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Abstract: The chemistry of frustrated Lewis pair (FLP) is widely explored in the activation of
small molecules, the hydrogenation of CO2, and unsaturated organic species. A survey of several
experimental works on the activation of small molecules by FLPs and the related mechanistic
insights into their reactivity from electronic structure theory calculation are provided in the present
review, along with the catalytic hydrogenation of CO2. The mechanistic insight into H2 activation is
thoroughly discussed, which may provide a guideline to design more efficient FLP for H2 activation.
FLPs can activate other small molecules like, CO, NO, CO2, SO2, N2O, alkenes, alkynes, etc. by
cooperative action of the Lewis centers of FLPs, as revealed by several computational analyses.
The activation barrier of H2 and other small molecules by the FLP can be decreased by utilizing
the aromaticity criterion in the FLP as demonstrated by the nucleus independent chemical shift
(NICS) analysis. The term boron-ligand cooperation (BLC), which is analogous to the metal-ligand
cooperation (MLC), is invoked to describe a distinct class of reactivity of some specific FLPs towards
H2 activation.

Keywords: frustrated Lewis pair; catalysis; hydrogen activation; hydrogenation of CO2; boron-ligand
cooperation

1. Introduction

The application of catalysts in expediting the rate of chemical reactions has very high
industrial importance. Most chemical reactions, especially hydrogenation reactions [1–3],
rely on transition metal (TM) compounds for the catalytic activity. TM coordination
complexes acting as homogenous catalysts can be very easily monitored in the solution
phase. They can produce higher chemo- and stereoselectivity, making them industrially
important especially in the domains of medicine and food. The discrete efficiency of a
specific TM complex to direct such transformations is a direct consequence of the presence
of partially filled d-orbitals in their valence shell (i.e., a set of electrophilic and nucleophilic
frontier orbitals with low energy difference). This allows them to simultaneously interact
with an incoming substrate with both the orbitals, hence activating it in the process. Since
TMs are associated with high levels of toxicity, low availability, and high cost, efforts are
being made towards the use of TM-free catalysts in an attempt to remove these hurdles [4,5].
It was seen that the chemistry of the main group elements often resemblances that of
the TMs in terms of their structure and bond characteristics and hence, can react with
small molecules such as, CO, H2, C2H4, NH3, etc. under normal conditions [6]. Some
examples include the use of singlet carbene (R2C:) [7,8] in the activation of hydrogen and
ammonia. The mechanism of the activation process is observed to be similar to that in the
oxidative addition of H2 to the TM. In other words, two electron transfer (ET) processes
are functioning between the lone pair of electrons and the empty p orbital of carbene with
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the antibonding (σ*) and the bonding (σ) orbitals of H2 respectively. Heavier congeners of
carbene such as silylene [9], germylene [10], stanylene [11], and higher analogs of acetylene,
such as ArGeGeAr [12] and ArSnSnAr [13], are also found to activate H2.

Another class of promising catalysts, known as the frustrated Lewis pair (FLP), is
introduced based on the idea that a pair of bulky Lewis acid (LA) and Lewis base (LB)
cannot form adduct due to steric repulsion. An alternative reaction channel is opened as a
result of this steric inhibition produced by the aforementioned FLP [14]. Since the discovery
of FLPs by Stephan et al., a variety of combinations of LAs and LBs has been reported
both as non-linked (also known as intermolecular FLP) and linked (intramolecular FLP)
systems. The LA component includes, from neutral boranes and alanes, to cationic silyliums,
phosphoniums, borenium, carbocations, titanocenes, zirconocenes, and others [15–23].
Conversely, the LB component includes various amines, imines, pyridines, phosphines,
carbenes, ethers, carbanions, silylenes, and the like [24–29]. Structures of some inter- and
intramolecular FLPs, along with their important roles, are listed in Tables 1 and 2. A
comparison of energetics for H2 activation by TM and FLPs is provided in Table 3 to
better understand the effectiveness of FLPs in metal-free H2 activation. FLPs act as good
catalyzing agents in reactions involving activation of small molecules such as, CO, CO2,
N2O, NO, SO2, alkenes, alkynes, catalytic hydrogenation, and so on [30–34], all of which
are discussed later in this article. H2 activation by bridged P/B FLPs, and the role of boron-
ligand cooperation (BLC) in activating the same, is explored. Simultaneous activation of
H2 and CO2 molecules is also demonstrated in this review. The B–X (X = O, N, S) bond of
the FLPs plays a crucial role in activating the molecular hydrogen, where it changes from
B+–X− electron-sharing type of interaction to B←X dative bond upon H2 activation.

Table 1. Structures of the Lewis acid and Lewis base units of some intermolecular FLPs and their roles.

Serial No. Intermolecular FLP Small Molecules
Activated

Reference
Number

Donor Acceptor

1 PtBu3
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process was tried in 2007 with the help of tris-(tertiarybutyl) phosphine (tBu3P) and tris-
(pentafluorophenyl) borane (BCF) [36].  

There are a few mechanistic paths of H2 activation by FLPs reported in the literature, 
proposed by various scientists over the years. A mechanistic path, proposed by Welch and 
Stephan in 2007, describes an initial polarization of H2 occurring as a result of a side-on 
interaction between H2 and the LA (B(C6F5)3) forming the adduct, H2…B(C6F5)3 [36,51], 
from which a phosphine LB (PtBu3) abstracts a proton (mechanism shown in Figure 1a). 
Unfortunately, no such adduct is detected experimentally even at higher H2 pressure (4 
atm). Although some computational reports showed the existence of BH5, where H2 is 
weakly bound to BH3 via an η2 binding mode [52]. Alternatively, H2 may initially interact 
with the LB followed by the hydride abstraction by the LA. Again, no such H2…LB adduct 
is detected experimentally. In 2008, another significant mechanistic proposal put forward 
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2. H2 Activation by FLPs

In 2006, Stephan synthesized an ambiphilic molecule and zwitterionic phosphonium
hydridoborate [Mes2HPC6F4BH(C6F5)2], where P center acts as the LB and the B center as
the LA. On heating at 150 ◦C, it releases H2 gas producing the ambiphilic phosphinoborane
[Mes2PC6F4B(C6F5)2], which in turn forms the original phosphonium hydridoborate com-
pound upon heating with H2 at room temperature [50]. This entire process is essentially
the heterolytic cleavage of H2 facilitated by phosphinoborane. A similar process was tried
in 2007 with the help of tris-(tertiarybutyl) phosphine (tBu3P) and tris-(pentafluorophenyl)
borane (BCF) [36].

There are a few mechanistic paths of H2 activation by FLPs reported in the literature,
proposed by various scientists over the years. A mechanistic path, proposed by Welch and
Stephan in 2007, describes an initial polarization of H2 occurring as a result of a side-on
interaction between H2 and the LA (B(C6F5)3) forming the adduct, H2 . . . B(C6F5)3 [36,51],
from which a phosphine LB (PtBu3) abstracts a proton (mechanism shown in Figure 1a).
Unfortunately, no such adduct is detected experimentally even at higher H2 pressure
(4 atm). Although some computational reports showed the existence of BH5, where H2
is weakly bound to BH3 via an η2 binding mode [52]. Alternatively, H2 may initially
interact with the LB followed by the hydride abstraction by the LA. Again, no such H2 . . .
LB adduct is detected experimentally. In 2008, another significant mechanistic proposal
put forward by Rokob and co-workers [53], on the activation of molecular hydrogen by
a phosphine/borane FLP, reinvestigated the interactions of H2 with B(C6F5)3 and PtBu3
separately. Both are found to be repulsive when the components are within a certain
distance. From these results, they concluded that another reaction channel should exist for
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the reactivity of the phosphine/borane pair towards H2. They proposed that the LA and LB
components of an FLP are preorganized together to form an “encounter complex” (EC) [54]
(Figure 1b), which is stabilized by weak non-covalent interactions (C–H . . . F hydrogen
bond and dispersion interactions). The role of weak dispersion interaction to stabilize the
EC was also suggested from NMR spectroscopy [55]. The molecular dynamics simulation
study further confirmed the existence of the EC [56]. Afterward, the H2 molecule enters
into the reactive pocket of the EC and interacts with both the active centers of the FLP.
Now, the Lewis basic phosphorus center of tBu3P donates the lone pair of electron density
into the anti-bonding orbital of H2. Conversely, the Lewis acidic B center of B(C6F5)3
accepts electron density into its empty p-orbital from the bonding orbital of H2. As the
reaction progresses, this synergistic ET mechanism leads to the continuous weakening of
the H-H bond, which ultimately breaks to form P–H and B–H bonds. This mechanism of
H2 activation by FLP is termed as the ET model [57] (Figure 2).
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(b) Structure of an “encounter complex” formed by a combination of B(C6F5)3 and PtBu3 pair, where
the distance between boron (pink) and phosphorous (yellow) centers are given in angstrom.
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In 2010, Grimme et al. [58] proposed a completely different explanation of the H2
activation mechanism by FLP. They suggested that the EC constructed from bulky LA and
LB creates an electric field (EF) inside its cavity. On entering this cavity, the H2 molecule
becomes polarized by the EF and undergoes a heterolytic cleavage. Therefore, while the
entrance of H2 into the FLP cavity is an energy-demanding process, its splitting happens
in a barrierless way. This mechanism of H2 activation by FLP is termed the EF model
(Figure 2). By re-investigating the mechanism, Rokob et al. predicted a higher acceptance
of the ET model compared to the EF model [59]. Recently, Skara et al. [60] reexamined
both the ET and EF models of H2 activation and clarified their applicability in two distinct
cases. The former is better suited for high energy transition state (TS), having a longer
H-H and smaller LB···H2 distance (also known as geometrically “late”). In this case, the
electron donation from the Lewis basic center to the σ*(H2) orbital is predominant. The EF
model, conversely, is applicable for low energy TS (geometrically “early”) with smaller
H-H separation and longer LB···H2 and LA···H2 distances. End-on LA···H2 interaction is
predominant in this case.

Moreover, the kinetics and thermodynamic aspects of H2 activation are also inves-
tigated and reported in the literature. In particular, a theoretical study performed by
Rokob et al. [61] demonstrates the H2 activation by FLP as the overall result of five hy-
pothetical steps as depicted in Figure 3, which includes separating the LA-LB pair, het-
erolytically cleaving the molecular H2, proton abstraction by LB, hydride abstraction by
LA, and stabilization by pairing [LBH]+ and [LAH]− ions. The type of FLP is so chosen so
that the LA-LB separation energy (∆Gsep) is low in the first step. The second step, i.e., the
heterolytic cleavage of H2 into proton and hydride ions, is endergonic and associated with
a free energy of ∆GHH ≈ +128.8 kcal/mol (in toluene; not dependent on the type of FLP
used). In most cases, no dative bonds exist between the Lewis centers in equilibrium, and
thus the ∆GHH is the only endergonic contribution. In the cases where the dative bonds are
present, however, an additional endergonic term (∆Gprep) is required to break such bonds
in order to generate free donor and acceptor centers available to receive the H+ and H- ions.
The proton attachment by the LB center and the hydride attachment by the LA center are
∆Gpa and ∆Gha, respectively. The final step involves the ion pair formation with a binding
free energy (∆Gstab), which stabilizes the ion pair formed from the separate [LBH]+ and
[LAH]− ions. The energy corresponding to this last step remains mostly the same for any
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LA-LB pair. Thus, the thermodynamics of the overall reaction predominantly depends
on the H+ and H− attachments to the LB and LA, respectively. While the former case is
backed by experimental data in the form of pKa values (solvent-dependent) [62], no such
data are available for the latter [63]. The H− affinity of LA is qualitatively linked to other
experimental measurements of Lewis acidity by Heiden and Latham [64].
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ment of H2 activation by FLP.

In a study performed by our group [41], we have explored the influence of boron-
ligand cooperation (BLC) in H2 activation and the associated effects on the corresponding
activation barrier. The bridged FLP systems considered for the study along with the reaction
are provided in Figure 4. System 1 is boroxypyridine, where the oxygen unit at the ortho
position of the pyridine ring is replaced by NH and S units to produce Systems 2 and 3,
respectively. Systems 4, 5, and 6 are the results of adding –NMe2 moiety at the para position
of 1, 2, and 3, respectively.

All the H2 activation processes are exergonic, with Gibbs free energy barrier ranging
within 17–25 kcal/mol, where FLP 6 has the lowest barrier. Wiberg bond indices (WBIs)
calculated at the bond critical points (BCPs) of the bonds, B–X and C–X (X = O, N and S),
along with the changes in the respective bond distances, suggest that on H2 activation, the
B–X bond weakens and C–X strengthens. The reason behind this is the change in the nature
of the B–X bond from B+–X− in the parent FLPs to B←X dative type in the products. In the
cases of the C–X bonds, they develop double bond character. EDA-NOCV performed on
the transition state structures support the electron transfer model describing a synchronous
transfer of electron density occurring as LB(FLP)→σ*(H2), and σ(H2)→LA(FLP), resulting in
the weakening of the H-H bond. A nucleus independent chemical shift (NICS) analysis
reveals a reduction in the aromaticity of the pyridine rings upon H2 activation. Hence, the
influence of the BLC is demonstrated through the change in the nature of the B–X (X = O,
N and S) bonds in all the FLP systems considered for the study. Possible hydrogenation of
CO2 is explored with these hydrogenated FLPs, which is discussed later in the article.
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3. Catalytic Hydrogenation by FLPs

FLPs can effectively activate molecular hydrogen and hence can be used as a viable
alternative catalyst to undergo a metal-free hydrogenation. The general process involves
H2 activation followed by sequential H+ and H− transfer from the hydrogenated FLP
to the substrate and regeneration of the parent FLP. Catalytic hydrogenation of nitrile,
imine, and aziridine using Mes2PC6F4B(C6F5)2 [65,66] is demonstrated by Stephan et al.
The same occurs for sterically hindered imines is shown using just an LA, B(C6F5)3, since
the imine itself acts as the LB [67]. In the case of less basic imines, the rate of reaction
can be increased by adding a small amount of LB P(C6H2Me3)3. In 2014, the groups
of Stephan [68] and Ashley [69] separately worked on the hydrogenation of carbonyl
compounds to alcohol where B(C6F5)3 and the ether solvent (1,4-dioxane) act as the FLP
catalyst. It first splits the H2 molecule and subsequently reduces the carbonyl group. The
hydrogenation of aldehydes and ketones to alcohol by B(C6F5)3/cyclodextrine FLP in a
non-polar solvent, and the transformation of aryl ketone to a deoxygenated aryl compound,
are also demonstrated by Stephan’s group [68,70]. Other polar compounds such as enons,
enamines, silyl enol ethers, oximes, etc. can also be hydrogenated by FLPs [71–73].

The hydrogenation of non-polar compounds like olefins, however, involves a slightly
different process. Here the LB part of the FLP needs to be a weak base so that its conjugate
acid (produced on H2 activation) is strong enough to protonate the less reactive olefin [74].
The H− abstraction then occurs from the [HB(C6F5)3]− in the following step. The use
of FLPs in a plethora of hydrogenation reactions followed in subsequent years. Alkene
hydrogenation by ether/B(C6F5)3 FLP occurs via the generation of [Et2O . . . H . . . OEt2]+

and [HB(C6F5)3]− ions, as reported by Hounjet et al. [27]. It is noted that the catalytic hydro-
genation of electron-rich olefins by FLP are much easier than that of simple olefins [74]. Con-
version of alkyne to cis-alkene using ansa-aminohydroborane [75], aniline to N-cyclohexyl
ammonium salt using a H2/B(C6F5)3 pair [76], and anthracene, tetracene, and tetraphene,
using Ph2PC6F5/B(C6F5)3 [77], etc., are a few examples of FLP-mediated hydrogenations
reported throughout the years. Some N-heterocyclic compounds like acridine, quinoline,
and phenanthroline can also be hydrogenated by B(C6F5)3 catalyst [78].

The aforementioned hydrogenation reactions occur by an initial H2 activation fol-
lowed by H transfer to the substrate. This H+ and H− transfer to the substrate can occur
in two different mechanisms. For strong LA components (e.g., B(C6F5)3), substrate activa-
tion by protonation or H–bonding interaction is required since the conjugate base is not
strong enough to deliver H− on its own. Thus, protonation should occur before the H−

transfer [79–81]. In such cases, oftentimes, the substrate itself acts as the LB [81]. The other
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mechanism involves the occurrence of H− transfer before H+ transfer, where substrate
activation with another LA is required to effortlessly carry out the hydride transfer [21].
Concerted H+ and H− transfer to the substrate is also a possibility as observed in the
hydrogenation of CO2 to HCOOH [82].

4. Catalytic Hydrogenation of CO2

CO2, one of the major greenhouse gases, contributes to the rising global temperature
and poses a serious threat to our earth’s atmosphere. Conversion of CO2 into various
useful chemical compounds can offer a potential solution to this problem, along with the
additional benefit of their utilization for energy and chemical feedstocks. However, the
transformation of CO2 is a challenging process owing to its high thermodynamic and kinetic
stability. Reduction of CO2 by hydrogen to form methanol is a good way of contributing to
renewable resources since it serves as a precursor to many chemicals that are required to
generate electricity in fuel cells.

FLP mediated hydrogenation of CO2, by using the hydrogenated FLPs, is a good
metal-free catalytic alternative. Ashley et al. [5], in 2009, described the first homogenous
hydrogenation of CO2 to CH3OH by initially undergoing heterolytic H2 activation followed
by insertion of CO2 into a B–H bond. This general two-step mechanism was followed by
other researchers as well [24,83]. In 2010, Menard and Stephan used a P/Al-based FLP
to transform CO2 to a methanol derivative [84]. In the same year, Dureen and Stephan
experimentally synthesized a four-membered heterocyclic compound containing two B–
N bonds, known as boron amidinates [42] (Figure 5). These can take part in various
insertion reactions by opening one of the said B–N bonds. By thermolysis, they showed the
existence of the transient open-chain isomer of the amidinate, which is responsible for its
FLP characteristics. Very recently, the photocatalytic hydrogenation of CO2 to CH3OH [85]
and CO2 hydrogenation over magnetic nanoparticles [86] are reported.
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Media, LLC).

Recently, Jiang et al. [88] reported a bridged B/P FLP-mediated CO2 hydrogenation
that can follow two mechanistic paths. First being a concerted mechanism of heterolytic
cleavage of H2 molecule by the FLP and CO2 hydrogenation, and second where CO2
activation by the FLP is followed by H2 metathesis and reductive elimination of HCOOH
in a step-by-step process. However, a computational study [87] performed by our group
utilizes FLPs A and B (Figure 5) to hydrogenate CO2 to produce HCOOH, which reveals that
the activation of H2 and CO2 occurs simultaneously. It can happen in two possible ways;
one where the LB center activates H2 and LA center activates CO2, and the second where
the reverse occurs. The natural bond orbital (NBO) and energy density analyses (EDA)
performed on the TS corroborate the simultaneous activation theory. The former mechanism
(i.e., LB activating H2 and LA activating CO2) has the electron density transferring as
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HOMO(FLP)→LUMO(H2), HOMO(H2)→LUMO(CO2), and from several occupied MOs of
CO2 to LUMO(FLP). The steps of the reaction include the formation of a formate ion attached
to the Lewis acidic B center of the FLP followed by a proton transfer from the Lewis basic
N center of the FLP to the O center of the formate unit. The first step has a higher barrier
which may inhibit the process at ambient conditions, but it can be overcome at higher
temperature and pressure. In the case of the other mechanism (i.e., LB activating CO2 and
LA activating H2), the catalytic cycle takes two more steps where the COOH unit (attached
to the Lewis basic N center of the FLP) reorients itself so as to come closer to the BH moiety
to facilitate the proton transfer from the BH to the COOH moiety. Both the catalytic cycles
are shown in Figure 6a,b. Heterogenous CO2 reduction to HCOOH is also reported [89]
by silica nanopowder supported FLP where the said system forms an FLP-CO2 adduct
on the silica surface. The activation of H2 is followed by the conversion of the captured
CO2 to HCOOH. Again, substitution of C6H5 groups on B and P centers increases the
effectiveness of the whole process compared to C6F5 (too electron-deficient) and C6H11 (too
electron-rich) substituents.
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Springer Nature. Copyright © 2022, Springer Science Business Media, LLC).

In a recent article [90], the CO2 capture by tBu3P/B(C6F5)3 FLP was reported. They
studied the whole reaction path to discover that the LA unit plays a more important role in
the catalytic action of the FLP, both thermodynamically and kinetically. Whereas the LB
unit has a higher impact in the FLP formation. It was thus recommended by this group to
select a pair of strong LA and weak LB in designing an FLP for CO2 activation to make the
reaction thermodynamically and kinetically feasible.

5. Activation of Other Small Molecules

Apart from H2 activation, FLPs have proven to be useful in the activation of several
other small molecules, such as CO, CO2, N2O, NO, SO2, alkenes, alkynes, and so on,
which remain unaffected in the presence of either component of the Lewis pair (Figure 7).
A schematic representation of the activation mechanism in π-systems by FLPs and opti-
mized geometries of some transition state structures are provided in Figure 8. Despite
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its significant thermochemical stability, CO2 reacts with FLP to produce novel carbonic
acid derivatives [91]. Reaction with SO2 also occurs similarly [43]. A slightly different
reaction occurs with nitrous oxide, which produces an additional compound containing
the LB–N=N–O–LA unit [37]. Cooperative addition of FLPs is seen in the cases of CO
with an intramolecular P/B FLP (Mes2PCH2CH2B(C6F5)2) [47], t-butylisocyanide with an
unsaturated vicinal P/B FLP [48], and in P-ligand C–H bond activation [92]. With NO,
FLP forms an adduct producing N-oxyl radical [44], and with olefins [38] and alkynes [87]
they form zwitterionic addition products. Alternatively, phosphine-borane FLPs can also
deprotonate terminal alkynes to form phosphonium alkynylborates [35,45].
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Figure 8. Schematic representation of activation of π-systems by FLPs, and optimized geometries
of the transition states (TS) for the activations of CO2 (TS1), ethylene (TS2), cyanoethylene (TS3a
and TS3b), and propylene (TS4a and TS4b) with the P/B FLP. The bond distances are provided in Å
unit. (Adapted from ref. [93] with permission from American Chemical Society. Copyright © 2022,
American Chemical Society).
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A DFT-based study performed by Trujillo et al. [94] shows the effect of aromaticity in
the activation power of FLPs. Replacing a BPh2 group with a borole unit to act as the LA
moiety in a geminal P/B FLP, an enhancement in its ability to activate small molecules is
theoretically predicted. Our group has investigated the dihydrogen activation of a five-
membered P/B FLP (1) reported by Dong et al. [95], along with two other FLPs (2 and 3)
modeled with some modification on the former (Figure 9) [96]. The H2 activation brought
on by the designed FLPs (2 and 3) turns out to be more favorable, both thermochemically
and kinetically, than that by FLP 1. An investigation into the aromaticity of the FLPs, by
evaluating NICS (0) and NICS (1) (zz) values at the C4B ring, shows a decrease in the
anti-aromatic nature of FLPs 2 and 3 from the reactants to the corresponding TSs where
they reach their minimum values. This decrease is steeper in the latter, as an influence of
the strong withdrawing –C6F5 groups around the B center. Thus, the anti-aromaticity in
FLPs 2 and 3 boost their reactivity by reducing the activation barrier, compared to FLP 1. A
similar relation between aromaticity and activation power of FLPs was observed by Zhuang
et al. [97] in a DFT study on CO2 activation. Rouf et al. [98] demonstrated an increase in
the reaction feasibility of dinitrogen activation by FLPs due to an increase in aromaticity.
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Some reactions with FLPs were discovered a few years ago, such as N-sulfinyltolylamine
(p-TolNSO) yielding a seven-membered cyclic product where binding occurs via N and
O centers of p-TolNSO [46]. The reaction of a phosphine-borane FLP with 1,3-dienes
is reported by Ulrich et al. to produce the 1,4-addition product [39]. An 1,2-addition
with the C=O group of an α, β-unsaturated aldehyde is reported by Momming et al. [88].
FLP mediated cleavage of B-H bond to produce oxygen-ligated borenium cation is also
studied [40]. In the case of intramolecular cyclization involving sterically hindered amine
with olefin or acetylene groups, the FLP reactivity increases, as reported by Stephan and
Erker [99].

For hydrogenation of terminal alkynes, Liu et al. [100] recently developed an extremely
stable polymeric LA (P-BPh3) to tackle the problem of FLP deactivation due to the tight
bond formation between the LA and terminal alkynes. The high stability also allows
the recycling of the FLP up to 12 times in the catalytic process. Another case of catalyst
deactivation occurs in the dehydrogenation of amine-boranes. The solution is reported by
Bhattacharjee et al. [101] where they have used a P/B FLP to dehydrogenase dimethylamine
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borane (DMAB). Its reaction mechanism follows an indirect activation of the B-H bond
facilitated by an additional DMAB molecule, followed by deprotonation of the PPh2 unit.
FLP mediated amide hydrogenation [102], which uses B(2,6-F2-C6H3)3 with chloride LB,
reveals a very important role of the halide. The reaction exhibits high generality, especially
extendable to tertiary benzoic acid amides and α-branched carboxamides.

Recently FLPs are utilized in the activation of a single C–F bond in trifluoromethyl
group as reported by Young’s group [103]. A combination of phosphine or pyridine base
with B(C6F5)3 activates the C–F bond in the trifluoromethyl group to generate difluo-
romethyl product. In a separate study, the same group [104] further demonstrates the single
C–F bond activation in gem-difluoroalkanes by using Al(C6F5)3 instead of B(C6F5)3. We
have also performed a theoretical study on the activation of the C–F bond in fluoroalkanes
by using a combination of lutidine base with either B(C6F5)3 or Al(C6F5)3 acids [105]. It
reveals that the C–F bond activation mediated by Al(C6F5)3/lutidine pair is more favorable
than that mediated by B(C6F5)3/lutidine pair. Hence, the Al(C6F5)3 acid is superior to the
B(C6F5)3 acid for such unusual bond activation. Last year, Ison and Tubb [106], made a
simple yet important calculation for M(C6F5)3 (M = B, Ga, Al) Lewis acids. They evaluated
the ratio between orbital interaction energy (EOrb) to the electrostatic and exchange repul-
sion energy (ESteric) in an energy decomposition analysis (EDA). A correlation between
this ratio and the reactivity drawn reveals that only the B(C6F5)3 carries out a catalytic
hydrosilylation in ketones. This ratio can be used as a guiding parameter in designing of
FLPs in the future. In recent years, FLPs are being increasingly used in polymerization
catalysis [107–109], polymer chemistry [110,111], and organic synthesis [112,113] as well.

6. Summary

The high thermochemical and kinetic stability of the greenhouse gas, CO2, makes
its transformation to useful chemical compounds a challenging task. It requires efficient
catalysts, most of which have high levels of toxicity, is costly, and has low availability. To
that end, we present a thorough discussion on metal-free catalytic hydrogenation of CO2
by a class of compounds known as frustrated Lewis pair (FLP). They are produced when a
pair of Lewis acid and Lewis base are unable to form an adduct due to steric hindrance.
We also provide a detailed discussion on the hydrogen activation ability of FLPs, which
has been utilized for the catalytic hydrogenation of imines, nitriles, enamines, alkenes,
alkynes, ketones, CO2, etc. Apart from the H2 activation, FLPs may activate and react with
other small molecules as well; examples include CO2, N2O, CO, NO, SO2, C2H4, C2H2,
etc. The mechanisms involved in the activation of molecular hydrogen, activation, and the
catalytic hydrogenation of carbon dioxide are thoroughly discussed. The term boron-ligand
cooperation (BLC) in analogy to metal ligand cooperation (MLC) is introduced to describe
a distinct approach of reactivity for some specific FLPs to activate a chemical bond. The
B–X bond (X = O, N and S) present in the concerned FLPs plays an important role in the
activation of molecular hydrogen. The B-X bond changes from B+-X− in the parent FLPs to
B←X dative type in the products.

The aromaticity/anti-aromaticity of an FLP has been reported to have a relation to
its reactivity in activating small molecules on several occasions, and hence, can be used
as a guide in designing new and effective FLP systems. The boron-ligand cooperation,
applicable at the LA site of an FLP, is established in the case of dihydrogen activation.
This boron atom can be replaced by another group with 13 elements to verify if similar
cooperation is exhibited, and if so, whether it enhances the reactivity of the new FLP. The
ability of FLPs to activate small molecules opens up new avenues in metal-free catalysis,
which was previously believed to be the exclusive domain of transition metals. The H2
reactivity of FLP, in particular, continues to be useful in both homo- and heterogenous
catalysis. Other than CO2 reduction and small molecules activation, FLPs are being actively
researched in surface chemistry owing to the cooperative action of LA and LB centers.
They are increasingly utilized in polymerization catalysis, polymer chemistry, and organic
synthesis, etc. Application of FLP as a catalyst in the reduction of CO2 can occur either
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by the concerted or stepwise transfer of both the activated hydrogens, or by simultaneous
activation of CO2 and H2 as highlighted through several computational studies. These
mechanistic insights may provide experimental researchers with tools to design better
catalytic FLPs.
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