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Abstract: In this paper, a uniform and stable dielectric barrier discharge plasma is presented for
degradation of benzene combined with a transition metal oxide catalyst. The discharge images,
waveforms of discharge current, and the optical emission spectra are measured to investigate the
plasma characteristics. The effects of catalyst types, applied voltage, driving frequency, and initial
VOCs concentration on the degradation efficiency of benzene are studied. It is found that the addition
of the packed dielectric materials can effectively improve the uniformity of discharge and enhance the
intensity of discharge, thus promoting the benzene degradation efficiency. At 22 kV, the degradation
efficiencies of dielectric barrier discharge plasma packed with CuO, ZnO and Fe3O4 are 93.6%, 93.2%
and 76.2%, respectively. When packing with ZnO, the degradation efficiency of the dielectric barrier
discharge plasma is improved from 86.8% to 94.9%, as the applied voltage increases from 16 kV
to 24 kV. The catalysts were characterized by XPS, XRD and SEM. The synergistic mechanism and
the property of the catalyst are responsible for benzene degradation in the plasma–catalysis system.
In addition, the main physiochemical processes and possible degradation mechanism of benzene
are discussed.

Keywords: DBD; non-thermal plasma; transition metal oxide catalyst; benzene degradation

1. Introduction

Volatile organic compounds (VOCs) lead to vast human diseases and environmental
problems [1–3]. Humans exposed to VOCs for a long time can suffer from respiratory
disorders, cardiovascular diseases, and cancer [4]. Moreover, VOCs reacting with other
gaseous pollutants is the main cause of ozone layer depletion and photochemical smog [5].
Tremendous efforts have been devoted to the investigation of VOC degradation technolo-
gies, including adsorption, biological decomposition, catalytic oxidation, non-thermal
plasma (NTP), etc. [6–8].

In the last two decades, the degradation of VOCs by NTP has attracted the attention
of researchers for the advantages of high removal efficiency, easy operation, low reaction
temperature, etc. [9]. In NTP, strong electric field selectively accelerates electrons to become
high-energy electrons, which collide with gas molecules to produce plenty of reactive
species [10]. These reactive species, including energetic electrons, ions, radicals and excited
molecules and atoms, generated in the NTP can degrade the VOCs through complex
physicochemical reactions into small molecule species, such as CO2 and H2O [11].

NTP combined with a catalyst can improve the degradation efficiency of VOCs further
due to the synergistic effect [12]. Zhang et al. [13] presented a dielectric barrier discharge
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(DBD) reactor filled with NiO/Pyr composite system, and found it could dramatically
improve the removal efficiency of gaseous styrene compared with a bare DBD system.
Nguyen et al. [14] compared a plasma combined with Pd/ZSM-5 catalyst system with a
plasma alone system. The results show that the former significantly enhanced the styrene
degradation efficiency. On the one hand, a packed bed structure is formed by introducing a
catalyst into the plasma reactor. The addition of the packing material strongly enhances the
intensity of discharge and highly improves the uniformity of discharge, hence improving
the VOCs degradation efficiency [15]. On the other hand, the filling materials in the NTP
reactor can produce more active species on the surfaces of catalysts [16]. Mao et al. [7]
carried out experiments that used the plasma catalyst reactor and the O3 catalyst reactor.
The results show that on the CeO2 catalyst’s surface, O3 can be degraded into O2

2– and
O2– radicals.

The transition metal oxides, ZnO, MnOx, NiO, CuO, etc., have attracted great attention
owing to their low cost, high catalytic activity, anti-toxicity and wide range of available
sources [17–19]. In experiments introducing the MnOx catalyst to the plasma reactor,
the xylene removal efficiency was strongly improved [19]. Yan et al. [20] investigated
nano-ZnO for bisphenol A degradation in a DBD system, and found that ZnO has a multi-
catalysis effects: as a photocatalyst to generate the radical OH, and as a catalyst to react
with O3 and H2O2 to form OH. Rostami et al. [21] found that the highest benzene removal
efficiency was 52.7 ± 1.9% in the CuO-coated electrode reactor. However, there have
been few studies comparing the synergistic effects of several transition metal oxides in the
NTP–catalysis system.

In this study, benzene is chosen as the target VOCs contaminant, and the degradation of
benzene by synergy DBD/CuO, DBD/ZnO and DBD/Fe3O4 is investigated. The discharge
images and the waveforms of voltage and current are discussed. The reactive species are
diagnosed using optical emission spectra (OES). The effects of applied voltage, driving
frequency and initial concentration of VOCs on the performance of benzene removal are
studied. Finally, the main physiochemical processes and the benzene degradation pathway
are analyzed in the DBD catalytic system.

2. Results and Discussion
2.1. Visualization and Electrical Characteristics of DBD

Figure 1 shows the discharge images of the DBD without and with packed CuO under
various applied voltages. A Cannon 70D digital camera is used for capturing the discharge
images with an exposure time of 1 s, as the total synthetic air flow is 500 mL/min and the
driving frequency is 8 kHz. The discharge images of DBD without catalysts are shown
in Figure 1a, where only a weak surface discharge with purple coloration occurred on
the outer dielectric tube at 22 kV, and when the applied voltage was lower than 20 kV,
the gas gap did not break down. When the voltage applied was 24 kV, it produced weak
plasma between the inner quartz tube and the high-voltage probe, except for the surface
discharge on the outer dielectric tube. Figure 1b shows DBD packed with CuO catalyst,
wherein a fuse discharge can be generated in the region of the packed catalyst at 16 kV.
The discharge was gradually brightened and remained diffused and stable as the applied
voltage increased. It is evident that the discharge region of the DBD packed with CuO is
much larger than that without catalyst. Obviously, the addition of the catalyst significantly
reduces the breakdown voltage and increases the discharge volume into the whole packed
region. One of the reasons for this is that the catalyst decreases the discharge gap and
increases the reduced electric filed E/N due to the reductions in the gas molecules, thus
reducing the breakdown voltage [22]. Furthermore, charge accumulates on the surfaces
of the catalysts, and the electric field is stronger at the contact points between catalyst
particles and between the catalyst and the DBD reactor tubes, which makes it easier to
discharge [23].
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Figure 1. The effects of the applied voltage on discharge images of the DBD (a) without catalyst and 
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is larger than the gas breakdown electric field. Discharge channels tend to constrict, and 
form distinct plasma discharge filaments according to the streamer breakdown mecha-
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without and with packed ZnO catalyst. The driving frequency was kept at 14 kHz. The 
discharge current filaments of DBD without and with packed ZnO in 24 kV were as shown 
in Figure 2a,c; the strength of the current pulses apparently increased with the addition of 
catalyst, while the current peak decreased from about 0.5 A to about 0.15 A. This phenom-
enon is related to the filling materials significantly reducing the discharge volume, which 
means the distance of a typical micro-discharge transition reduces [22]. Furthermore, a 
strong electric field is produced in neighboring regions of contact points between the cat-
alyst particles [25]. The stronger the local electric field, the easier it is for the gas to break 
down. As such, the microdischarge is enhanced and the current peak decreases. Figure 2b 
presents the waveforms of the voltage and current in the DBD reactor with ZnO catalyst 
at 16 kV. Comparing Figure 2b and Figure 2c, we see that the amount and the intensity of 
current pulses increased significantly with increase in the applied voltage, while the cur-
rent peak decreased from about 0.3 A to 0.15 A. This may be because the electric field in 
the gas gap and on the catalyst’s surface increased with the voltage applied in this condi-
tion [26]. Electrons gain more energy from the high electric field, causing more collisions, 
dissociations and ionizations, and thus more micro-discharges [27]. Since the power sup-
ply was constant, when the applied voltage increased to a certain point, the current did 
not increase, which may be the reason for the reductions in peak current. 

Figure 1. The effects of the applied voltage on discharge images of the DBD (a) without catalyst and
(b) packed with CuO catalyst in synthetic air at 8 kHz.

In DBD, the gas is broken down at a random location when the applied electric field is
larger than the gas breakdown electric field. Discharge channels tend to constrict, and form
distinct plasma discharge filaments according to the streamer breakdown mechanism [24].
Figure 2 presents the waveforms of the voltage and current of the DBD reactor without and
with packed ZnO catalyst. The driving frequency was kept at 14 kHz. The discharge current
filaments of DBD without and with packed ZnO in 24 kV were as shown in Figure 2a,c; the
strength of the current pulses apparently increased with the addition of catalyst, while the
current peak decreased from about 0.5 A to about 0.15 A. This phenomenon is related to
the filling materials significantly reducing the discharge volume, which means the distance
of a typical micro-discharge transition reduces [22]. Furthermore, a strong electric field
is produced in neighboring regions of contact points between the catalyst particles [25].
The stronger the local electric field, the easier it is for the gas to break down. As such,
the microdischarge is enhanced and the current peak decreases. Figure 2b presents the
waveforms of the voltage and current in the DBD reactor with ZnO catalyst at 16 kV.
Comparing Figure 2b,c, we see that the amount and the intensity of current pulses increased
significantly with increase in the applied voltage, while the current peak decreased from
about 0.3 A to 0.15 A. This may be because the electric field in the gas gap and on the
catalyst’s surface increased with the voltage applied in this condition [26]. Electrons
gain more energy from the high electric field, causing more collisions, dissociations and
ionizations, and thus more micro-discharges [27]. Since the power supply was constant,
when the applied voltage increased to a certain point, the current did not increase, which
may be the reason for the reductions in peak current.
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Figure 2. The typical waveforms of voltage and current of a DBD reactor under the conditions of
a 14 kHz driving frequency in synthetic air: (a) without catalyst at 24 kV; (b) packed with ZnO at
16 kV; (c) packed with ZnO at 24 kV.

2.2. The Power of the Discharge in DBD

The discharge power of different catalysts varying with applied voltage is presented
in Figure 3. The discharge power of the DBD packed with three catalysts increased with
the increasing of the applied voltage. At 16 kV, the discharge power of DBD packed with
ZnO, CuO, and Fe3O4 was 4.3 W, 2.6 W, and 2.3 W, respectively. When the applied voltage
increased to 24 kV, the discharge power of DBD packed with ZnO, CuO, and Fe3O4 can
reach 22 W, 18.7 W, and 12.4 W, respectively.
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Figure 3. Discharge power of DBD reactor packed with ZnO/CuO/Fe3O4 as catalyst varying with
voltage applied at 14 kHz driving frequency in the synthetic air.

2.3. Emission Spectra of the Discharge in DBD

The OES emitted by the DBD packed with ZnO in synthetic air is shown in Figure 4.
The applied voltage was 18 kV, and the driving frequency was 14 kHz in the experi-
ment. It is clearly that the spectra of the DBD are composed of N2

(
C3Πu → B3Πg

)
,

N2

(
B3Πg → A3Π+

u

)
, N+

2

(
B2Σ+

u → X2Σ+
g

)
, and the spectral line of oxygen atoms
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O
(
3p5P → 3s5So

2
)
. Similar emission spectra have also been identified in other atmo-

spheric air discharge studies [28]. The spectra peak of N2

(
C3Πu → B3Πg

)
is highest due

to the fact that N2 constitutes three quarters of the synthetic air, and the energetic electrons
directly collide with N2 molecules, the excitation threshold of which is about 11 eV, leading
dominantly to N2

(
C3Πu

)
become excited. The corresponding reactions are as follows [29]:

e + N2

(
X1Σ+

g

)
→ e + N2

(
C3Πu

)
, 7.9 × 10−11 cm3 s−1 (1)

N2

(
C3Πu

)
→ N2

(
B3Πg

)
+hυ , 3 × 10−7 cm3 s−1 (2)

N2

(
A3Σ+

u

)
+N2

(
A3Σ+

u

)
→ N2

(
C3Σu

)
+N2 , 2.1 × 10−12 cm3 s−1 (3)
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Energetic electrons (about 18.7 eV), mainly positioned at the streamer head, can directly
excite the N2 molecules to N+

2

(
B2Σ+

u

)
[30].

e + N2

(
X1Σ+

g

)
→ 2e + N+

2

(
B2Σ+

u

)
(4)

e + N2

(
A3Σ+

u

)
→ 2e + N+

2

(
B2Σ+

u

)
, 2.4 × 10−12 cm3 s−1 (5)

The process of forming O
(
3p5P

)
is as follows: [23]

e + O2 → e + O
(

3P
)
+O

(
1S

)
, log k = −8.8–11.9/Θ (6)

N2

(
A3Σ+

u

)
+O2 → N2

(
X1Σ+

g

)
+O + O, 2.54 × 10−11 cm3 s−1 (7)

e + O → e + O
(

3p5P
)

(8)

Figure 5a presents the effects of discharge time on the emission intensity of N2(
C3Πu → B3Πg

)
, N+

2

(
B2Σ+

u → X2Σ+
g

)
and O

(
3p5P → 3s5So

2
)

emitted from DBD
packed with ZnO. It is shown that the intensity of the three active species remains al-
most unchanged within 12 min of the discharge duration time. This phenomenon indicates
the good stability of the packed bed DBD. The emission intensities of N2

(
C3Πu → B3Πg

)
,

N+
2

(
B2Σ+

u → X2Σ+
g

)
and O

(
3p5P → 3s5So

2
)
, varying with the applied voltage and driv-

ing frequency, are presented in Figures 5b,c, respectively. The results show that with
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the increment in both applied voltage and driving frequency, the emission intensities of
N2

(
C3Πu → B3Πg

)
, N+

2

(
B2Σ+

u → X2Σ+
g

)
and O

(
3p5P → 3s5So

2
)

all rise. When the
driving frequency is kept constant, an increasing applied voltage leads to a rise in elec-
tron mean energy [31]. When the applied voltage is kept constant, increasing the driving
frequency leads to an increases in the amount of micro-discharges in a set period of time,
which also leads to an increases in the high-energy electron density [32]. The electrons,
ions, molecules, and atoms collide more frequently, which leads to the number of excited
particles increasing. Thus, the emission intensities of the active species are increased when
increasing both the voltage and the frequency.
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2.4. The Influence of Different Catalysts on Benzene Decomposition

Figure 6 shows the effects of DBD combined with different catalysts, ZnO, CuO and
Fe3O4, on (a) the benzene degradation efficiency, (b) CO2 selectivity, and (c) energy yield.
The initial concentration of benzene is 235 ppm, and the benzene-containing air flow rate is
500 mL/min. It can be noted form Figure 6a that the benzene removal efficiency increases
with the increasing of the applied voltage when the DBD is packed with three catalysts,
and the degradation performances of the three types of catalysts are different. At 16 kV, the
removal efficiency of DBD packed with ZnO, Fe3O4 and CuO is 72.7%, 23.4%, and 86.8%,
respectively. When the applied voltage increases to 24 kV, the degradation efficiency of
DBD packed with ZnO, Fe3O4 and CuO can reach 95.3%, 80.4%, and 94.9%, respectively.
This suggests that increasing the applied voltage can increase the energy injected into
the discharge gap. One part of the energy increases the number of energetic electrons,
which means the energy is 1–10 eV. A large amount of active species are obtained, such
as free radicals OH and O, through the frequent collision of electrons and background
gas molecules [33]. Besides this, the excess energy would transform into heat in the
discharge area, and a lot of reactive particles would emit ultraviolet light, which would
cause more O3 to transform into reactive atomic oxygen species [34]. Thus, the probability
of benzene molecules colliding with reactive particles in the DBD discharge region is
enhanced, causing an increase in the degradation efficiency. At a low applied voltage, the
degradation efficiencies of benzene by the three catalysts show great differences, and this
difference decreases with the increment in voltage. The apparent catalytic activity can be
improved by NTP through inducing the dielectric heating of the catalyst [35]. At 16 kV, the
benzene degradation efficiency of DBD/CuO is more than three times that of DBD/Fe3O4.
This indicates that the synergistic effect of CuO and NTP is better than that of ZnO and
Fe3O4 at low applied voltage. When a catalyst is added to the reactor, the ozone produced
in the NTP can be fully utilized by the catalyst to form more active oxygenated radicals
through catalyst surface reactions [36]. CuO has a good effect on ozone degradation, thus
has the best degradation efficiency at the applied voltage (ranging from 16 kV to 22 kV) [37].
When the reactor is packed with ZnO, the highest benzene degradation efficiency can
reach 95.3%, which is slightly higher than when it is packed with CuO at 24 kV. This may
be due to the fact that ZnO is a multi-catalyst, which can be used as a photocatalyst to
generate OH, and as the transition metal oxide catalyst to react with O3 [38]. As the applied
voltage increases, the UV light produced in the plasma region increases too, via function
(2) discussed in the former section, thus better activating the catalysis of the photocatalyst
ZnO. High CO2 selectivity is expected because the end products are CO2 and H2O in VOC
degradation. CO2 selectivity is shown in Figure 6b. That catalysts have totally different
levels of CO2 selectivity may be due to the nature of the catalysts. Although DBD/CuO
has no obvious advantage in CO2 selectivity, its CO2 concentration is the highest among
the three catalysts. The effects of the applied voltage on the EY are shown in Figure 6c. For
DBD packed with ZnO and CuO, EY shows a decreasing trend with the increasing of the
applied voltage, which decreases from 4.1 to 1 g/kWh and 7.5 to 1.1 g/kWh. This may be
due to part of the energy being converted into heat and photons, as well as being used for
the formation of byproducts through quenching and recombination reactions [39,40]. It
should be noted that unlike ZnO and CuO, the EY of DBD packed with Fe3O4 decreases
from 2.3 to 1.5 g/kWh as the applied voltage increases, but it has a peak value of 2.6 g/kWh
at 20 kV. This is probably because the catalysis of Fe3O4 is quickly excited at 20 kV, at which
point the degradation efficiency is significantly increased.



Catalysts 2022, 12, 203 8 of 20Catalysts 2022, 11, x FOR PEER REVIEW 8 of 19 
 

 

 

  
Figure 6. The effects of catalyst on (a) benzene degradation efficiency and (b) CO2 selectivity; (c) 
energy yield varying with applied voltage when the initial benzene concentration is 235 ppm and 
the driving frequency is 14 kHz. 

  

Figure 6. The effects of catalyst on (a) benzene degradation efficiency and (b) CO2 selectivity;
(c) energy yield varying with applied voltage when the initial benzene concentration is 235 ppm and
the driving frequency is 14 kHz.

2.5. The Influence of Initial Concentration on Benzene Decomposition

The effects of the initial concentration on the benzene removal efficiency and CO2
selectivity, and the EY varying with the applied voltage in the DBD packed with ZnO in
synthetic air, are depicted in Figure 7. The driving frequency was kept at 14 kHz. The
benzene degradation efficiency increased and the EY decreased in response to increasing
the applied voltage, regardless of the initial concentration of benzene. The CO2 selectivity
presents a decreasing trend with the increase in benzene initial concentration in Figure 7b.
When the initial concentration was fixed at 235 ppm, benzene degradation efficiency
increased from 72.7% to 95.3%, with the applied voltage ranging from 16 kV to 24 kV, while
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the EY showed the opposite, ranging from 4.1 g/kWh to 1 g/kWh. The removal efficiency
of benzene decreased with the increase in initial concentration. At 16 kV, the degradation
efficiency of benzene reached 100% when the initial concentration was 60 ppm, while the
degradation efficiency was 92% and 79.1% when the initial concentration was 112 ppm and
235 ppm, respectively. Although the benzene degradation efficiency decreased at higher
benzene initial concentrations, the amount of converted benzene molecules increased,
suggesting more active species are used for the degradation [41]. Under the same applied
voltage, when the concentration was increased from 60 ppm to 235 ppm, the EY increased,
while when the concentration increased to 300 ppm, the EY decreased. For example, at
16 kV, the EY increased from 1.3 g/kWh to 4.1 g/kWh, and then decreased to 2.8 g/kWh.
For a given applied voltage, a certain number of energetic electrons and reactive species
would be produced in the DBD reactor discharge region [13]. When the initial concentration
of benzene is lower than a certain value, part of the active species cannot be utilized, and
the energy stored in the active species is converted into thermal energy; when the initial
concentration is too high, the excess benzene molecules cannot be degraded.
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2.6. The Influence of Driving Frequency on Benzene Decomposition

The effects of driving frequency on the degradation efficiency of benzene and CO2
selectivity, and the EY variation with changes in the applied voltage in the DBD packed
with ZnO, are depicted in Figure 8. The initial benzene concentration and the flow rate of
the synthetic air are fixed, respectively, at 235 ppm and 500 mL/min. It is seen that the
benzene removal efficiency increased as the applied voltage increased for all the selected
driving frequencies. The removal efficiency of benzene increased as the driving frequency
increased at a given applied voltage, whereas the corresponding EY decreased. Figure 8b
shows that the variation in driving frequency had no influence on CO2 selectivity. At 18 kV,
the benzene degradation efficiency increased from 63% to 79.1% as the frequency increased
from 12 kHz to 14 kHz, while the relevant EY decreased from 4.1 g/kWh to 2.3 g/kWh. This
may because more micro-discharges in the DBD reactor would be produced during each
period with the increases in the driving frequency, resulting in more reactive species in the
discharge region. The probability of collision between the benzene molecules and reactive
species is thus increased, contributing to the increases in the benzene degradation efficiency.
However, the active species are not fully used, and parts of the active species are quenched
and undergo recombination, thus the EY related to benzene degradation decreases [5].
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2.7. Characteristics of the Catalysts

Figure 9 shows the scanning spectra of Cu2p, Zn2p and FeLM2. It can be seen that
the spectral lines at 934.6 eV and 954.4 eV correspond to the Cu2p3/2 and Cu2p1/2 of
the copper element in CuO, and the shake-up peak at 944 eV indicates the existence of
a paramagnetic state in Cu2+. The Zn2p spectrum’s peaks at 1022.6 eV and 1045.8 eV
correspond to the Zn2p3/2 and Zn2p1/2 states, which are the normal states of Zn2+ in the
ZnO catalyst [42]. The binding energy of Fe2p3/2, 710.5 eV, is quite insignificant compared
to the apparent kinetic energy of electrons.
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Figure 10 shows the XRD patterns of CuO, ZnO, and Fe3O4 catalysts. The diffraction
peaks can be observed at a 2θ of 35.46◦, 38.60◦, 48.78◦, 52.54◦, 58.42◦, 61.63◦, 66.42◦, 67.93◦,
72.38◦, and 75.28◦, corresponding to the (002), (111), (−202), (202), (−113), (022), (113), (311),
and (004) facets of the monoclinic CuO [43]. As for the ZnO catalyst, there are 11 diffraction
peaks at a 2θ of 31.8◦, 34.4◦, 36.3◦, 47.5◦, 56.6◦, 62.9◦, 66.4◦, 68.0◦, 69.1◦, 72.6◦, and 77.0◦ [44].
The peaks of the Fe3O4 catalyst at 35.5◦, 43.1◦, 53.4◦, 57.0◦ and 62.6◦ correspond to (311),
(400), (422), (511), and (440) in the cubic spinel crystal-structured Fe3O4 [45]. The peaks
at 24.1◦, 35.6◦, 57.4◦, 64.0◦, and 66.0◦ correspond to the (012), (110), (122), (300), and (125)
crystal planes of hexa-Fe2O3 [46].
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SEM micrographs of the three catalysts CuO, ZnO, and Fe3O4 are presented in
Figure 11. It can be clearly seen from the low magnification scanning that these materials
all take the form of very fine particles. Among these catalysts, CuO has the smallest particle
size, and the sizes of CuO, ZnO, and Fe3O4 are about 5 µm, 10 µm, and 20 µm, respectively.
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It can be seen from the above that the three catalysts exist in crystal states. The
metal elements of ZnO and CuO have higher banding energies, which are relatively more
conducive to discharge performance than that of Fe3O4. The binding energy of Cu2+ is
higher than that of Zn2+, and CuO is more likely to play a photocatalytic role than ZnO.
Therefore, CuO has a better degradation effect on benzene than ZnO at a lower voltage.

2.8. Mechanism of Benzene Decomposition

The benzene degradation efficiency using DBD combined with a catalyst is much
higher than that without a catalyst, and ZnO/CuO/Fe3O4 cannot decompose benzene
without the correct discharge conditions, implying that DBD and the ZnO/CuO/Fe3O4
catalyst have synergistic effects on benzene degradation. On the one hand, the catalyst
can be activated effectively under plasma conditions [47]. The benzene degradation of the
catalyst alone in the DBD-packed catalyst reactor has been studied at room temperature.
For the three catalysts, no degradation of the benzene, nor any byproduct formation, is
observed. On the other hand, the discharge from the DBD can be more uniform, and can
generate more active particles, which largely improves the benzene degradation efficiency.
The degradation efficiency of bare DBD only is 22.6% when the applied voltage is 24 kV,
while benzene does not degrade at all at lower voltages. The interaction of the plasma
and catalyst is shown in Figure 12a; the transition metal oxides can strongly promote the
decomposition of O3 on the surface of the catalyst to reactive oxygen particles, such as
O− and O2

−. ZnO is a photocatalyst, which can absorb UV to generate electrons and holes
(e− and h+), as well as being a surface that can generate OH through a sequence of complex
chemical reactions [48].
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h++H2O → •OH + H+, (12)

h++OH− → •OH, (13)

H++•O− → •OH, (14)

However, the bands of OH
(

A2Σ→ X2Π
)

cannot be distinguished, maybe because
only small amounts are produced and quickly react with other particles. Furthermore, the
discharge is strongly enhanced near the catalyst’s surface due to the accumulation of charge
on the surface of the dielectric material, which results in more uniform plasma.

The mean energy of electrons accelerated by plasma usually ranges from 1 to 10 eV [49],
and energetic electrons can impact molecules in the air, which makes H2O, O2, and N2
molecules ionize to form reactive particles, including O2

−, OH, N, O2
+, O, O(1D), O(3P),

O−, etc. [9]. As mentioned above, it is by greatly increasing the number of high-energy
electrons and other reactive species that the synergy between plasma and catalyst improves
the degradation efficiency of benzene. For the benzene molecule, the dissociation energies
of the C–C and C–H bonds are 5.0–5.5 eV and 4.4 eV [50]. As such, the C–H bonds of
the benzene molecule are primarily attacked by high-energy electrons and other reactive
particles to form phenyl radical, phenol, and o-benzoquinone, as well as other organic
byproducts [7]. These derivatives of benzene can be further decomposed into unsaturated
linear hydrocarbons and corresponding radicals, as well as organic acids, etc., such as
cyclopentadienyl radical, vinylacetylene and 1,3-butadiene. In addition, these benzene
derivatives may also polymerize to form aromatic hydrocarbon complex compounds [39].
Finally, these carbon-containing fragments degrade into CO, CO2 and H2O through a series
of complex reactions, including hydrogenation and substitution [21,51]. The corresponding
main degradation reactions are presented in Figure 12b.

3. Experimental
3.1. Experimental Setup

The setup diagram of DBD combined with a catalyst degrading benzene is shown in
Figure 13. It consists of an AC power supply, a double DBD reactor, a benzene-containing
gas generator system, an electric signal acquisition system, an optical diagnosis system,
and an exhaust gas detection system. The DBD reactor is composed of two concentric
cylindrical quartz glass tubes with different diameters, which are used as inner (outer
diameter: 12 mm) and outer (outer diameter: 22 mm) dielectric barriers (1 mm thickness).
A stainless steel screw is connected to a high voltage (HV) power supply as an HV electrode
with a 10 mm diameter. A sheet of stainless steel mash 50 mm long is wrapped around
the DBD reactor’s outer quartz glass wall serving as a ground electrode. ZnO, CuO,
and Fe3O4 are chosen as catalysts with 1–3 mm particle sizes, which are packed in the
DBD discharge region. The benzene-containing air is simulated by evaporating benzene
through bubbling N2 in a water bath, which is then diluted with synthetic air in a mixing
chamber. The initial concentration of benzene is fixed by controlling the temperature of
the temperature-controlled bath and the N2 flow rate through a mass flow controller (D07-
series, Sevenstar, Beijing, China), which also controls the total synthetic air (N2:O2 = 4:1)
with a 500 mL·min−1 flow rate. The discharge parameter of the DBD is obtained by an
oscilloscope (TDS 3054B, Tektronix, Beaverton, OR, USA) coupled with a 1000:1 high-
voltage probe (P6015A, Tektronix, Beaverton, OR, USA) and a 1:1 current monitor (A622,
Tektronix, Beaverton, OR, USA). The OES are recorded by a grating spectrometer (DS-300-
122B, Acton, MA, USA). The concentrations of benzene, CO2 and CO are analyzed through
gas chromatography (GC-7900, Techcomp, Shanghai, China).
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3.2. Materials

In this work, CuO, ZnO and Fe3O4 were purchased from Beijing Zhong Nuo Xin Cai
Scientific Co., Ltd., China. Benzene (99.5%) was purchased from Shanghai Titan Scientific
Co., Ltd., China.

3.3. Catalyst Preparation

Firstly, 17.5 g of anhydrous calcium chloride was dispersed in 232.5 mL deionized
water, and then 40 g CuO/ZnO/Fe3O4 powder was added to the solution; 2 g of alginic
acid was dissolved in 98 mL deionized water and slowly added to the anhydrous calcium
chloride mixture solution. After 2 h of stirring, the mixed solution was dropped onto
2–3 mm pellets via a peristaltic pump. Finally, the pellets were dried at 80 ◦C overnight,
followed by calcining at 800 ◦C for 10 h using a muffle furnace.

3.4. Chemical Analysis

The performance of the benzene decomposition was evaluated by the factors of
benzene removal efficiency (ηbenzene), CO2 selectivity (SCO2), specific input energy (SIE)
and energy yield (EY), defined as:

ηbenzene (%) =

(
Cin−Cout

Cin

)
× 100, (15)

SCO2 (%) =
CCO2(

CCO2+CCO
) × 100, (16)

SIE (J/L) =
P
Q
× 60, (17)

EY (g/kWh) =
3.6 × M × (Cin − Cout)

24.4 × SIE
, (18)

where Cin and Cout present the inlet and outlet benzene concentrations (ppm). CCO2 and
CCO represent the concentrations of CO2 (ppm) and CO (ppm) at the outlet. Q is the total
flow rate (L/min) of the gas, and P is the input power (W).
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The classical Lissajous method is as follows [52]:

I (t) =
dq
dt

= C
dUc

dt
, (19)

where C is the capacitance with 0.33 µF, Uc is the voltage of the capacitor, and UHV is the
voltage of the whole device.

Ut = UHV − UC ≈ UHV, (20)

since Uc � UHV. So, the instantaneous power P (W) is:

P (W) = Ut × It ≈ UHV(t) × C
dUc

dt
, (21)

Figure 14 shows the Lissajous figures of DBD packed with ZnO/CuO/Fe3O4. The
applied voltage was 20 kV and the driving frequency was 14 kHz. The Lissajous figures of
DBD packed with three catalysts all resemble a parallelogram. The shapes of the Lissajous
figures change with the types of filling materials, because of the different dielectric strengths
of different catalysts [53]. It is indicated that ZnO and CuO transfers more charge than
Fe3O4, judging from the slopes of the graph [54].
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4. Conclusions

In this paper, a DBD reactor packed with transition metal oxide was employed to
generate uniform plasma and degrade benzene. As the applied voltage increased, the
discharge intensity was strongly enhanced. With the applied voltage and driving fre-
quency increasing, the emission intensities of the three active species, N2

(
C3Πu → B3Πg

)
,

N+
2

(
B2Σ+

u → X2Σ+
g

)
, and O

(
3p5P→ 3s5So

2
)
, were enhanced. The benzene degradation

efficiency was promoted as the applied voltage and driving frequency increased, while EY
decreased because part of the energy was lost as heat and light. With the initial benzene
concentration increasing from 60 ppm to 300 ppm, the degradation efficiency decreased
from 100% to 52.3% under the conditions of 18 kV applied voltage and a 14 kHz driving fre-
quency over the ZnO catalyst. Catalyst type can greatly influence the degradation efficiency
of benzene; CuO has the best performance in terms of benzene conversion below 22 kV,
while benzene’s synergistic degradation with ZnO is better at higher applied voltages.
When the initial concentration is 235 ppm, the applied voltage is 22 kV and the driving
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frequency is 14 kHz, the degradation efficiencies of CuO, ZnO and Fe3O4 are 93.6%, 93.2%
and 76.2%, respectively.

This paper also establishes the synergetic mechanisms of hybrid plasma/ZnO, plasma/
CuO and plasma/Fe3O4, as well as the differences in the synergistic performance of
transition metal oxides, conforming that the combination of plasma and transition metal
oxides can effectively improve the removal of benzene.
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