

# Article CO and CO<sub>2</sub> Methanation over CeO<sub>2</sub>-Supported Cobalt Catalysts

Thuy Ha Nguyen<sup>1</sup>, Han Bom Kim<sup>1</sup> and Eun Duck Park<sup>1,2,\*</sup>

- <sup>1</sup> Department of Energy System Research, Ajou University, 206, World-Cup-Ro, Yeongtong-Gu, Suwon 16499, Korea; ntthuyha@ajou.ac.kr (T.H.N.); madinga@ajou.ac.kr (H.B.K.)
- <sup>2</sup> Department of Chemical Engineering, Ajou University, 206, World-Cup-Ro, Yeongtong-Gu, Suwon 16499, Korea
- \* Correspondence: edpark@ajou.ac.kr; Tel.: +82-31-219-2384; Fax: 82-31-219-1612

Abstract:  $CO_2$  methanation is a promising reaction for utilizing  $CO_2$  using hydrogen generated by renewable energy. In this study, CO and  $CO_2$  methanation were examined over ceria-supported cobalt catalysts with low cobalt contents. The catalysts were prepared using a wet impregnation and co-precipitation method and pretreated at different temperatures. These preparation variables affected the catalytic performance as well as the physicochemical properties. These properties were characterized using various techniques including N<sub>2</sub> physisorption, X-ray diffraction, H<sub>2</sub> chemisorption, temperature-programmed reduction with H<sub>2</sub>, and temperature-programmed desorption after  $CO_2$  chemisorption. Among the prepared catalysts, the ceria-supported cobalt catalyst that was prepared using a wet impregnation method calcined in air at 500 °C, and reduced in H<sub>2</sub> at 500 °C, showed the best catalytic performance. It is closely related to the large catalytically active surface area, large surface area, and large number of basic sites. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study revealed the presence of carbonate, bicarbonate, formate, and CO on metallic cobalt.

Keywords: CO<sub>2</sub> methanation; CO methanation; cobalt; ceria; Co/CeO<sub>2</sub>



Citation: Nguyen, T.H.; Kim, H.B.; Park, E.D. CO and CO<sub>2</sub> Methanation over CeO<sub>2</sub>-Supported Cobalt Catalysts. *Catalysts* **2022**, *12*, 212. https://doi.org/10.3390/ catal12020212

Academic Editor: Anastasia Macario

Received: 28 December 2021 Accepted: 9 February 2022 Published: 11 February 2022

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). 1. Introduction

 $CO_2$  capture, utilization, and storage have become increasingly important in terms of mitigating global climate change caused by escalation in  $CO_2$  atmospheric concentrations since the first industrial revolution.  $CO_2$  utilization can be categorized into physical and chemical methods. The latter is preferred over the former as  $CO_2$  can be converted into other chemicals through chemical transformations [1]. Among the various chemical utilization methods of  $CO_2$ ,  $CO_2$  hydrogenation has attracted significant attention as it can produce various platform chemicals, including methane, methanol, and formic acid. It can also utilize hydrogen generated from water with a water electrolysis system powered by renewable energy [2–4].

In particular,  $CO_2$  methanation is considered an energy storage alternative to address variability in renewable energy as the produced methane can be transported through a gas grid. Furthermore,  $CO_2$  methanation (Reaction 1) is thermodynamically more feasible than other  $CO_2$  hydrogenation reactions (e.g., reverse water-gas-shift reaction (Reaction 2) and methanol synthesis (Reaction 3)) [5–7].

Reaction 1:

$$\begin{array}{rcl} \text{CO}_2(g) + 4\text{H}_2(g) \ \to \ \text{CH}_4(g) + 2\text{H}_2\text{O}(g) \ \Delta\text{G}^o_{298\ \text{K}} = -113.2\ \text{kJ/mol}, \ \Delta\text{H}^o_{298\ \text{K}} = -165\ \text{kJ/mol} \\ & \text{Reaction 2:} \end{array}$$

 $\begin{array}{rl} CO_2(g) + H_2(g) \ \to \ CO(g) + H_2O(g) \ \Delta G^o_{298 \ K} = 28.6 \ kJ/mol, \ \Delta H^o_{298 \ K} = 41.2 \ kJ/mol \\ \\ \mbox{Reaction 3:} \end{array}$ 

$$CO_2(g) + 3H_2(g) \rightarrow CH_3OH(g) + H_2O(g) \Delta G^o_{298 K} = 3.5 \text{ kJ/mol}, \Delta H^o_{298 K} = -49.5 \text{ kJ/mol}$$

Since CO<sub>2</sub> methanation is an exothermic and thermodynamically limited reaction, active catalysts at low temperatures should be developed. To date, some metal catalysts, including Ru [8–11], Ni [12–19], Co [20–26], and Fe [23,27–29] have been reported to be active in this reaction. However, Ni-based catalysts have been more thoroughly investigated due to their high activity and comparatively low cost [3,4]. In addition to the active metal, the nature of the support also affects the catalytic properties, such as the morphology of the active metal, metal dispersion, and reducibility of active metal/metal oxides [1,2,7]. Several metal oxide supports have been reported for  $CO_2$  methanation reactions, such as Al<sub>2</sub>O<sub>3</sub> [30–32], CeO<sub>2</sub> [33–35], SiO<sub>2</sub> [36–38], ZrO<sub>2</sub> [39–42], TiO<sub>2</sub> [43–45], La<sub>2</sub>O<sub>3</sub> [45–48],  $Y_2O_3$  [31,49], and  $Sm_2O_3$  [50,51]. Among them,  $CeO_2$  is a well-known support due to its redox properties and high surface oxygen vacancies. In particular, two oxidation states of cerium (e.g.,  $Ce^{3+}$  and  $Ce^{4+}$ ) are interconvertible between  $CeO_2$  and  $CeO_{2-x}$  under oxidized and reduced environments to release oxygen vacancy [52-55]. This is favorable for the dissociation of CO<sub>2</sub> into CO and O species on the catalyst surface in the dissociative CO<sub>2</sub> methanation mechanisms [52-54]. The other representative CO<sub>2</sub> methanation mechanism is the associative one, in which the chemisorbed  $CO_2$  ( $CO_2$  ads) and chemisorbed H<sub>2</sub> (H<sub>2 ads</sub>) species are found on the support surface and the active sites, respectively. In this  $CO_2$ associative reaction mechanism, several intermediates such as carbonate, bicarbonate, and formate are observed [1].

Additionally, catalytic performance is influenced by the catalyst preparation methods, such as precipitation [56], co-precipitation [57], wet impregnation [21,58], and co-wet impregnation [59]. The wet-impregnation method is a well-known traditional method that is simple and economical. However, this generally provides a weaker metal-support interaction than the co-precipitation method [60]. Pretreatment conditions are also key factors in controlling the structural properties of the catalysts [61,62].

In this study, cobalt and ceria were chosen as the active metal and support, respectively. Although cobalt is more expensive than nickel, cobalt is more stable under low-temperature reaction conditions than nickel as using nickel can result in the formation of unstable nickel carbonyl complexes in the presence of CO, especially at low temperatures. The cobalt content was fixed to low enough so that the catalyst price could be comparable with those of typical nickel-based catalysts with high nickel content (higher than 10 wt.%). Two preparation methods, wet impregnation and co-precipitation, were conducted in this study. The effect of pretreatment temperature on the catalytic performance was also investigated.

## 2. Results and Discussion

## 2.1. Physicochemical Properties of the Prepared Catalysts

The textural properties of the prepared catalysts were determined using N<sub>2</sub> physisorption. Figure S1 shows the N<sub>2</sub> adsorption and desorption isotherms of each catalyst. The impregnated samples (Co/CeO<sub>2</sub>) show a Type IV physisorption isotherm with an H2(a) hysteresis loop. The co-precipitated catalysts (Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>) exhibited a Type III physisorption isotherm with an H3 hysteresis loop. As listed in Table 1, the Brunauer-Emmett-Teller (BET) surface area of the catalyst decreased, however the average pore diameter of the catalyst increased with increasing calcination temperature, irrespective of the preparation method.

| Catalysts                                                | BET Surface Area <sup>b</sup><br>(m²/g) | Pore Volume <sup>b</sup><br>(cm <sup>3</sup> /g) | Average Pore<br>Diameter <sup>b</sup><br>(nm) | Cobalt<br>Dispersion <sup>c</sup><br>(%) | CASA <sup>c</sup><br>(m <sup>2</sup> /g <sub>cat</sub> ) | CO <sub>2</sub> Uptake <sup>d</sup><br>(µmol/g <sub>cat</sub> ) |
|----------------------------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|
| Co <sub>0.1</sub> Ce <sub>0.9</sub> O <sub>x</sub> (300) | 90                                      | 0.23                                             | 10.2                                          | 4.65                                     | 0.74                                                     | 124                                                             |
| $Co_{0.1}Ce_{0.9}O_{x}(500)$                             | 72                                      | 0.28                                             | 18.9                                          | 5.98                                     | 0.95                                                     | 146                                                             |
| $Co_{0.1}Ce_{0.9}O_x(700)$                               | 34                                      | 0.22                                             | 26.3                                          | 3.27                                     | 0.52                                                     | 59                                                              |
| Co/CeO <sub>2</sub> (300)                                | 130                                     | 0.12                                             | 3.9                                           | 3.87                                     | 0.94                                                     | 196                                                             |
| $Co/CeO_{2}(500)$                                        | 128                                     | 0.14                                             | 4.3                                           | 4.65                                     | 1.13                                                     | 186                                                             |
| Co/CeO <sub>2</sub> (700)                                | 60                                      | 0.13                                             | 8.6                                           | 3.72                                     | 0.90                                                     | 122                                                             |

Table 1. Physicochemical properties of ceria-supported cobalt catalysts <sup>a</sup>.

<sup>a</sup> All catalysts were calcined in air at different temperatures and reduced in H<sub>2</sub> at 500 °C. <sup>b</sup> The data were determined with N<sub>2</sub> physisorption. <sup>c</sup> The data were calculated based on H<sub>2</sub> chemisorption. <sup>d</sup> The data were quantified based on pulsed CO<sub>2</sub> chemisorption.

The cobalt contents of the impregnated and co-precipitated samples were determined to be 5.3 and 3.3 wt.%, respectively. The catalytically active surface area (CASA) of each catalyst was determined by H<sub>2</sub> chemisorption. Interestingly, the CASA and cobalt dispersions show a volcano plot as a function of the calcination temperature, irrespective of the preparation method.  $Co_{0.1}Ce_{0.9}O_x(500)$  and  $Co/CeO_2(500)$  have the largest CASA among the catalysts prepared using the co-precipitation and wet impregnation methods, respectively. The number of surface basic sites was measured using pulsed CO<sub>2</sub> chemisorption. Of the co-precipitated catalysts, the largest number of surface basic sites was obtained for  $Co_{0.1}Ce_{0.9}O_x(500)$ . The number of surface basic sites decreased with increasing calcination temperature for the Co/CeO<sub>2</sub> catalysts prepared using the wet impregnation method.

The bulk crystalline structures of the ceria-supported cobalt catalysts before and after reduction were probed using X-ray diffraction (XRD). Figure S2 reveals that the XRD peaks due to CeO<sub>2</sub> (JCPDS 34-0394) are dominant for the samples before reduction. The crystallite size of CeO<sub>2</sub> for the co-precipitated sample increased from 6.5 to 17.7 nm with increasing calcination temperature from 300 to 700 °C, respectively. Similarly, the crystallite size of CeO<sub>2</sub> for the impregnated samples also increased from 6.7 to 12.1 nm with increasing calcination temperature from 300 to 700 °C, respectively. As a result of the low cobalt content, the XRD peaks due to Co<sub>3</sub>O<sub>4</sub> (JCPDS 42-1467) were found only for samples calcined at 700 °C, irrespective of the preparation method.

Temperature-programmed reduction with  $H_2$  ( $H_2$ -TPR) was conducted to determine the reducibility of metal oxides in each catalyst. The  $H_2$ -TPR peaks can be divided into two regions: low-temperature and high-temperature. The low-temperature H<sub>2</sub>-TPR peaks range from 100 to 600 °C. These H<sub>2</sub>-TPR peaks are related to the reduction in cobalt oxides with different sizes and interactions with ceria. Generally, smaller metal oxides with weak interactions with a support can be reduced more easily at lower temperatures. Conversely, metal oxides with a strong interaction with a support can be reduced at high temperatures, even though the size of metal oxides is small. In the case of  $Co_3O_4$ , a two-step reduction process from  $Co_3O_4$  to cobalt through CoO is well known [63]. The high-temperature H<sub>2</sub>-TPR peak above 600 °C was ascribed to the reduction in surface ceria. As shown in Figure 1, the Co/CeO<sub>2</sub> catalysts prepared using the wet impregnation method have  $H_2$ -TPR peaks at lower temperatures than the  $Co_{0.1}Ce_{0.9}O_x$  catalysts prepared using a co-precipitation method. This indicates that the co-precipitation method can provide a stronger interaction between cobalt oxides and ceria than the wet impregnation method. It is noteworthy that the H<sub>2</sub>-TPR peak position moves toward a high temperature with increasing calcination temperature, irrespective of the preparation method. This reveals that a stronger interaction between cobalt oxides and ceria can be achieved at higher calcination temperatures.



Figure 1. H<sub>2</sub>-TPR patterns of ceria-supported cobalt catalysts calcined in air at different temperatures.

Temperature-programmed desorption after CO<sub>2</sub> chemisorption (CO<sub>2</sub>-TPD) was performed to probe the surface basicity of each catalyst. As shown in Figure 2, there are two desorption peaks. The first occurs at temperatures less than 200  $^\circ$ C, and the second occurs at temperatures ranging from 200–600 °C. The low-temperature CO<sub>2</sub>-TPD peaks originate from weakly adsorbed CO<sub>2</sub> on the catalyst surface, while the high-temperature CO<sub>2</sub>-TPD peaks indicate the strong adsorption of CO<sub>2</sub> onto the catalyst surface. The CO<sub>2</sub>-TPD peak observed at higher temperatures implies stronger chemisorption of  $CO_2$  onto the catalyst surface. The  $Co_{0.1}Ce_{0.9}O_x(300)$  catalyst presents no low-temperature  $CO_2$ -TPD peak, although it has two CO<sub>2</sub>-TPD peaks at high temperatures. However, all other catalysts exhibited low-temperature and high-temperature CO<sub>2</sub>-TPD peaks. These two CO<sub>2</sub>-TPD peaks were quantified, and the amounts of desorbed CO<sub>2</sub> for each catalyst are listed in Table S1. The amount of strongly chemisorbed CO<sub>2</sub> decreased with increasing calcination temperature for the co-precipitated catalyst ( $Co_{0.1}Ce_{0.9}O_x$ ). The smallest amount of strongly chemisorbed  $CO_2$  was obtained for the  $Co_{0.1}Ce_{0.9}O_x(700)$  catalyst. Similarly, the amount of strongly chemisorbed CO<sub>2</sub> decreased with increasing calcination temperature for the impregnated catalysts ( $Co/CeO_2$ ). The smallest amount of strongly chemisorbed  $CO_2$  was obtained for the  $Co/CeO_2(700)$  catalyst.



**Figure 2.**  $CO_2$ -TPD profiles of ceria-supported cobalt catalysts calcined in air at different temperatures and reduced in H<sub>2</sub> at 500 °C.

The catalytic activity for CO methanation was evaluated using ceria-supported Co catalysts. As shown in Figure 3, the Co/CeO<sub>2</sub>(500) catalyst exhibited the highest CO conversion at low temperatures of the tested catalysts, whereas  $Co_{0.1}Ce_{0.9}O_x(700)$  showed the lowest CO conversion even at high temperatures. As shown in Figures S3 and S4, CH<sub>4</sub> is the main product, and a small amount of  $C_2H_6$  is also detected as a byproduct. Separately, the specific reaction rate of CO methanation was also obtained under a kinetically controlled regime. The specific reaction rate decreased in the following order: Co/CeO<sub>2</sub>(500) > Co/CeO<sub>2</sub>(300)~Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(300) > Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(500)~Co/CeO<sub>2</sub>(700) > Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(700). This ranking order in the specific reaction rate is closely related to that of CASA (Table 1) for Co/CeO<sub>2</sub> catalysts. This implies that the catalytic activity for CO methanation is directly related to the catalytically active surface area.



**Figure 3.** Catalytic activity for CO methanation over ceria-supported cobalt catalysts. All catalysts were reduced in  $H_2$  at 500 °C. The feed gas is composed of 1 mol% CO, 49 mol% He, and 50 mol%  $H_2$ , and the total flow rate is 100 mL/min.

The apparent activation energy (E<sub>a</sub>) for CO methanation, calculated from the Arrhenius plot in Figure S5 over Co/CeO<sub>2</sub>(300), Co/CeO<sub>2</sub>(500), Co/CeO<sub>2</sub>(700), Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(300), Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(500), and Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(700) were 128, 107, 129, 128, 146, and 162 kJ/mol, respectively. It is worth mentioning that the lowest apparent activation energy is obtained for the catalyst with the largest CASA among Co/CeO<sub>2</sub> catalysts. The fact that the co-precipitated Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub> catalysts have higher apparent activation energies than the impregnated Co/CeO<sub>2</sub> catalysts seems to be related to the H<sub>2</sub>-TPR results that the co-precipitation method can provide a stronger interaction between cobalt oxides and ceria than the wet impregnation method. Castillo et al. [64] reported that the CO consumption turnover rate was significantly lower for smaller cobalt nanoparticles during CO methanation over Co/SiO<sub>2</sub> catalysts with different cobalt particle sizes ranging from 4 to 33 nm. The apparent activation energy was lower for smaller cobalt nanoparticles. The apparent activation energy was lower for smaller cobalt nanoparticles. The apparent activation energies for CO methanation over 10 wt.% Ni/CeO<sub>2</sub> and 58 wt.% Ni-CeO<sub>2</sub> were reported to be 115 and 133 kJ/mol, respectively [65].

# 2.3. $CO_2$ Methanation

The catalytic activity for CO<sub>2</sub> methanation was examined using ceria-supported cobalt catalysts. As shown in Figure 4, the tested catalysts are classified into three groups based on their catalytic activity for  $CO_2$  methanation. The most active catalyst groups include Co/CeO<sub>2</sub>(300), Co/CeO<sub>2</sub>(500), and Co/CeO<sub>2</sub>(700). The Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(300) catalyst was inferior to the most active catalyst group in this reaction. However, it was better than the least active catalyst groups ( $Co_{0.1}Ce_{0.9}O_x(500)$  and  $Co_{0.1}Ce_{0.9}O_x(700)$ ). Unlike CO methanation, the catalytic activity for  $CO_2$  methanation over ceria-supported cobalt catalysts tested in this study was not directly correlated with that of CASA (Table 1). In addition to CASA, the amount of moderate basic sites has been reported to be an additional factor affecting the catalytic activity for  $CO_2$  methanation [66]. It is worth mentioning that the least active catalyst ( $Co_{0.1}Ce_{0.9}O_x(700)$ ) had the lowest  $CO_2$  uptake among the prepared catalysts. Methane was produced as the main product, and CO was also detected as a byproduct due to the reversed water-gas-shift side reaction (Figures S6 and S7). The apparent  $E_a$  for CO<sub>2</sub> methanation calculated from the Arrhenius plot in Figure S8 over  $Co/CeO_2(300)$ ,  $Co/CeO_2(500)$ ,  $Co/CeO_2(700)$ ,  $Co_{0.1}Ce_{0.9}O_x(300)$ ,  $Co_{0.1}Ce_{0.9}O_x(500)$ , and  $Co_{0,1}Ce_{0,9}O_x(700)$  were 81, 77, 86, 81, 84, and 86 kJ/mol, respectively. Interestingly, all catalysts have similar apparent activation energies. The reported activation energies for  $CO_2$  methanation over nickel-based catalysts range between 55 and 106 kJ/mol [47,67]. The apparent activation energies for CO<sub>2</sub> methanation over 58 wt.% Ni-CeO<sub>2</sub> were reported to be 95 kJ/mol [65]. Xu et al. [41] reported a higher activation energy for  $CO_2$  methanation over Ni/ZrO<sub>2</sub> (99.7 kJ/mol) than over Ni/Y<sub>0.1</sub>Zr<sub>0.9</sub>O<sub>x</sub> (84.2 kJ/mol). Furthermore, the activation energy of the  $Co/Ce_{0.8}Zr_{0.2}O$  catalyst was reported to be less than that of Ni/Ce<sub>0.8</sub>Zr<sub>0.2</sub>O catalysts [68].



**Figure 4.** Catalytic activity for CO<sub>2</sub> methanation over ceria-supported cobalt catalysts. All catalysts were reduced in H<sub>2</sub> at 500 °C. The feed gas is composed of 1 mol% CO<sub>2</sub>, 49 mol% He, and 50 mol% H<sub>2</sub>, and the total flow rate is 100 mL/min.

## 2.4. In Situ DRIFTS Study

To probe the surface species during  $CO_2$  adsorption and methanation, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study was conducted over the most active catalysts selected from co-precipitated and impregnated catalysts (e.g.,

 $Co_{0.1}Ce_{0.9}O_x(300)$  and  $Co/CeO_2(500)$ ). The molecularly absorbed  $CO_2$  was observed at  $v = 2400-2200 \text{ cm}^{-1}$  [69]. CO<sub>2</sub> adsorption was initially performed at 40 °C (Figure 5). The typical IR peaks observed in this study are listed in Table 2. Bicarbonate and carbonate species were detected during CO<sub>2</sub> adsorption. For the bicarbonate intermediate species, asymmetric and symmetric stretching of OCO ( $v_{asy}(OCO)$  and  $v_s(OCO)$ ) were observed at v = 1602 and 1408 cm<sup>-1</sup> over Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(300). The same bands were observed at  $\nu = 1654$  and 1434 cm<sup>-1</sup> over Co/CeO<sub>2</sub>(500). In addition, COH stretching for bicarbonate species (HCO<sub>3</sub><sup>-</sup>) clearly appeared at  $\nu = 1217 \text{ cm}^{-1}$  over Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(300), while it was not observed for  $Co/CeO_2(500)$ . For the carbonate species, monodentate and bidentate were confirmed over Co/CeO<sub>2</sub>(500) at  $v_{asv}(OCO) = 1475$  and 1577 cm<sup>-1</sup> and  $v_s(OCO) = 1380$ , 1331, and 1265 cm<sup>-1</sup>, while the symmetric OCO peak centered at v = 1293 cm<sup>-1</sup> was detected for  $Co_{0.1}Ce_{0.9}O_x(300)$ . During  $CO_2$  adsorption at 300 °C (Figures S9 and S10), the bicarbonate and carbonate species also occurred at the same position as at 40 °C. However, the noticeable difference during  $CO_2$  adsorption at low and high temperatures is the weak and broad peaks of adsorbed CO\* species on the metallic cobalt at v = 2184, 2142, 2045, and 2119 cm<sup>-1</sup> over  $Co_{0.1}Ce_{0.9}O_x(300)$  and  $Co/CeO_2(500)$ . This implies that the C=O double bond in the CO<sub>2</sub> molecule can be broken down to generate CO\* intermediates at high temperatures.



**Figure 5.** In situ DRIFTS spectra after adsorption of  $CO_2$  on  $Co_{0.1}Ce_{0.9}O_x(300)$  (**A**) and  $Co/CeO_2(500)$  (**B**) at 40 °C. The feed gas is composed of 10 mol%  $CO_2$  and 90 mol% He.

The in situ DRIFTS study was also conducted during CO<sub>2</sub> methanation with increasing reaction temperature. Figures 6 and 7 show the IR spectra of  $Co_{0.1}Ce_{0.9}O_x(300)$  and Co/CeO<sub>2</sub>(500), respectively. The observed IR bands are summarized in Table 2. The sharp IR peak at v = 1216 cm<sup>-1</sup>, which can be ascribed to COH stretching at temperatures below 300 °C, is responsible for the bicarbonate species observed over both  $Co_{0.1}Ce_{0.9}O_x(300)$  and Co/CeO<sub>2</sub>(500). Furthermore, carbonate species were found in the monodentate and bidentate forms, whereas the OCO and CO vibrations were obtained in the range of v = 1575and  $\nu = 1075$  cm<sup>-1</sup>. In particular, the specific formate species, which are common intermediates during CO<sub>2</sub> hydrogenation, were also found in the stretching of CH and OCO at the high-frequency adsorption band. The vibrations at v = 2944-2713 cm<sup>-1</sup> are ascribed to CH stretching. The weak vibration of adsorbed CO\* species on metallic cobalt was also detected at v = 2115 and 2075 cm<sup>-1</sup> over Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(300), while Co<sup>n+</sup>-CO bridged species were only observed at  $v = 2115 \text{ cm}^{-1}$  over Co/CeO<sub>2</sub>(500). In addition, methane adsorbed on the catalyst surface was detected at v = 1305 and 3014 cm<sup>-1</sup>. Based on the IR study, it can be proposed that the  $CO_2$  associative pathway is the main route as a result of the predominant appearance of bicarbonate, carbonate, and formate intermediates. However, the CO<sub>2</sub> dissociative route cannot be excluded to produce methane over ceria-supported cobalt catalysts.

**Table 2.** FT-IR peaks during  $CO_2$  adsorption and hydrogenation over  $Co_{0.1}Ce_{0.9}O_x(300)$  and  $Co/CeO_2(500)$ .

|                                                                                         | IR Peak Position (cm <sup>-1</sup> )                     |                      |                          |                           |                          |                            |                                                                             |            |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|--------------------------|---------------------------|--------------------------|----------------------------|-----------------------------------------------------------------------------|------------|
| Vibrational Mode<br>Assignments                                                         | Co <sub>0.1</sub> Ce <sub>0.9</sub> O <sub>x</sub> (300) |                      |                          | Ce/CeO <sub>2</sub> (500) |                          |                            |                                                                             | References |
|                                                                                         | Adsorption                                               |                      | Hydrogenation Adsorption |                           | Hydrogenation Literature |                            |                                                                             |            |
| -                                                                                       | 40 °C                                                    | 300 °C               |                          | 40 °C                     | 300 °C                   |                            |                                                                             |            |
| Absorbed CO*<br>species on metallic<br>cobalt                                           |                                                          | 2184<br>2142<br>2045 | 2115<br>2075             |                           | 2119                     | 2115                       | 2181, 2168, 2118,<br>2084, 2048                                             | [70,71]    |
| Absorbed CO <sub>2</sub>                                                                |                                                          |                      |                          |                           |                          |                            | 2200-2400                                                                   | [69]       |
| Bicarbonate<br>(HCO <sub>3</sub> <sup>-</sup> )                                         |                                                          |                      |                          |                           |                          |                            |                                                                             |            |
|                                                                                         | 1602<br>1408<br>1217                                     | 1217                 | 1216                     | 1654<br>1434              |                          | 3636, 3667<br>1216         | 3600–3627, 3620<br>1655, 1652, 1650<br>1440, 1424, 1435<br>1225, 1220, 1228 | [33,72–74] |
| Carbonate (CO <sub>3</sub> <sup>-</sup> )                                               |                                                          |                      |                          |                           |                          |                            | 1550 and 1380                                                               |            |
| $\begin{array}{c} Monodentate \\ \nu_{asy}(OCO) \\ \nu_{s}(OCO) \\ \nu(CO) \end{array}$ | 1450<br>1385                                             |                      | 1394                     | 1475<br>1380              | 1457<br>1354             | 1452<br>1349, 1396<br>1075 | 1446–1590<br>1380–1395<br>1040                                              | [33,69,74] |
| $\begin{array}{c} Bidentate \\ \nu_{asy}(OCO) \\ \nu_{s}(OCO) \end{array}$              | 1293                                                     | 1288                 | 1575<br>1286             | 1545<br>1265<br>1331      | 1577<br>1279             | 1284                       | 1535–1670<br>1243–1355                                                      |            |
| Formate<br>v(CH)<br>v(OCO)                                                              |                                                          | 2850                 | 2713, 2849<br>2944       |                           | 2848<br>1523             | 2838, 2719<br>2940         | 2756–2866, 2905<br>1540, 1510, 1450                                         | [69,72,73] |
| Methane                                                                                 |                                                          |                      | 3014                     |                           |                          | 1305, 3014                 | 1305 and 3015                                                               | [73]       |



**Figure 6.** In situ DRIFTS spectra during CO<sub>2</sub> methanation at temperatures of 100-450 °C over the  $Co_{0.1}Ce_{0.9}O_x(300)$  catalyst in the range of 2500–1000 cm<sup>-1</sup> (**A**) and 2500-4000 cm<sup>-1</sup> (**B**). The feed is composed of 1 mol% CO<sub>2</sub>, 49 mol% He, and 50 mol% H<sub>2</sub>.



**Figure 7.** In situ DRIFTS spectra during CO<sub>2</sub> methanation at temperatures of 100–450 °C over the Co/CeO<sub>2</sub>(500) catalyst in the range of 2500–1000 cm<sup>-1</sup> (**A**) and 2500–4000 cm<sup>-1</sup> (**B**). The feed is composed of 1 mol% CO<sub>2</sub>, 49 mol% He, and 50 mol% H<sub>2</sub>.

## 3. Experimental Sections

# 3.1. Materials

All chemicals, including cobalt (II) nitrate hexahydrate (Junsei Chemical Co. Ltd., Tokyo, Japan), cerium (III) nitrate hexahydrate (Junsei Chemical Co. Ltd., Tokyo, Japan), and ceria (Rodia,  $S_{BET} = 250 \text{ m}^2/\text{g}$ ), were reagent grade and used as received.

## 3.2. Preparation of the Catalysts

 $Co_{0.1}Ce_{0.9}O_x$  catalysts were prepared using the co-precipitation method. The calculated amount of each precursor was dissolved in distilled (DI) water to achieve 0.1 M total metal precursor solution. The pH was then increased by adding 0.5 M NH<sub>4</sub>OH aqueous solution dropwise to reach a final pH of nine with vigorous stirring. The slurry was aged at room temperature for 12 h, filtered, and washed several times with DI water. The recovered solid cake was dried at 110 °C overnight under vacuum conditions. The dried sample was further calcined in air at different temperatures and finally reduced in H<sub>2</sub> at 500 °C.

For comparison, the Co/CeO<sub>2</sub> catalysts were prepared using a wet impregnation method. Cobalt precursor (1.30 g) was dissolved in 50.0 mL DI water in a round flask. Ceria (5.00 g) was added to the cobalt precursor solution. This slurry was mixed for 6 h at 60 °C in a rotary evaporator (BUCHI Labortechnik AG, Flawil, Switzerland), and then the excess water was evaporated while maintaining low pressure. The recovered powder was dried at 110 °C overnight under vacuum conditions. The dried sample was further calcined in air at different temperatures and finally reduced in H<sub>2</sub> at 500 °C.

The calcination temperature was included in the sample name to differentiate each catalyst calcined at different temperatures. For example,  $Co_{0.1}Ce_{0.9}O_x(300)$  and  $Co/CeO_2(300)$ are catalysts prepared by co-precipitation and wet impregnation, respectively. These catalysts were calcined in air at 300 °C.

#### 3.3. Catalyst Characterizations

 $N_2$  physisorption was performed at -196 °C on a Micromeritics ASAP 2020 (Micromeritics Ltd.), surface area and pore size analyzer after degassing at 200 °C under vacuum for 6 h. The specific surface area and pore size distribution were determined using the BET and Barret-Joyner-Halenda desorption methods, respectively.

XRD patterns were measured using a Rigaku D/Max instrument with a Cu K<sub> $\alpha$ </sub> source. The crystallite size of ceria was determined using the Scherrer Formula (1):

$$d = \frac{K\lambda}{\beta\cos(\theta)} \tag{1}$$

where d is the average particle size (nm), K is the dimensionless shape factor (0.9),  $\lambda$  is the wavelength of the X-ray radiation (0.15406 nm),  $\beta$  is the full width at half maximum (FWHM) of a peak in rad, and  $\theta$  is the Bragg angle.

The temperature-programmed reduction with H<sub>2</sub> (H<sub>2</sub>-TPR) was conducted using a Micromeritics 2920 Autochem instrument. A sample of 100 mg was loaded in a quartz tube, and the temperature was increased from room temperature (RT) to 900 °C at a heating rate of 10 °C/min under a flow of 10 mol% H<sub>2</sub>/Ar.

The H<sub>2</sub>-chemisorption was performed using a Micromeritics ASAP 2020 instrument (Micromeritics Ltd.), to determine the metal dispersion and CASA. A sample of 200 mg was placed in a quartz tube, reduced in H<sub>2</sub> at 500 °C for 1 h, cooled down to room temperature, and typical H<sub>2</sub>-chemisorption was conducted.

Pulsed CO<sub>2</sub> chemisorption and temperature-programmed desorption after CO<sub>2</sub> chemisorption (CO<sub>2</sub>-TPD) were conducted to measure the amount of basic sites and adsorption strength of CO<sub>2</sub> in each sample, respectively. They were performed using a Micromeritics 2920 Autochem instrument. A sample of 100 mg was loaded into a quartz tube, reduced under 10 mol% H<sub>2</sub>/Ar flow at 500 °C for 1 h, cooled to room temperature, and received pulsed injection of CO<sub>2</sub>. After saturation, CO<sub>2</sub> desorption was conducted using a He steam flow rate of 30 mL/min. The mass ion signals recorded at m/e = 44, m/e = 18, and m/e = 16 were monitored to detect desorbed CO<sub>2</sub>, H<sub>2</sub>O, and CH<sub>4</sub>, respectively.

The metal content in each sample was determined by inductively coupled plasmaoptical emission spectroscopy (ICP-OES) using a Thermo Scientific iCAP 6500 instrument.

The evolution of surface species during CO<sub>2</sub> adsorption and CO<sub>2</sub> hydrogenation was probed with in situ DRIFTS on a NICOLET 6700 (Thermal Scientific, Waltham, MA, USA) spectrometer with a ZnSe window at a resolution of  $3.857 \text{ cm}^{-1}$ . The sample was initially reduced in situ in the DRIFTS cell at 500 °C for 1 h under a H<sub>2</sub> flow rate of 20 mL/min and then cooled to the desired temperature. The cell was purged and stabilized with He flow for 20 min. The background was then collected under a He flow. The CO<sub>2</sub> adsorptions at 40 and 300 °C were separately performed under a flow of 10% CO<sub>2</sub>/He, and the spectra were recorded simultaneously. In addition, CO<sub>2</sub> hydrogenation was examined at different temperatures under the same operating conditions mentioned above, and the spectra were collected after 15 min.

#### 3.4. Catalytic Performance

The catalyst (100 mg) was placed in a fixed-bed reactor (internal diameter = 3 mm and length = 345 mm) and reduced under H<sub>2</sub> flow at a flow rate of 30 mL/min for 1 h. The reactor was then cooled to the desired temperature, and the catalyst was placed in contact with a feed composed of 1 mol% CO (or CO<sub>2</sub>), 49 mol% He, and 50 mol% H<sub>2</sub> at a flow rate of 100 mL/min. A mass flow rate controller (MFC) (Brooks Instrument) was used to control the flow rate of each gas.

The kinetic experiment was conducted separately using 80 mg of the catalyst and 200 mg of  $\alpha$ -alumina powder as a diluent. The CO (or CO<sub>2</sub>) conversion was controlled to be less than 20%, and the E<sub>a</sub> was calculated using the Arrhenius Equation (2):

$$k = Aexp\left(-\frac{E_a}{RT}\right)$$
(2)

where k is the reaction rate constant, A is the frequency factor,  $E_a$  is the apparent activation energy, R is the gas constant, and T is the temperature.

The effluent gas was separated using a packed column filled with carbonate for thermal conductive detector (TCD) and a capillary Poralot Q column for the flame ionization detector (FID) in a gas chromatograph (YL Instrument 6100GC). The CO (or  $CO_2$ ) conversion (X<sub>CO</sub> or X<sub>CO<sub>2</sub></sub>, %) and the product yields, including CH<sub>4</sub> and CO (Y<sub>CH<sub>4</sub></sub> and Y<sub>CO</sub>, %) were determined according to the carbon balance as follows:

$$X_{\rm CO} = \frac{C_{\rm CO \ input} - C_{\rm CO \ output}}{C_{\rm CO \ input}} \times 100\%$$
(3)

$$X_{\rm CO_2} = \frac{C_{\rm CO_2 input} - C_{\rm CO_2 output}}{C_{\rm CO_2 input}} \times 100\%$$
(4)

$$Y_{CH_4} = \frac{C_{CH_4 \text{ output}}}{C_{CO \text{ input}} + C_{CO_2 \text{ input}}} \times 100\%$$
(5)

$$Y_{CO} = \frac{C_{CO \text{ output}}}{C_{CO_2 \text{ input}}} \times 100\%$$
(6)

The input and output concentrations of each gas (i) are denoted as C<sub>i input</sub> and C<sub>i output</sub>, respectively.

## 4. Conclusions

The catalytic activity for CO and CO<sub>2</sub> methanation was dependent on the preparation method for ceria-supported cobalt catalysts with low cobalt contents. Stronger interactions between cobalt oxides and ceria were observed for the co-precipitated catalysts than for wet-impregnated interactions. A moderate calcination temperature is plausible for achieving a high CASA. The total number of basic sites decreased significantly with an increasing calcination temperature of 500 to 700 °C for the co-precipitated and impregnated catalysts. CO methanation activity appears to be closely related to CASA, and the CASA and the number of strong basic sites affect the catalytic activity for CO<sub>2</sub> methanation. According to the in situ DRIFTS results, CO<sub>2</sub> methanation proceeds mainly through the CO<sub>2</sub> associative pathway, in which carbonate, bicarbonate, and formate intermediates are detected. Additionally, the CO<sub>2</sub> dissociative route worked simultaneously as we also observed the adsorbed CO species on the metallic cobalt surface sites.

**Supplementary Materials:** The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/catal12020212/s1, Figure S1: Nitrogen adsorption and desorption isotherms (A,B) and pore size distribution (C) of ceria-supported cobalt catalysts calcined in air at different temperatures. Figure S2: XRD patterns of ceria-supported cobalt catalysts calcined in air at different temperatures (A) and after reduction in H<sub>2</sub> at 500 °C (B). Figure S3: Carbon selectivities for CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> for CO methanation over ceria-supported cobalt catalysts. Figure S4: Product yields for CO methanation over ceria-supported cobalt catalysts. Figure S5: Arrhenius plot for CO methanation over ceria-supported cobalt catalysts. Figure S6: Carbon selectivities for CH<sub>4</sub> and CO for CO<sub>2</sub> methanation over ceria-supported cobalt catalysts. Figure S7: Product yields for CO<sub>2</sub> methanation over ceria-supported cobalt catalysts. Figure S7: Product yields for CO<sub>2</sub> methanation over ceria-supported cobalt catalysts. Figure S8: Arrhenius plot for CO<sub>2</sub> methanation over ceria-supported cobalt catalysts. Figure S8: Arrhenius plot for CO<sub>2</sub> methanation over ceria-supported cobalt catalysts. Figure S9. In situ DRIFTS spectra after adsorption of CO<sub>2</sub> on the Co<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>x</sub>(300) catalyst at 300 °C. The feed was composed of 33 mol% CO<sub>2</sub> and 67 mol% He. Figure S10. In situ DRIFTS spectra after adsorption of CO<sub>2</sub> on the Co/CeO<sub>2</sub>(500) catalyst at 300 °C. The feed was composed of 10 mol% CO<sub>2</sub> and 90 mol% He. Table S1: Quantitative analysis of the CO<sub>2</sub>-TPD data.

**Author Contributions:** Experimental investigation and data analysis, T.H.N.; formal analysis, H.B.K.; writing—original draft preparation, T.H.N.; writing—review and editing, supervision, project administration, and funding acquisition, E.D.P. All authors have read and agreed to the published version of the manuscript.

**Funding:** This work was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3D3A1A01064899).

Conflicts of Interest: The authors declare no conflict of interest.

## References

- 1. Nguyen, T.T.H.; Park, E.D. A mini-review on power-to-methane catalysts. J. Energy Eng. 2021, 30, 10–25.
- Sreedhar, I.; Varun, Y.; Singh, S.A.; Venugopal, A.; Reddy, B.M. Developmental trends in CO<sub>2</sub> methanation using various catalysts. *Catal. Sci. Technol.* 2019, 9, 4478–4504. [CrossRef]
- Younas, M.; Loong Kong, L.; Bashir, M.J.K.; Nadeem, H.; Shehzad, A.; Sethupathi, S. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO<sub>2</sub>. *Energy Fuels* 2016, 30, 8815–8831. [CrossRef]
- 4. Li, W.; Wang, H.; Jiang, X.; Zhu, J.; Liu, Z.; Guo, X.; Song, C. A short review of recent advances in CO<sub>2</sub> hydrogenation to hydrocarbons over heterogeneous catalysts. *RSC Adv.* **2018**, *8*, 7651–7669. [CrossRef]
- Ashok, J.; Pati, S.; Hongmanorom, P.; Tianxi, Z.; Junmei, C.; Kawi, S. A review of recent catalyst advances in CO<sub>2</sub> methanation processes. *Catal. Today* 2020, 356, 471–489. [CrossRef]
- 6. Bailera, M.; Lisbona, P.; Romeo, L.M.; Espatolero, S. Power to gas projects review: Lab, pilot and demo plants for storing renewable energy and CO<sub>2</sub>. *Renew. Sustain. Energy Rev.* **2017**, *69*, 292–312. [CrossRef]
- Gao, J.; Liu, Q.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv. 2015, 5, 22759–22776. [CrossRef]
- 8. Garbarino, G.; Bellotti, D.; Riani, P.; Magistri, L.; Busca, G. Methanation of carbon dioxide on Ru/Al<sub>2</sub>O<sub>3</sub> and Ni/Al<sub>2</sub>O<sub>3</sub> catalysts at atmospheric pressure: Catalysts activation, behaviour and stability. *Int. J. Hydrog. Energy* **2015**, *40*, 9171–9182. [CrossRef]
- 9. Kim, A.; Sanchez, C.; Haye, B.; Boissière, C.; Sassoye, C.; Debecker, D.P. Mesoporous TiO<sub>2</sub> support materials for Ru-based CO<sub>2</sub> methanation catalysts. *ACS Appl. Nano Mater.* **2019**, *2*, 3220–3230. [CrossRef]
- Chen, S.; Abdel-Mageed, A.M.; Dyballa, M.; Parlinska-Wojtan, M.; Bansmann, J.; Pollastri, S.; Olivi, L.; Aquilanti, G.; Behm, R.J. Raising the COx methanation activity of a Ru/gamma-Al<sub>2</sub>O<sub>3</sub> catalyst by activated modification of metal-support interactions. *Angew. Chem. Int. Ed. Eng.* 2020, 59, 22763–22770. [CrossRef]
- Quindimil, A.; de la Torre, U.; Pereda-Ayo, B.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; González-Marcos, J.A.; Bueno-López, A.; González-Velasco, J.R. Effect of metal loading on the CO<sub>2</sub> methanation: A comparison between alumina supported Ni and Ru catalysts. *Catal. Today* 2020, 356, 419–432. [CrossRef]
- 12. Tan, J.; Wang, J.; Zhang, Z.; Ma, Z.; Wang, L.; Liu, Y. Highly dispersed and stable Ni nanoparticles confined by MgO on ZrO<sub>2</sub> for CO<sub>2</sub> methanation. *Appl. Surf. Sci.* **2019**, *481*, 1538–1548. [CrossRef]
- 13. Bacariza, M.C.; Amjad, S.; Teixeira, P.; Lopes, J.M.; Henriques, C. Boosting Ni Dispersion on zeolite-supported catalysts for CO<sub>2</sub> methanation: The influence of the impregnation solvent. *Energy Fuels* **2020**, *34*, 14656–14666. [CrossRef]
- 14. Guilera, J.; del Valle, J.; Alarcón, A.; Díaz, J.A.; Andreu, T. Metal-oxide promoted Ni/Al<sub>2</sub>O<sub>3</sub> as CO<sub>2</sub> methanation micro-size catalysts. *J. CO*<sub>2</sub> *Util.* **2019**, *30*, 11–17. [CrossRef]
- 15. Song, F.; Zhong, Q.; Yu, Y.; Shi, M.; Wu, Y.; Hu, J.; Song, Y. Obtaining well-dispersed Ni/Al<sub>2</sub>O<sub>3</sub> catalyst for CO<sub>2</sub> methanation with a microwave-assisted method. *Int. J. Hydrog. Energy* **2017**, *42*, 4174–4183. [CrossRef]
- 16. Daroughegi, R.; Meshkani, F.; Rezaei, M. Enhanced activity of CO<sub>2</sub> methanation over mesoporous nanocrystalline Ni–Al<sub>2</sub>O<sub>3</sub> catalysts prepared by ultrasound-assisted co-precipitation method. *Int. J. Hydrog. Energy* **2017**, *42*, 15115–15125. [CrossRef]
- 17. Kesavan, J.K.; Luisetto, I.; Tuti, S.; Meneghini, C.; Iucci, G.; Battocchio, C.; Mobilio, S.; Casciardi, S.; Sisto, R. Nickel supported on YSZ: The effect of Ni particle size on the catalytic activity for CO<sub>2</sub> methanation. *J. CO*<sub>2</sub> *Util.* **2018**, *23*, 200–211. [CrossRef]
- 18. Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C.J.; Berben, P.H.; Meirer, F.; Weckhuysen, B.M. Unravelling structure sensitivity in CO<sub>2</sub> hydrogenation over nickel. *Nat. Catal.* **2018**, *1*, 127–134. [CrossRef]
- 19. Danaci, S.; Protasova, L.; Lefevere, J.; Bedel, L.; Guilet, R.; Marty, P. Efficient CO<sub>2</sub> methanation over Ni/Al<sub>2</sub>O<sub>3</sub> coated structured catalysts. *Catal. Today* **2016**, *273*, 234–243. [CrossRef]
- 20. Zhou, G.; Wu, T.; Xie, H.; Zheng, X. Effects of structure on the carbon dioxide methanation performance of Co-based catalysts. *Int. J. Hydrog. Energy* **2013**, *38*, 10012–10018. [CrossRef]
- Li, W.; Liu, Y.; Mu, M.; Ding, F.; Liu, Z.; Guo, X.; Song, C. Organic acid-assisted preparation of highly dispersed Co/ZrO<sub>2</sub> catalysts with superior activity for CO<sub>2</sub> methanation. *Appl. Catal. B Environ.* 2019, 254, 531–540. [CrossRef]
- Razzaq, R.; Li, C.; Usman, M.; Suzuki, K.; Zhang, S. A highly active and stable Co<sub>4</sub>N/γ-Al<sub>2</sub>O<sub>3</sub> catalyst for CO and CO<sub>2</sub> methanation to produce synthetic natural gas (SNG). *Chem. Eng. J.* 2015, 262, 1090–1098. [CrossRef]
- 23. Yu, W.-Z.; Fu, X.-P.; Xu, K.; Ling, C.; Wang, W.-W.; Jia, C.-J. CO<sub>2</sub> methanation catalyzed by a Fe-Co/Al<sub>2</sub>O<sub>3</sub> catalyst. *J. Environ. Chem. Eng.* **2021**, *9*, 105594. [CrossRef]
- 24. Li, W.; Nie, X.; Jiang, X.; Zhang, A.; Ding, F.; Liu, M.; Liu, Z.; Guo, X.; Song, C. ZrO<sub>2</sub> support imparts superior activity and stability of Co catalysts for CO<sub>2</sub> methanation. *Appl. Catal. B Environ.* **2018**, *220*, 397–408. [CrossRef]
- Li, W.; Zhang, G.; Jiang, X.; Liu, Y.; Zhu, J.; Ding, F.; Liu, Z.; Guo, X.; Song, C. CO<sub>2</sub> hydrogenation on unpromoted and mpromoted Co/TiO<sub>2</sub> catalysts (M = Zr, K, Cs): Effects of crystal phase of supports and metal-support interaction on tuning product distribution. ACS Catal. 2019, 9, 2739–2751. [CrossRef]
- Le, T.A.; Kim, M.S.; Lee, S.H.; Park, E.D. CO and CO<sub>2</sub> methanation over supported cobalt catalysts. *Top. Catal.* 2017, 60, 714–720. [CrossRef]
- 27. Satthawong, R.; Koizumi, N.; Song, C.; Prasassarakich, P. Comparative study on CO<sub>2</sub> hydrogenation to higher hydrocarbons over Fe-based bimetallic catalysts. *Top. Catal.* **2013**, *57*, 588–594. [CrossRef]
- Serrer, M.-A.; Gaur, A.; Jelic, J.; Weber, S.; Fritsch, C.; Clark, A.H.; Saraçi, E.; Studt, F.; Grunwaldt, J.-D. Structural dynamics in Ni–Fe catalysts during CO<sub>2</sub> methanation—Role of iron oxide clusters. *Catal. Sci. Technol.* 2020, 10, 7542–7554. [CrossRef]

- Pastor-Pérez, L.; Shah, M.; le Saché, E.; Ramirez Reina, T. Improving Fe/Al<sub>2</sub>O<sub>3</sub> catalysts for the reverse water-gas shift reaction: On the effect of cs as activity/selectivity promoter. *Catalysts* 2018, *8*, 608. [CrossRef]
- Rahmani, S.; Rezaei, M.; Meshkani, F. Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al<sub>2</sub>O<sub>3</sub> for CO<sub>2</sub> methanation. *J. Ind. Eng. Chem.* 2014, 20, 1346–1352. [CrossRef]
- Italiano, C.; Llorca, J.; Pino, L.; Ferraro, M.; Antonucci, V.; Vita, A. CO and CO<sub>2</sub> methanation over Ni catalysts supported on CeO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> oxides. *Appl. Catal. B Environ.* 2020, 264, 118494. [CrossRef]
- 32. Visconti, C.G.; Lietti, L.; Tronconi, E.; Forzatti, P.; Zennaro, R.; Finocchio, E. Fischer–Tropsch synthesis on a Co/Al<sub>2</sub>O<sub>3</sub> catalyst with CO<sub>2</sub> containing syngas. *Appl. Catal. A Gen.* **2009**, *355*, 61–68. [CrossRef]
- 33. Vile, G.; Colussi, S.; Krumeich, F.; Trovarelli, A.; Perez-Ramirez, J. Opposite face sensitivity of CeO(<sub>2</sub>) in hydrogenation and oxidation catalysis. *Angew. Chem. Int. Ed. Eng.* **2014**, *53*, 12069–12072. [CrossRef] [PubMed]
- Tada, S.; Shimizu, T.; Kameyama, H.; Haneda, T.; Kikuchi, R. Ni/CeO<sub>2</sub> catalysts with high CO<sub>2</sub> methanation activity and high CH<sub>4</sub> selectivity at low temperatures. *Int. J. Hydrog. Energy* 2012, *37*, 5527–5531. [CrossRef]
- 35. Zhou, G.; Liu, H.; Cui, K.; Xie, H.; Jiao, Z.; Zhang, G.; Xiong, K.; Zheng, X. Methanation of carbon dioxide over Ni/CeO<sub>2</sub> catalysts: Effects of support CeO<sub>2</sub> structure. *Int. J. Hydrog. Energy* **2017**, *42*, 16108–16117. [CrossRef]
- Dias, Y.R.; Perez-Lopez, O.W. Carbon dioxide methanation over Ni-Cu/SiO<sub>2</sub> catalysts. *Energy Convers. Manag.* 2020, 203, 112214.
   [CrossRef]
- Ye, R.-P.; Gong, W.; Sun, Z.; Sheng, Q.; Shi, X.; Wang, T.; Yao, Y.; Razink, J.J.; Lin, L.; Zhou, Z.; et al. Enhanced stability of Ni/SiO<sub>2</sub> catalyst for CO<sub>2</sub> methanation: Derived from nickel phyllosilicate with strong metal-support interactions. *Energy* 2019, 188, 116059. [CrossRef]
- Park, J.-N.; McFarland, E.W. A highly dispersed Pd–Mg/SiO<sub>2</sub> catalyst active for methanation of CO<sub>2</sub>. J. Catal. 2009, 266, 92–97. [CrossRef]
- Liu, C.; Wang, W.; Xu, Y.; Li, Z.; Wang, B.; Ma, X. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO<sub>3</sub>/ZrO<sub>2</sub> catalyst. *Appl. Surf. Sci.* 2018, 441, 482–490. [CrossRef]
- Zhao, K.; Wang, W.; Li, Z. Highly efficient Ni/ZrO<sub>2</sub> catalysts prepared via combustion method for CO<sub>2</sub> methanation. *J. CO<sub>2</sub> Util.* 2016, 16, 236–244. [CrossRef]
- 41. Xu, X.; Tong, Y.; Huang, J.; Zhu, J.; Fang, X.; Xu, J.; Wang, X. Insights into CO<sub>2</sub> methanation mechanism on cubic ZrO<sub>2</sub> supported Ni catalyst via a combination of experiments and DFT calculations. *Fuel* **2021**, *283*, 118867. [CrossRef]
- Ren, J.; Qin, X.; Yang, J.-Z.; Qin, Z.-F.; Guo, H.-L.; Lin, J.-Y.; Li, Z. Methanation of carbon dioxide over Ni–M/ZrO<sub>2</sub> (M = Fe, Co, Cu) catalysts: Effect of addition of a second metal. *Fuel Process. Technol.* 2015, 137, 204–211. [CrossRef]
- 43. Chai, S.; Men, Y.; Wang, J.; Liu, S.; Song, Q.; An, W.; Kolb, G. Boosting CO<sub>2</sub> methanation activity on Ru/TiO<sub>2</sub> catalysts by exposing (001) facets of anatase TiO<sub>2</sub>. *J. CO<sub>2</sub> Util.* **2019**, *33*, 242–252. [CrossRef]
- 44. Kim, A.; Debecker, D.P.; Devred, F.; Dubois, V.; Sanchez, C.; Sassoye, C. CO<sub>2</sub> methanation on Ru/TiO<sub>2</sub> catalysts: On the effect of mixing anatase and rutile TiO<sub>2</sub> supports. *Appl. Catal. B Environ.* **2018**, 220, 615–625. [CrossRef]
- 45. Liu, J.; Li, C.; Wang, F.; He, S.; Chen, H.; Zhao, Y.; Wei, M.; Evans, D.G.; Duan, X. Enhanced low-temperature activity of CO<sub>2</sub> methanation over highly-dispersed Ni/TiO<sub>2</sub> catalyst. *Catal. Sci. Technol.* **2013**, *3*, 2627–2633. [CrossRef]
- Song, H.; Yang, J.; Zhao, J.; Chou, L. Methanation of carbon dioxide over a highly dispersed Ni/La<sub>2</sub>O<sub>3</sub> catalyst. *Chin. J. Catal.* 2010, *31*, 21–23. [CrossRef]
- 47. Takami, K.; Takahash, T. Kinetics of the methanation of carbon dioxide over a supported La<sub>2</sub>O<sub>3</sub>. Can. J. Eng. 1988, 66, 343–347.
- Li, S.; Tang, H.; Gong, D.; Ma, Z.; Liu, Y. Loading Ni/La<sub>2</sub>O<sub>3</sub> on SiO<sub>2</sub> for CO methanation from syngas. *Catal. Today* 2017, 297, 298–307. [CrossRef]
- 49. Kock, E.M.; Kogler, M.; Bielz, T.; Klotzer, B.; Penner, S. In situ FT-IR spectroscopic study of CO<sub>2</sub> and CO adsorption on Y<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, and yttria-stabilized ZrO<sub>2</sub>. J. Phys Chem. C Nanomater. Interfaces **2013**, 117, 17666–17673. [CrossRef]
- Ayub, N.A.; Bahruji, H.; Mahadi, A.H. Barium promoted Ni/Sm<sub>2</sub>O<sub>3</sub> catalysts for enhanced CO<sub>2</sub> methanation. RSC Adv. 2021, 11, 31807–31816. [CrossRef]
- 51. Ilsemann, J.; Sonström, A.; Gesing, T.M.; Anwander, R.; Bäumer, M. Highly active Sm<sub>2</sub>O<sub>3</sub>-Ni xerogel catalysts for CO<sub>2</sub> methanation. *ChemCatChem* **2019**, *11*, 1732–1741. [CrossRef]
- Bian, Z.; Chan, Y.M.; Yu, Y.; Kawi, S. Morphology dependence of catalytic properties of Ni/CeO<sub>2</sub> for CO<sub>2</sub> methanation: A kinetic and mechanism study. *Catal. Today* 2020, 347, 31–38. [CrossRef]
- Guo, Y.; Mei, S.; Yuan, K.; Wang, D.-J.; Liu, H.-C.; Yan, C.-H.; Zhang, Y.-W. Low-temperature CO<sub>2</sub> methanation over CeO<sub>2</sub>-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203–6215. [CrossRef]
- 54. Ye, R.-P.; Li, Q.; Gong, W.; Wang, T.; Razink, J.J.; Lin, L.; Qin, Y.-Y.; Zhou, Z.; Adidharma, H.; Tang, J.; et al. High-performance of nanostructured Ni/CeO<sub>2</sub> catalyst on CO<sub>2</sub> methanation. *Appl. Catal. B Environ.* **2020**, *268*, 118474. [CrossRef]
- 55. Sakpal, T.; Lefferts, L. Structure-dependent activity of CeO<sub>2</sub> supported Ru catalysts for CO<sub>2</sub> methanation. *J. Catal.* **2018**, *367*, 171–180. [CrossRef]
- Jiang, M.; Wang, B.; Yao, Y.; Li, Z.; Ma, X.; Qin, S.; Sun, Q. A comparative study of CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> support prepared with different methods and its application on MoO<sub>3</sub>/CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalyst for sulfur-resistant methanation. *Appl. Surf. Sci.* 2013, 285, 267–277. [CrossRef]

- 57. Ho, P.H.; de Luna, G.S.; Angelucci, S.; Canciani, A.; Jones, W.; Decarolis, D.; Ospitali, F.; Aguado, E.R.; Rodríguez-Castellón, E.; Fornasari, G.; et al. Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO<sub>2</sub> methanation. *Appl. Catal. B Environ.* **2020**, *278*, 119256. [CrossRef]
- Liang, C.; Tian, H.; Gao, G.; Zhang, S.; Liu, Q.; Dong, D.; Hu, X. Methanation of CO<sub>2</sub> over alumina supported nickel or cobalt catalysts: Effects of the coordination between metal and support on formation of the reaction intermediates. *Int. J. Hydrog. Energy* 2020, 45, 531–543. [CrossRef]
- Mihet, M.; Lazar, M.D. Methanation of CO<sub>2</sub> on Ni/γ-Al<sub>2</sub>O<sub>3</sub>: Influence of Pt, Pd or Rh promotion. *Catal. Today* 2018, 306, 294–299.
   [CrossRef]
- Hongmanorom, P.; Ashok, J.; Zhang, G.; Bian, Z.; Wai, M.H.; Zeng, Y.; Xi, S.; Borgna, A.; Kawi, S. Enhanced performance and selectivity of CO<sub>2</sub> methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts. *Appl. Catal. B Environ.* 2021, 282, 19564. [CrossRef]
- 61. Li, T.; Wang, S.; Gao, D.-N.; Wang, S.-D. Effect of support calcination temperature on the catalytic properties of Ru/Ce<sub>0.8</sub>Zr<sub>0.2</sub>O<sub>2</sub> for methanation of carbon dioxide. *J. Fuel Chem. Technol.* **2014**, *42*, 1440–1446. [CrossRef]
- Wu, H.; Zou, M.; Guo, L.; Ma, F.; Mo, W.; Yu, Y.; Mian, I.; Liu, J.; Yin, S.; Tsubaki, N. Effects of calcination temperatures on the structure–activity relationship of Ni–La/Al<sub>2</sub>O<sub>3</sub> catalysts for syngas methanation. *RSC Adv.* 2020, 10, 4166–4174. [CrossRef]
- 63. Sexton, B.A.; Hughes, A.E.; Turney, T.W. An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts. *J. Catal.* **1986**, *97*, 390–406. [CrossRef]
- Castillo, J.; Arteaga-Pérez, L.E.; Karelovic, A.; Jiménez, R. The consequences of surface heterogeneity of cobalt nanoparticles on the kinetics of CO methanation. *Catal. Sci. Technol.* 2019, *9*, 6415–6427. [CrossRef]
- 65. Le, T.A.; Kim, M.S.; Lee, S.H.; Kim, T.W.; Park, E.D. CO and CO<sub>2</sub> methanation over supported Ni catalysts. *Catal. Today* **2017**, 293–294, 89–96. [CrossRef]
- Liu, K.; Xu, X.; Xu, J.; Fang, X.; Liu, L.; Wang, X. The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO<sub>2</sub> for CO<sub>2</sub> methanation. J. CO<sub>2</sub> Util. 2020, 38, 113–124. [CrossRef]
- 67. Le, T.A.; Kim, J.; Kang, J.K.; Park, E.D. CO and CO methanation over Ni/Al@Al<sub>2</sub>O<sub>3</sub> core–shell catalyst. *Catal. Today* **2020**, *356*, 622–630. [CrossRef]
- Xu, L.; Cui, Y.; Chen, M.; Wen, X.; Lv, C.; Wu, X.; Wu, C.-E.; Miao, Z.; Hu, X. Screening transition metals (Mn, Fe, Co, and Cu) promoted Ni-based CO<sub>2</sub> methanation bimetal catalysts with advanced low-temperature activities. *Ind. Eng. Chem. Res.* 2021, 60, 8056–8072. [CrossRef]
- 69. Yu, Y.; Mottaghi-Tabar, S.; Iqbal, M.W.; Yu, A.; Simakov, D.S.A. CO<sub>2</sub> methanation over alumina-supported cobalt oxide and carbide synthesized by reverse microemulsion method. *Catal. Today* **2021**, *379*, 250–261. [CrossRef]
- Hadjiivanov, K.; Ivanova, E.; Dimitrov, L.; Knözinger, H. FTIR spectroscopic study of CO adsorption on Rh–ZSM-5: Detection of Rh+ –CO species. J. Mol. Struct. 2003, 661–662, 459–463. [CrossRef]
- Choi, J.G.; Rhee, H.K.; Moon, S.H. IR and TPD study of fresh and carbon-deposited Co/Al<sub>2</sub>O<sub>3</sub> catalysts. *Appl. Catal. A Gen.* 1985, 13, 269–280. [CrossRef]
- Watson, C.D.; Martinelli, M.; Cronauer, D.C.; Kropf, A.J.; Jacobs, G. Low temperature water-gas shift: Enhancing stability through optimizing Rb loading on Pt/ZrO<sub>2</sub>. *Catalysts* 2021, 11, 210. [CrossRef]
- Das, T.; Deo, G. Synthesis, characterization and in situ DRIFTS during the CO<sub>2</sub> hydrogenation reaction over supported cobalt catalysts. J. Mol. Catal. A Chem. 2011, 350, 75–82. [CrossRef]
- Baltrusaitis, J.; Schuttlefield, J.; Zeitler, E.; Grassian, V.H. Carbon dioxide adsorption on oxide nanoparticle surfaces. *Chem. Eng. J.* 2011, 170, 471–481. [CrossRef]