 1/8 to one specific unit cell) coordinated by six anions [15,16].
For (distorted) perovskites with lower symmetry, the first shell coordination numbers are
smaller. It is well-recognized that the tuning of A and B site cations can affect the catalytic
activity and stability of perovskite oxides. Moreover, structural modifications related to
the generation of the oxygen vacancies and/or changes in the valence states of the original
cations can be achieved by the partial substitution of the ions at A site or B site [17–19].
Therefore, the flexibility and chemical versatility of ABO3 perovskite oxides can be used to
design highly active, selective, and stable catalysts [20]. Among these, LaCoO3 and LaFeO3
stand out as redox catalysts with satisfactory catalytic performance reported for CO oxida-
tion [21] and NO oxidation [22]. Moreover, Yang et al. [23] found that LaCoO3 showed high
H2S conversion and high selectivity to sulfur (98.2%) at 260 ◦C. Zhang et al. [24] found that
LaFeO3 exhibited outstanding selectivity (100%) under relatively low reaction temperature
and various H2S/O2 ratios. It is desired to obtain catalysts with ~100% H2S conversion
and ~100% sulfur selectivity, and the influence of co-doping Fe and Co into the B-site of
perovskite could be further explored.

This work investigates the influence of Fe substitution on LaCoO3 in H2S selective
oxidation. LaFexCo1−xO3 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) perovskite oxides were synthesized
by the sol-gel method and their catalytic behaviors in the H2S selective oxidation were
investigated. It was observed that the incorporation of iron enhanced the catalytic ac-
tivity of the LaFexCo1−xO3 catalysts. In addition, the crystal structure and redox ability
were comprehensively investigated by various characterization techniques such as XRD,
BET, FTIR, XPS, and H2-TPR. On the basis of these results, the catalytic and deactivation
mechanisms of H2S selective oxidation over LaFexCo1−xO3 are discussed.

2. Experiment
2.1. Catalyst Preparation

Powder samples of LaFexCo1−xO3 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) perovskite oxides
were synthesized by the sol-gel method using citric acid as a complexing agent. The
starting materials were La(NO3)3·6H2O (AR, Macklin, Shanghai, China), Fe(NO3)3·9H2O
(AR, Macklin, Shanghai, China), and Co(NO3)2·6H2O (AR, Macklin, Shanghai, China). The
required amounts of nitrate samples were first dissolved in distilled water. Citric acid (AR,
Aladdin, Shanghai, China) was added so that the number of moles of citric acid was equal
to the number of moles of total metal cations. The obtained solution was evaporated at
80 ◦C and then PEG-20000 (AR, Macklin, Shanghai, China) was added into the solution.
Stirring was continued until a viscous gel was formed. Finally, the gel was dried in an oven
at 105 ◦C overnight and calcined at 650 ◦C for 5 h in a furnace to obtain the catalyst samples.

2.2. Catalyst Characterization

XRD (X-ray diffraction) patterns were determined using the X’Pert PRO powder diffrac-
tion system (Empyrean, San Jose, California, USA) with Cu Kα radiation (λ = 0.15418 nm,
40 kV/40 mA) in the 2θ range of 10–80◦.

BET (Brunauer–Emmett–Teller) surface areas and textural properties of the catalysts
were determined by nitrogen adsorption–desorption isotherms using an ASAP-2020 appa-
ratus (Micromeritics, Norcross, GA, USA). The adsorption process was carried out at liquid
nitrogen temperature. The BET method was adopted to calculate the specific surface area.
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FTIR (Fourier transform infrared) spectra were measured using a Nicolet Model iS-50
instrument (Thermo Scientific, Waltham, MA, USA) in the region from 400 to 4000 cm−1.
The sample was taken in pellet form in the KBr matrix for measurement.

X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi (Thermo
Scientific, USA) with Al Kα radiation as the radiation source at 300 W. The spectra of C 1s,
O 1s, La 3d, Co 2p, and Fe 2p were recorded. The binding energies were calibrated using
the C 1s peak of contaminant carbon (B.E. = 284.8 eV) as the standard.

H2-TPR (H2 temperature-programmed reduction) experiment was measured on an
Auto Chem 2920 chemical adsorption instrument (Micromeritics, Norcross, GA, USA).
The TPR profiles were obtained by passing a 10% H2/Ar flow (50 mL/min) through the
pretreated catalyst (about 60 mg). The temperature was increased from room temperature
to 700 ◦C with a rate of 10 ◦C/min, and the H2 concentration was measured by a thermal
conductivity detector. Before the determination, the catalyst was heated to 300 ◦C under
He atmosphere for 60 min.

2.3. Catalytic Performance Tests

All catalytic tests were performed in a continuous flow fixed-bed quartz reactor
with an internal diameter of 10 mm at atmospheric pressure, as shown in Figure 1. A
certain amount of catalyst was placed in the reactor. A simulant gas was flown into the
reactor, with 0.5% H2S, 0.25% O2, and balance gas of N2. The total gas flow rate was
fixed at 150 mL/min and the reaction temperature ranged from 180 ◦C to 260 ◦C. A sulfur
condenser was attached to the bottom of the fixed-bed quartz reactor. The tail gas was
analyzed by gas chromatography (GC2060, Ruimin, China) equipped with an FPD (flame
photometric detector) and a TCD (thermal conductivity detector). We note that in H2S
oxidation, the formation of S is considered a selective reaction and the formation of SO2 is
considered an unselective reaction. The conversion of H2S, sulfur selectivity, and sulfur
yield were determined by the following equations:

H2S conversion(%) =
[H 2 S]in−[H 2 S]out

[H 2 S]in
×100% (1)

Sulfur selectivity(%) =
[H 2 S]in−[H 2 S]out−[SO 2

]
out

[H 2 S]in−[H 2 S]out
×100% (2)

Sulfur yield(%) = [H 2 S conversion]× [sulfur selectivity]× 100% (3)
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Figure 1. Schematic diagram of H2S catalytic process: (1) 1% H2S gas cylinder; (2) N2 gas cylinder;
(3)O2 gas cylinder; (4) mass flow controllers; (5) gas mixer; (6) tube furnace; (7) fixed bed reactor;
(8) condenser; (9) gas chromatograph; (10) computer; (11) NaOH wash bottle; (12) thermocouple.
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3. Results and Discussion
3.1. Catalytic Performances of LaFexCo1−xO3 Catalysts
3.1.1. Effect of Reaction Temperature

The effect of reaction temperature on the catalytic performance of the LaFexCo1−xO3
catalysts for H2S selective catalytic oxidation is investigated in Figure 2. Figure 2A shows
the H2S conversion for LaCoO3, LaFeO3, and Fe-doped LaCoO3. At 180 ◦C, LaCoO3
can only achieve H2S conversion of 75%, while LaFeO3 achieved slightly higher H2S
conversion of 83%. With Fe co-doping in the B-site, H2S conversions were significantly
higher, and all samples achieved conversions higher than 88%. This indicates that B-site Fe
doping significantly increases the activity of the pristine perovskite catalysts. Temperature
effects were also investigated. For LaCoO3, it was shown that H2S conversion increased
with temperature and eventually reached 93% at 260 ◦C. For co-doped LaFe0.4Co0.6O3,
LaFe0.6Co0.4O3, and LaFe0.8Co0.2O3, H2S conversion increased to 99% at only 200 ◦C. This
again shows that LaFexCo1−xO3 with Fe doping has notably higher activities. For LaFeO3,
the H2S conversion increased and then decreased with the further increasing temperature.
This could be ascribed to lattice oxygen uncoupling from the perovskite structure at higher
temperatures, which caused a loss of activity of perovskite [25].

Figure 2B compares the selectivities towards sulfur. It was observed that LaFeO3 ex-
hibited almost perfect selectivities (~100%) at all temperatures investigated, while LaCoO3
exhibited lower selectivity, with ~95% at 180 ◦C. A small amount of Fe doping did not in-
crease the selectivity, and 94% sulfur selectivity was achieved for LaFe0.2Co0.8O3 at 180 ◦C.
However, a further increase in Fe contents significantly increased the selectivities, and
>98% selectivities were achieved for LaFe0.4Co0.6O3, LaFe0.6Co0.4O3, and LaFe0.2Co0.8O3.
This again shows that larger Fe co-doping is beneficial. Temperature effects were also
investigated. For LaCoO3 and LaFe0.2Co0.8O3, the selectivities increased with respect to
temperature. For LaFe0.4Co0.6O3, LaFe0.6Co0.4O3, and LaFe0.2Co0.8O3, a volcanic shape
was present and the highest selectivities (~100%) were obtained at 220 ◦C. Sulfur yield
was further compared in Figure 2C. As expected, LaFe0.4Co0.6O3, LaFe0.6Co0.4O3, and
LaFe0.2Co0.8O3 achieved ~100% sulfur yield at 220 ◦C, higher than LaFe0.2Co0.8O3, LaFeO3,
and LaCoO3. This shows that perovskites with Co and Fe co-doping are highly effective in
H2S selective oxidation to sulfur.
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LaFexCo1−xO3 catalysts.

3.1.2. Effect of GHSV (Gas Hourly Space Velocity)

LaFe0.4Co0.6O3 was selected as one of the best catalysts for selective H2S oxidation.
The influence of GHSV on the performance of the LaFe0.4Co0.6O3 catalyst was investigated
at 220 ◦C. As shown in Figure 3, the H2S conversion, sulfur selectivity, and sulfur yield were
all above 99% when the GHSV was in the range of 3000 h−1–6000 h−1. However, it was
found that as the GHSV further increased, the catalytic activity of LaFe0.4Co0.6O3 catalyst
was greatly reduced. H2S conversion decreased from 99% to 82% with the increase in
GHSV from 6000 h−1 to 15,000 h−1. Therefore, LaFe0.4Co0.6O3 presented excellent catalytic
performance in the GHSV range of 3000 h−1–6000 h−1.
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3.1.3. Effect of the H2S/O2 Molar Ratio

Figure 4 depicts the effect of the H2S/O2 molar ratio on H2S selective catalytic oxi-
dation over the LaFe0.4Co0.6O3 catalyst at 220 ◦C. As shown in Figure 4, as the H2S/O2
molar ratio decreased from 3:1 to 2:1 (i.e., from oxygen-deficient to stoichiometric), H2S
conversion increased from 75% to nearly 100% with sulfur selectivity close to 100%. As
H2S/O2 further reduced to 1 (i.e., oxygen-excess), H2S conversion decreased slightly, but
sulfur selectivity decreased drastically to ~70%. This is attributed to the further oxidation
of the generated sulfur to sulfur dioxide under excess oxygen. Therefore, as opposed to pre-
vious studies that required an oxygen-excess environment [9,11], co-doped LaFe0.4Co0.6O3
catalyst only requires stoichiometric H2S/O2 condition, showing process advantages.
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Figure 4. Effect of the H2S/O2 molar ratio on the catalytic performance of LaFe0.4Co0.6O3 catalysts. 
Reaction conditions: H2S/O2/N2 = 0.5/0.25/99.25, T = 220 °C, GHSV = 5000 h−1. 
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Reaction conditions: H2S/O2/N2 = 0.5/0.25/99.25, T = 220 ◦C, GHSV = 5000 h−1.

3.1.4. Durability of LaFexCo1−xO3 Catalysts

Catalyst stability is an important criterion for industrial applications. Figure 5 illus-
trates the durability behavior of the LaFe0.4Co0.6O3 catalyst at 220 ◦C. The selectivity of
sulfur can be maintained at ~100% with the reaction proceeding within 77 h. For catalyst
activity, during the first 64 h, the H2S conversion of the LaFe0.4Co0.6O3 catalyst decreased
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slightly from 99.9% to 98.1%. The deactivation accelerated after 64 h; however, H2S con-
version was still above 95% at 77 h. Longer reaction time was not attempted given the
limitation of the lab equipment. Although deactivation was still observed, the co-doped
LaFe0.4Co0.6O3 catalyst exhibited excellent stability when compared with several other
reported catalysts using a 5% decrease in sulfur yield as a criterion. The comparisons with
previously reported carbon materials, pillared clay materials, and metal oxides are shown
in Figure 6 [2,7,13,26,27].
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3.2. Characterization of LaFexCo1−xO3 Catalysts
3.2.1. Phase Identifications

The phase structures of all catalysts were examined by XRD. Figure 7 shows the
XRD patterns of LaFeO3, LaCoO3, and LaFexCo1−xO3 catalysts. It was observed that co-
doped LaFexCo1−xO3 generally maintained a perovskite-phase structure. With increasing
amounts of Fe (III) dopant, a small shift to lower 2-theta angles was observed, indicating
that Fe3+ is substituted into the perovskite structure. For x = 0, 0.2, and 0.4, there is a clear
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reflection peak splitting at 59.4◦, consistent with the spitting of the main peak at 33◦. For
x = 0.6 and x = 0.8, the peak splitting effect has become less apparent, but the peak shape is
still asymmetric. It is noted that the peak splitting effect is minimal on LaFeO3, with no
Co-doping. This behavior is mainly due to the transformation of the phase structure from
a rhombohedral structure of LaCoO3 (PDF 84-0848) to a cubic structure of LaFeO3 (PDF
75-0541) with Fe3+ dopant.
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3.2.2. FTIR Spectrum

FTIR has the advantage of being very sensitive to structural distortions [28]. Figure 8
shows the FTIR spectra of LaFeO3, LaCoO3, and LaFexCo1−xO3 catalysts. The ~3400 cm−1

band may be the water vapor background error caused by the instrument state. Moreover,
the catalysts were calcined at 650 ◦C and any remaining CHX shall not appear. LaCoO3 has
the characteristic bands at 418 cm−1 (stretching La-O vibrations) [29], 553 cm−1 (stretching
Co-O vibrations) [30], and 595 cm−1 (bending O-Co-O vibrations) [31] that ascribed to the
vibration of the metal–oxygen band. As a comparison, the FTIR spectrum of LaFeO3 shows
stretching Fe–O vibration at 555 cm−1, which corresponds to the stretching Fe–O vibration
in FeO6 octahedra [32,33]. For LaFexCo1−xO3, with the increase in Fe doping, two bands
at 553 cm−1 and 595 cm−1 gradually changed to a single band at 555 cm−1, and no new
band was found. This indicates that the structure distortion of LaFexCo1−xO3 changed
from LaCoO3-like to LaFeO3-like with an increasing amount of Fe doping. This result is
consistent with XRD.
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3.2.3. Textural Properties 
The specific surface area and pore structure of the catalyst were studied by N2-phy-

sisorption analysis. Table 1 summarizes the BET surface area, pore volume, and average 
pore diameter of all investigated catalysts. The specific surface area increased from 9.26 
m2/g of LaCoO3 to 11.39 m2/g of LaFe0.4Co0.6O3 with the increase in Fe doping amount, and 
further decreased to 8.02 m2/g of LaFeO3 with excess Fe in the B-site. This trend is also 
consistent with the increase in H2S conversion, indicating that the increasing specific sur-
face area of the catalyst may be favorable for the exposure of active sites, leading to higher 
catalytic activity [24].  

Table 1. Textural properties of the LaFexCo1−xO3 catalysts. 

Catalysts 
BET Surface Area (SBET)  

(m2/g) 
Average Pore Diameter (DP) 

(nm) 
Pore Volume (VP) 

(cm3/g) 
LaCoO3 9.26 20.85 0.048 

LaFe0.2Co0.8O3 10.43 18.30 0.048 
LaFe0.4Co0.6O3 11.39 19.92 0.057 
LaFe0.6Co0.4O3 10.70 20.67 0.055 
LaFe0.8Co0.2O3 9.62 22.06 0.053 

LaFeO3 8.02 24.22 0.049 

The low temperature data at 180 °C are used to illustrate this effect, as all high tem-
perature points have close to 100% H2S conversion, which cannot reflect the intrinsic ac-
tivity of the oxygen vacancies. We set the lowest surface area as 1 and scale other samples 
based on that. It is shown in Figure 9 that after normalization, except for LaFeO3 and 
LaFe0.8Co0.2O3, all other samples have similar conversions between 64% and 68%. This re-
flects that the intrinsic nature of oxygen vacancies is similar and a larger surface area with 
more oxygen vacancies exposed can lead to higher catalyst activity. This is consistent with 
the conclusion of this manuscript, where oxygen vacancy is an important factor to 

Figure 8. FTIR spectra of fresh LaFexCo1−xO3 catalysts (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0).

3.2.3. Textural Properties

The specific surface area and pore structure of the catalyst were studied by N2-
physisorption analysis. Table 1 summarizes the BET surface area, pore volume, and
average pore diameter of all investigated catalysts. The specific surface area increased
from 9.26 m2/g of LaCoO3 to 11.39 m2/g of LaFe0.4Co0.6O3 with the increase in Fe doping
amount, and further decreased to 8.02 m2/g of LaFeO3 with excess Fe in the B-site. This
trend is also consistent with the increase in H2S conversion, indicating that the increasing
specific surface area of the catalyst may be favorable for the exposure of active sites, leading
to higher catalytic activity [24].

Table 1. Textural properties of the LaFexCo1−xO3 catalysts.

Catalysts BET Surface Area (SBET)
(m2/g)

Average Pore Diameter (DP)
(nm)

Pore Volume (VP)
(cm3/g)

LaCoO3 9.26 20.85 0.048
LaFe0.2Co0.8O3 10.43 18.30 0.048
LaFe0.4Co0.6O3 11.39 19.92 0.057
LaFe0.6Co0.4O3 10.70 20.67 0.055
LaFe0.8Co0.2O3 9.62 22.06 0.053

LaFeO3 8.02 24.22 0.049

The low temperature data at 180 ◦C are used to illustrate this effect, as all high
temperature points have close to 100% H2S conversion, which cannot reflect the intrinsic
activity of the oxygen vacancies. We set the lowest surface area as 1 and scale other samples
based on that. It is shown in Figure 9 that after normalization, except for LaFeO3 and
LaFe0.8Co0.2O3, all other samples have similar conversions between 64% and 68%. This
reflects that the intrinsic nature of oxygen vacancies is similar and a larger surface area
with more oxygen vacancies exposed can lead to higher catalyst activity. This is consistent
with the conclusion of this manuscript, where oxygen vacancy is an important factor to
determine catalyst activity. As for the increased intrinsic activity of oxygen vacancies for
LaFeO3 and LaFe0.8Co0.2O3, this could be due to Fe-enriched perovskite having oxygen
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vacancies with higher activity. It would be an interesting topic in the future to synthesize
Fe-enriched perovskite with higher surface areas to further boost catalyst activity.
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3.2.4. H2-TPR Spectrum

H2-TPR was conducted to determine the reducibility of the catalysts, as shown in
Figure 10. It can be seen that the LaCoO3 sample has reduction peaks at 380 ◦C and 405 ◦C,
which can be attributed to the reduction of Co3+ to Co2+ [34], and a higher-temperature
reduction peak at 546 ◦C belonging to the reduction of Co2+ to Co0 [35,36]. The addition
of Fe in the LaCoO3 leads to reduction peaks with lower temperatures. For example,
LaFe0.2Co0.8O3 catalyst has reduction peaks at 367 ◦C and 390 ◦C. With the further increase
in the Fe doping amount, LaFe0.4Co0.6O3, LaFe0.6Co0.4O3, LaFe0.8Co0.2O3, and LaFeO3
show reduction peaks in the range of 300 ◦C–400 ◦C. These indicate that the addition of
Fe promotes the reduction of Co3+. As the reduction of Co3+ to Co2+ is also associated
with the creation of lattice oxygen vacancies, it can be concluded that Co and Fe co-doping
facilitates oxygen vacancy formation in perovskite. This is consistent with the trend of H2S
conversion, which indicates that the ease of oxygen vacancy formation leads to increased
catalyst activities for H2S oxidation. This result is also consistent with other literature
reports [37,38]. The high-temperature reduction peak (546 ◦C in LaCoO3) was pushed
to a much higher temperature (660 ◦C in LaFe0.2Co0.8O3), and completely eliminated
in LaFe0.4Co0.6O3, LaFe0.6Co0.4O3, and LaFe0.8Co0.2O3 [39,40]. The higher-temperature
reduction peak is associated with further Co2+ reduction to Co0, which indicates that the
Co and Fe co-doped samples are highly stable even under a high-temperature reducing
environment, explaining the exceptional catalyst stability observed in experiments. The
reduction peak area also increased with the increase in Fe doping amount, which also
indicates that Fe-doped LaCoO3 has stronger oxidation ability and a higher amount of
active lattice oxygen [41].
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3.2.5. The Surface Chemical States Revealed by XPS

XPS analysis was conducted to elucidate the chemical states of surface Co, Fe, O,
and S species of the fresh and used LaFe0.4Co0.6O3 catalysts, shown in Figure 11. From
the high-resolution spectrum of Co 2p (Figure 11a), it can be seen that there are peaks
at bonding energies of 795.1 eV and 780.0 eV, corresponding to 2p1/2 and 2p3/2 of Co3+,
respectively [42–44]. Two peaks appeared at 710.4 eV and 723.8 eV in Figure 11b and can be
ascribed to Fe 2p3/2 and Fe 2p1/2 levels, respectively. These binding energies agreed well
with an Fe3+ oxidation state assignment [45,46]. The O 1s spectrum was shown in Figure 11c,
which showed two peaks at 531.2 eV and 529.0 eV. The peak at 529.0 eV is attributed to
lattice oxygen (Olat), while the peak at 531.2 eV corresponds to adsorbed oxygen (Oads) on
oxygen vacancies [42,47,48]. It was reported that oxygen vacancy plays an important role in
the reaction, and can not only accelerate the decomposition of oxygen molecules, but also
increase the mobility of lattice oxygen [49]. It can be seen that the content of lattice oxygen
decreased sharply, which confirms that the lattice oxygen of the catalyst may participate
in the H2S oxidation reaction to form sulfate species. Simultaneously, the oxygen peaks
were shifted towards higher B.E., with a shift value of 0.3 eV and 0.9 eV for lattice oxygen
species and oxygen vacancies. As a shift to higher B.E. indicates lower electron density,
this shows that the oxygen vacancies in used samples have much lower electron density. It
was reported that oxygen vacancies with lower electron density lead to significantly lower
ethylene yield in oxidative dehydrogenation of ethane [50]. The shift could also be caused
by the formation of OH− and SO4

2− groups during the catalytic reaction. In this study, it is
hypothesized that the deactivation of the H2S selective oxidation reaction is also mainly
related to the lower electron density of oxygen vacancies. Figure 11d shows the S 2p XPS
spectrum of the used LaFe0.4Co0.6O3 catalyst to investigate the deactivation process of the
catalyst. Tiny peaks around 163.3 eV were detected, which can be ascribed to the presence
of the conjugated sulfur (Sn) [51], indicating a sulfur deposit on the sample. The main
peaks of S 2p1/2 and S 2p3/2 at binding energies of 170.3 eV and 169.0 eV indicate that S
exists as a sulfate species [52]. It should be noted that deposited sulfur could also lead to
catalyst deactivations.
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3.3. Catalytic and Deactivation Mechanisms

Based on the results of experiments and characterizations, the possible reaction mech-
anism of H2S selective oxidation over LaFe0.4Co0.6O3 can be proposed as follows: H2S was
first adsorbed on the oxygen vacancies on the LaFe0.4Co0.6O3 catalyst surface, then the
adsorbed H2S dissociated into HS- or S2− ions. Subsequently, the HS− or S2− ions were
oxidized by the surface-active oxygen and/or lattice oxygen of the LaFe0.4Co0.6O3 catalyst,
and Fe3+ was reduced to Fe2+ or Co3+ to Co2+ and oxygen vacancies were formed. Then, O2
diffused and adsorbed on the catalyst surfaces, and oxidized Fe2+ to Fe3+ or Co2+ to Co3+,
thereby replenishing the lattice oxygen. The possible reaction mechanism of H2S selective
oxidation over the LaFe0.4Co0.6O3 is proposed as illustrated in Figure 12. Compared to
LaFeO3 and LaCoO3, co-doped LaFe0.4Co0.6O3 has high oxygen vacancy concentration,
leading to increased catalyst activities.
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The S 2p XPS spectrum of used LaFe0.4Co0.6O3 revealed the deactivation process of
the catalyst. The sulfate accounted for 92% of the total molar amount of sulfur and the



Catalysts 2022, 12, 236 13 of 15

elemental sulfur accounted for 8%. The Fe 2p energy value of the used catalyst shifted
slightly to a higher value, an index of an increase in positive polarity, indicating that
the interaction between sulfate anion and iron cation generates Fe2(SO4)3 [24]. It can be
concluded that the catalyst deactivation is mainly due to the formation of iron sulfate,
which will destroy the redox process of Fe3+/Fe2+, resulting in a decrease in catalytic
activity. The deposition of elemental sulfur also leads to a reduction in catalytic activity.

4. Conclusions

In summary, a series of LaFexCo1−xO3 catalysts were synthesized by the sol-gel
method and investigated for H2S selective oxidation. XRD, N2-adsorption, H2-TPR, and
XPS analyses were conducted. The conclusions of this study can be summarized as follows:

(1) The incorporation of Fe into LaCoO3 had a great influence on the conversion and
selectivity of H2S selective oxidation reaction. It was shown that Fe doping not only
enhanced catalytic activity for the H2S selective oxidation reaction, but also reduced
the optimal reaction temperature.

(2) LaFe0.4Co0.6O3 had the highest catalytic activity and the catalyst deactivation was not
obvious before 77 h, and its stability is better than some types of catalysts. Analysis of
XRD and FTIR showed that the LaFexCo1−xO3 catalyst existed in a single perovskite
structure. H2-TPR indicates that oxygen vacancy creation is more feasible on a co-
doped LaFexCo1−xO3 catalyst.

(3) The reaction mechanism and inactivation mechanism were predicted. The presence
of lattice oxygen in the LaFe0.4Co0.6O3 catalyst and the oxygen vacancies generated
in the reaction are beneficial to the H2S selective oxidation reaction. In addition, the
deposition of elemental sulfur and the formation of oxygen vacancies with lower
electron density could lead to catalyst deactivation.
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