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Abstract: A palladium (Pd) doped mesoporous titanium dioxide (TiO2) photocatalyst was used to
produce hydrogen (H2) via water splitting under both near-UV and visible light. Experiments were
carried out in the Photo-CREC Water-II Reactor (PCW-II) using a 0.25 wt% Pd-TiO2 photocatalyst,
initial pH = 4 and 2.0 v/v% ethanol, as an organic scavenger. After 6 h of near-UV irradiation, this
photocatalyst yielded 113 cm3 STP of hydrogen (H2). Furthermore, after 1 h of near-UV photoreduc-
tion followed by 5 h of visible light, the 0.25 wt% Pd-TiO2 photocatalyst yielded 5.25 cm3 STP of H2.
The same photocatalyst, photoreduced for 24 h under near-UV and subsequently exposed to 5 h of
visible light, yielded 29 cm3 STP of H2. It was observed that the promoted redox reactions led to the
production of hydrogen and by-products such as methane, ethane, ethylene, acetaldehyde, carbon
monoxide, carbon dioxide and hydrogen peroxide. These redox reactions could be modeled using an
“in series-parallel” reaction network and Langmuir Hinshelwood based kinetics. The proposed rate
equations were validated using statistical analysis for the experimental data and calculated kinetic
parameters. Furthermore, Quantum yields (QYH•%) based on the H• produced were also established
at promising levels: (a) 34.8% under near-UV light and 1.00 g L−1 photocatalyst concentration;
(b) 8.8% under visible light and 0.15 g L−1. photocatalyst concentration following 24 h of near-UV.

Keywords: palladium; TiO2; hydrogen production; visible light; near-UV light; photocatalysis;
Photo-CREC Water-II Reactor; kinetic modeling

1. Introduction

The world community is actively researching the production of environmentally
friendly energy sources [1]. Hydrogen has attracted the attention of the scientific commu-
nity due to its great value as an energy carrier with net-zero CO2 emissions when burned.
Hydrogen can be produced by using water and sunlight as primary sources via photocat-
alytic water splitting [2]. The water splitting reaction takes place at room temperature and
close to atmospheric pressure and requires a titanium dioxide (TiO2) based photocatalyst.

A mesoporous TiO2 photocatalyst appears to display intrinsic advantages such as: (a) a
large surface area with adequate pore sizes; (b) high light absorption; and (c) good electron
and chemical species transport properties [3,4]. TiO2 can be found in three allotropic phases:
anatase, rutile and brookite, with anatase being the most photoactive phase. TiO2 has been
proven to be stable, resistant to corrosion, environmentally friendly, largely available in
nature and inexpensive [5,6]. However, the main limitation of the TiO2 photocatalyst
for hydrogen production is its wide band gap (c.a., 3.0 eV). Due to this, only 5% of the
solar spectrum can be used to activate titanium dioxide. Therefore, the use of sunlight
as a source of energy in photocatalysis for hydrogen production leads to a low-efficiency
process requiring additional improvements [7,8].

Given these facts, research is required to develop modified photocatalysts for water
splitting, with these photocatalysts meeting the following criteria: (a) narrow band gaps
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to absorb visible light; (b) chemical stability under redox conditions; (c) inexpensiveness;
(d) reusability; (e) hazard-free; and (f) suitability for large-scale hydrogen production [9,10].

To improve photocatalyst efficiency, surface modification by either using soft tem-
plates or by doping with a noble metal can be considered. The doping of photocatalysts
with metals can narrow the band gaps and improve the optoelectronic semiconductor prop-
erties [11]. The photoexcitation of these metals leads to the generation of charge carriers
and creates extra photocatalytic active sites, which act as electron collectors and, as a result,
facilitate the water splitting process.

Palladium, specifically, has a lower Fermi level compared to TiO2. When used as
a co-photocatalyst, it leads to an effective transfer of electrons to metal sites, reducing
the electron/hole recombination and promoting enhanced photocatalytic activity [12].
Additionally, its uniformly irradiated outer particle surface area helps to restrict species
diffusional transport limitations [13].

Organic molecules or sacrificial agents perform as electron donors, decreasing elec-
tron/hole recombination [14]. Ethanol, for example, is used as an organic scavenger at low
concentrations. This scavenger can be easily obtained from renewable sources while being
widely available and inexpensive [15].

For economically viable hydrogen production, unique photocatalytic reactor designs
are required. These units should have the following characteristics: (a) uniform axial
irradiation distribution; (b) must allow for photocatalytic reactions free of species diffusive
transport limitations; (c) uniform photocatalyst distribution; (d) high surface/volume
reactor ratio; (e) minimum photocatalyst fouling; (f) well-mixed photocatalyst suspension;
(g) low-pressure drop; (h) low near-UV and visible light transmittance across unit walls;
(i) be corrosion-free to the chemicals used (e.g., ethanol); and (j) have a pH in the 2 to
10 range [16]. The Photo-CREC Water-II Reactor (PCW-II Reactor), designed and developed
at the Chemical Reactor Engineering Center (CREC)-UWO in London, Ontario, Canada,
meets these various design conditions, required to successfully produce hydrogen via water
splitting [16].

In the present study, runs were developed in the PCW-II Reactor using a pH = 4,
2.0 v/v% ethanol and a 0.25 wt% Pd-TiO2 at 0.15–1.0 gL−1 photocatalyst slurry concentra-
tions. Hydrogen and redox by-products such as CO2, ethane, acetaldehyde and hydrogen
peroxide were formed. This led to the establishment of an “in series-parallel” reaction
network. Product formation rates were based on Langmuir–Hinshelwood (L–M) models,
which included adsorbed chemical species at equilibrium. On this basis, the hydrogen and
by-product formation rates, with their kinetic parameters, were calculated.

2. Proposed Reaction Mechanism for the “In Series-Parallel” Kinetic
Reaction Network

Photocatalytic water splitting reactions using Pd-TiO2 and ethanol as an organic
scavenger led to hydrogen formation, as well as to several by-products such as methane,
ethane, ethylene, acetaldehyde, CO, CO2 and hydrogen peroxide (refer to Figure 1). The
steps involved in the photocatalytic water splitting reactions can be described as follows:

(a) Photons from a light energy source, whether it be from a visible or near-UV light
lamp, reach the photocatalyst outer surface.

(b) Photons with an energy content higher than the semiconductor band gap promote the
motion of electrons from the valence band (VB) to the conduction band (CB), creating
oxidation sites.

(c) Formed sites diffuse onto the TiO2 inner surface, reacting with the adsorbed water
and producing hydroxyl radicals (OH•).

(d) OH• radicals oxidize the adsorbed organic molecules and/or scavenger (ethanol),
forming carbon-containing products.

(e) Electrons moving on the TiO2 inner and outer surfaces are captured by the palla-
dium sites.
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(f) Electrons captured in the Pd sites interact with the formed hydrogen protons (H+) from
water, yielding H• radicals. These H• radicals dimerize, forming molecular hydrogen.

(g) Formed OH• radicals couple with each other, forming hydrogen peroxide.
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Figure 1. Schematic description of hydrogen formation reaction steps using Pd-TiO2 as a photocatalyst
and ethanol as a scavenger.

An “in series-parallel” reaction network was proposed in this research, based on 165 ex-
perimental runs, using different photocatalysts concentrations (0.15–1.00 g L−1), as well
as various Pd loadings (0.25 wt% to 5.0 wt% Pd) on TiO2. The proposed network was
specifically established for the best performing 0.25 wt% Pd-TiO2 photocatalyst. It was
observed that the 0.25 wt% Pd-TiO2 photocatalyst yielded a significantly reduced 2.51 eV
band gap when compared to the 2.99 eV band gap obtained for undoped mesoporous
TiO2. The absorbed radiation was evaluated via macroscopic irradiation energy balances
(MIEB) [17].

Hydrogen production and carbon-containing product formation proceeded via an “in
series-parallel” redox reaction network with the following steps:

(a) Step 1: Water dissociates in the presence of TiO2 and photons, forming OH• and H•

radicals. Coupled H• radicals yield molecular hydrogen, as described in Equations (2)
and (3).

(b) Step 2: OH• radicals consume ethanol, which is the sacrificial agent and electron
donor. Oxidation byproducts, such as acetaldehyde, CO, CO2 and hydrogen peroxide
[Equations (4)–(8)] form as a result. This contributes to a pH increase, as described in
Equation (9).

(c) Step 3: Formed H• radicals reduce ethanol forming methane and ethane species
[Equations (10) and (11)].

2.1. Step 1: H•, OH• and H2 Formation

See
hv

Pd/TiO2 and Photon→ h+ + e− (1)
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2.2. Step 2: OH• Promoted Reactions

(a) Acetaldehyde

C2H5OH + OH•
Pd/TiO2→ C2H5O− + H2O (4)

C2H5O− + OH•
Pd/TiO2→ C2H4O + H2O (5)

The addition of Equations (4) and (5) yields the following overall equation:

C2H5OH + 2OH•
k2→

Pd/TiO2
C2H4O + 2H2O (6)

(b) Carbon Dioxide

C2H5OH + 12OH•
k3→

Pd/TiO2
2CO2 + 9H2O (7)

(c) Hydrogen Peroxide

OH• + OH•
k4→

Pd/TiO2
H2O2 (8)

(d) pH variation

OH•
k5→

Pd/TiO2
e− + OH− (9)

2.3. Step 3: H• Promoted Reactions

(e) Methane

C2H5OH + 4H•
k6→

Pd/TiO2
2CH4 + H2O (10)

(f) Ethane

C2H5OH + 2H•
k7→

Pd/TiO2
C2H6 + H2O (11)

(g) Ethylene

C2H5OH
k8→

Pd/TiO2
C2H4 + H2O (12)

3. Results and Discussion
3.1. Photocatalytic Hydrogen Production under Near-UV Light

The performance of the Pd-TiO2 photocatalyst was evaluated in the PCW-II Reactor,
with a 2.0 v/v% of ethanol—used as a scavenger—with an initial pH adjusted to 4 ± 0.05
and a photocatalyst concentration of 0.15 g L−1. Palladium was used as a TiO2 co-catalyst,
given that Pd enhanced hydrogen production when compared to the undoped mesoporous
TiO2. Pd metal crystallites reduced the band gap and facilitated electron capture [18].

It was found that water splitting under an argon atmosphere and using ethanol as
an OH• scavenger promoted the formation of hydrogen, as well as other chemical species
such as methane, ethane, ethylene, acetaldehyde, CO, CO2, and hydrogen peroxide.

Figure 2 reports the hydrogen formed during six hours of near-UV irradiation when
using a 0.25 wt% Pd on TiO2 and a 0.15 g L−1 photocatalyst concentration at an initial
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pH = 4 ± 0.05, yielding a maximum hydrogen volume of 113 cm3 at STP. This volume is
three times the volume of hydrogen obtained with undoped mesoporous TiO2.
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Figure 2. Cumulative hydrogen volumes produced using an undoped TiO2 photocatalyst and a
0.25 wt% Pd-TiO2 photocatalyst. Conditions: 0.15 g L−1 photocatalyst concentration; 2.0 v/v%
ethanol; initial pH = 4 ± 0.05; 6 h under near-UV light. Note: at least three repeats were performed
per experiment.

Figure 2 reports that both the undoped TiO2 and the 0.25 wt% Pd-TiO2 display a linear
hydrogen formation trend during the entire near-UV irradiation period. This is equivalent
to zero-reaction order kinetics and represents a stable photocatalytic hydrogen production
with no observable photocatalyst deactivation.

Additional experiments were carried out using the 0.25 wt% Pd on TiO2 at a 1.00 g L−1

concentration to determine the photocatalyst concentration influence on hydrogen forma-
tion. The results were as described in Figure 3, with higher TiO2 photocatalyst concentra-
tions leading to higher hydrogen formation rates.

Figure 3 reports that hydrogen production augments by 74% when using a 1.00 g L−1

TiO2 concentration of 0.25 wt% Pd-TiO2, as compared to undoped TiO2. In addition, hy-
drogen production increases by 32% when using a 1.00 g L−1 TiO2 concentration of a
0.25 wt% Pd-TiO2 photocatalyst compared to the hydrogen obtained with a 0.15 g L−1

TiO2 concentration of 0.25 wt% Pd-TiO2. Thus, the formed hydrogen augments 1.5 times
when the photocatalyst concentration increases approximately seven (7) times, from 0.15
to 1.00 g L−1. Given these results, the photocatalyst performance increase with the higher
1.00 g L−1 catalyst concentration was considered moderate, and the 0.15 g L−1 concentra-
tion was used in further experiments.

3.2. Photocatalytic Hydrogen Production under Visible Light

During the photocatalyst synthesis, palladium was present in a metallic state. How-
ever, it was oxidized later during the photocatalyst precursor calcination step. Therefore, a
special and additional photocatalyst pretreatment step was implemented in the present
study to ensure that most of the palladium was reduced to metallic palladium (Pd0) prior
to hydrogen formation photocatalytic runs. The metallic state of Pd promoted a high
photocatalytic activity of the TiO2 by trapping and storing the photogenerated electrons,
thus reducing the rate of the electron-hole recombination [19].
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Figure 3. Cumulative hydrogen production using an undoped TiO2 and a 0.25 wt% Pd-TiO2 at
catalyst concentrations of 0.15 and 1.00 g L−1. Conditions: 2.0 v/v% ethanol, initial pH = 4 ± 0.05
and 6 h under near-UV light. Note: at least three repeats per experiment were performed.

To accomplish this, the prepared Pd-TiO2 photocatalyst was studied in the PCW-II
reactor as follows: (a) 1-h of near-UV photoreduction using a 15 W BLB UV-Lamp; (b) 5 h
of visible light employing a 15 W fluorescent visible light lamp.

Figure 4 reports the cumulative hydrogen production with the 0.25 wt% Pd-TiO2 in
the PCW-II Reactor after 1 h of photocatalyst photoreduction under near-UV light, followed
by 5 h of visible light [20].
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Figure 4. Cumulative formed hydrogen using 0.25 wt% Pd-TiO2 and a 0.15 g L−1 photocatalyst
concentration. Conditions: 1 h near-UV light photoreduction; 5 h of visible light; 2.0 v/v% ethanol;
initial pH = 4 ± 0.05. Note: at least three repeats per experiment were performed.

Figure 5 reports the volumes of formed hydrogen after 1 h and 24 h of near-UV
photoreduction pretreatment, followed by 5 h of visible light irradiation, using the 0.25 wt%
Pd-TiO2 photocatalyst.
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Figure 5. Comparative cumulative hydrogen volume obtained during 5 h of visible light irradiation
using the 0.25 wt% Pd-TiO2 photoreduced photocatalyst as follows: (a) hydrogen volume under
visible light after 24 h of near-UV exposure; (b) hydrogen volume under visible light after 1 h of near-
UV exposure. Photocatalyst conditions: 0.15 g L−1 photocatalyst concentration; 2.0 v/v% ethanol;
and initial pH = 4 ± 0.05. Notes: There were at least three repeats per experiment.

The photocatalyst yielded during the visible light irradiation period, 5.25 cm3 STP
hydrogen. The 5.25 cm3 STP of formed H2 is 4 times larger than the hydrogen obtained
with undoped TiO2 and 1.7 times greater than the hydrogen produced with the non-
photoreduced 0.25 wt% Pd-TiO2, as reported by Rusinque et al. [21]. Results reported
in Figure 5 for the 1 h photoreduced 0.25 wt% Pd-TiO2 are in line with the XPS analysis,
which shows an 81.3% reduction of PdO to Pd0. Furthermore, for the 0.25 wt% Pd-TiO2
photocatalyst with 24 h of near-UV photoreduction pretreatment, a cumulative hydrogen
volume of 29 cm3 STP was obtained, with this being consistent with a close to 100%
reduction of PdO to Pd0, as confirmed with XPS.

3.3. Kinetic Modeling

The proposed kinetic model, as given by Equations (2)–(12), is based on the following
assumptions [22]:

(a) Reactions take place on the photocatalyst surface.
(b) Reactions are elementary.
(c) Adsorbed chemical species are in equilibrium with those in the bulk solution.
(d) The concentration of water on the photocatalyst surface is constant.
(e) The rate of electron-hole formation is proportional to the local volumetric rate of

photon absorption (LVRPA).
(f) The photocatalytic water splitting reactions take place in the PCW-II Reactor, with a

0.25 wt% Pd in TiO2, a 0.15 g L−1 photocatalyst concentration, an initial pH = 4 and
2.0 v/v% ethanol.

(g) Water splits, forming intermediate OH• and H• radicals, with H• reacting further and
yielding molecular hydrogen.

(h) Ethanol is consumed as an OH• organic scavenger via different reaction pathways
and forms various oxidation by-products, such as acetaldehyde, CO, and CO2.

(i) Ethanol and its by-products are reduced via the generated H• radicals, yielding
methane and ethane.
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The L–H kinetics can be established in terms of the gas phase species concentrations
as follows:

ri = LVRPA f
[
H+
] kI

i KA
i Ci

1 + ∑n
j=1 KA

j Cj
=

k∗i KA
i Ci

1 + ∑n
j=1 KA

j Cj
(13)

where r represents the rate of reaction, LVRPA is the local volumetric rate of photon
absorption, f [H+] denotes the pH influence on the photocatalytic reaction, k∗i stands for
the limiting rate constant of the reaction under the experimental conditions considered
(mol gcat

−1 h−1), K represents the equilibrium constant for the adsorption of the chemical
species on the photocatalyst (L mol−1) and Cj is the chemical species concentration at any
time t (mol L−1).

The k∗i and KA
i parameters in Equation (13) are functions of the initial concentration, Co,

and the concentration at equilibrium, Ce. These variables can be predicted by simplifying
Equation (13) into Equation (14) as follows:

rj
KA

j Cj

1 + KA
o Co

(14)

By using Equation (14), a rate equation can be obtained for each chemical species
formed during the photocatalytic water splitting reaction (e.g., hydrogen and by-products).
Thus, a set of ordinary differential equations can be established based on the proposed “in
series-parallel” reaction network.

One of the parameters accounted for in the L–H kinetic model is the equilibrium
constant for the adsorption of the chemical species on the photocatalyst. To determine this
constant, ethanol adsorption runs were carried out in the PCW-II Reactor under “dark”
conditions (no irradiation). Adsorption runs were developed at the same conditions as the
ones for the water splitting reactions. First, the reactor was loaded with 6 L of water at
different ethanol concentrations (0.5 to 4 v/v%). Following this, 0.15 g L−1 of the 0.25 wt%
Pd-TiO2 photocatalyst was added to the solution. The liquid slurry was recirculated for one
hour to reach adsorption equilibrium. During this period, a liquid sample was taken every
10 min, and the ethanol concentration in the liquid at equilibrium (Ce) was measured using
ultra-fast liquid chromatography (UFLC). Based on the experimental data, the maximum
adsorption capacity was given by the following relation:

QEtOH =
QEtOH,maxKA

EtOHCEtOH(
1 + KA

EtOHCEtOH
) (15)

where QEtOH is the ethanol solid-phase equilibrium concentration, Ce is the equilibrium
concentration in the liquid phase (mol L−1), QETOH,max is the maximum solid adsorption
capacity (mol gcat

−1) and K is the adsorption constant (L mol−1) [23].
Figure 6 describes the Langmuir chemisorption isotherm obtained (QEtOH = QEtOH,max

·KA
EtOH ·CETOH/1 + KA

EtOH ·CETOH). It shows that the ethanol adsorption on the 0.25 wt% Pd-
TiO2 is of the chemisorption type. Furthermore, by using a Langmuir linearized equation,
as shown in Figure 7, the ethanol adsorption parameters are determined for the 0.25 wt%
Pd-TiO2 photocatalyst. These results are reported in Table 1.

Table 1. Adsorption Constants for Ethanol when Using the 0.25 wt% Pd-TiO2.

KA
EtOH QEtOH,max

1.26 mol−1 L 0.315 mol−1 gcat
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Outcomes reported in Table 1 differ from those acquired by Escobedo et al. [16,24],
who found that ethanol adsorbs on a 1.0wt% Pt-TiO2 with a QETOH,max of 0.163 mol−1 gcat.
The QETOH,max obtained by Escobedo et al. is lower than the QETOH,max = 0.315 mol−1 gcat
found in this research. The QETOH,max result from the present study was assigned to the
131 m2 g−1 specific surface area of the Pd-TiO2 photocatalyst of the present study, with
16–20 nm pores.

The ethanol adsorption isotherm obtained in the present study shows that for ethanol
concentrations above 2.0 v/v%, the equilibrium adsorbent-phase concentration remains
constant and close to saturation. Therefore, ethanol concentrations surpassing 2.0 v/v% in
the photocatalytic water splitting reaction are not justified, given that they do not enhance
the hydrogen production rate.

3.4. L–H Equations and the “In Series-Parallel” Reaction Network

The Langmuir–Hinshelwood (L–H) rate-based equations can be used to describe each
one of the reaction steps involved in the water splitting reaction. A general expression of
the Langmuir–Hinshelwood equation for this system is given by Equation (13).
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Furthermore, the species balance for each component “i” involved in the photocatalytic
water splitting reaction, in the batch PCW-II reactor, can be described by Equation (16):

ri =
1

Wirr

dNi
dt

=
VL

Wirr

dNi/VL
dt

=
VL

Wirr

dCi
dt

(16)

where Wirr represents the irradiated photocatalyst (gcat), VL is the reactor liquid slurry
volume, Ni stands for the number of i moles (mol), t denotes the irradiation time (h) and Ci
represents the concentration of the chemical species (mol L−1).

Furthermore, by inserting Equation (13) into Equation (16), the concentration changes
of the individual chemical species can be described as follows:

dCi
dt

=
(Wirr/VL)k∗i KA

i Ci

1 + ∑n
j=1 KA

i Ci
(17)

Thus, Equation (18) can be obtained from Equation (17) as follows:

dCi
dt

=
k′iK

A
i Ci

1 + ∑n
j=1 KA

i Ci
(18)

and:

k′i =
(

Wirr
VL

)
k∗i (19)

with k′i being the apparent kinetic constant in Equation (19).
Given that the ethanol concentration was significantly higher than those of all other

carbon containing by-products, the following inequality was considered:

KA
EtOHCEtOH � KA

H2
CH2 + KA

CH4
CCH4 + KA

C2 H6
CC2 H6 + KA

C2 H4
CC2 H4 + KA

C2 H4OCC2 H4O + KA
CO2

CCO2

Therefore, the ethanol equilibrium sorbent-phase concentration, QEtOH, can be repre-
sented by Equation (20), considering 1 > KA

EtOHCEtOH :

QEtOH =
QEtOH maxKA

EtOHCEtOH

1 + KA
EtOHCEtOH

∼= QEtOH,max (20)

As a result, at a 2.0 v/v% ethanol concentration, the reaction rate for each chemi-
cal species resulting from both water splitting and redox reactions can be expressed as
described in Appendix A and as reported in Table 2.

Table 2. Proposed Reaction Rates for the Chemical Species Formed in the Photocatalytic Water
Splitting Reaction using Ethanol as an Organic Scavenger.

Chemical Species Reaction Rate

Acetaldehyde rC2 H4O = k′2QEtOH,max = k′′2
Carbon Dioxide rCO2 = k′3 QEtOH,max= k′′3

Hydrogen Peroxide rH2O2 = k′4
Methane rCH4 = k′6 QEtOH,max= k′′6
Ethane r C2 H6 = k′7 QEtOH,max= k′′7

Ethylene rC2 H4 = k′8QEtOH,max = k′′8
Hydrogen rH2 = k′9

3.5. Kinetic Parameters Evaluation

The proposed kinetics of the present study, for hydrogen production (as reported
in Table 2), involves 7 reactions and their respective kinetic parameters. These parame-
ters were evaluated using the experimental data obtained utilizing a 0.25 wt% Pd-TiO2
photocatalyst, 2.0 v/v% ethanol concentration, 0.15 g L−1 photocatalyst loading and ini-
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tial pH = 4.0 ± 0.05. To accomplish this, minimization of an objective function involv-
ing a kinetic model prediction and experimental data was considered, as described in
Equation (21).

n

∑
i=1

(Vi,exp −Vi,model)
2 = minimum (21)

with Vi,exp being the experimentally observed product species volumes at STP conditions,
and Vi,model being the calculated product species volumes at STP calculated using the
proposed kinetics.

Cross-correlation analysis was also developed to establish the numerical interactions be-
tween the determined kinetic parameters. Cross-correlation coefficients were, in most cases,
much smaller than 1, indicating the small numerical interactions between the determined
parameters, as reported by Rusinque [25]. The proposed kinetics and kinetic parameters,
as shown later in this manuscript, adequately describe the experimental data, when using
near-UV and/or visible light irradiation, for the experimental conditions studied.

3.5.1. Kinetic Parameters under Near-UV Light

Figure 8a–g report a comparison of model predictions and experimental data, using
the 0.25 wt% Pd-TiO2 photocatalyst, 0.15 g L−1 photocatalyst concentration, 2.0 v/v%
ethanol, initial pH = 4 ± 0.05 and near-UV irradiation.

One significant feature reported in Figure 8a–g is the common linear trend, represent-
ing a steady increase of the obtained volumes of all chemical species at STP during the 6 h
of irradiation, with no photoactivity decay.

Based on the proposed kinetics and the experimental data, the k2”, k3”, k4’, k6”, k7”,
k8” and k9’ intrinsic kinetic rate constants are reported in Table 3, along with their standard
deviations and confidence intervals.
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Figure 8. Cumulative chemical species volumes obtained under near-UV: (a) methane; (b) ethane;
(c) ethylene; (d) acetaldehyde; (e) CO2; (f) H2O2; and (g) H2. Experimental data are represented
by (#) filled with different colors, each color represents a different experimental run, and model
predictions are represented with solid lines. Experimental conditions: 0.25 wt% Pd-TiO2; 0.15 g L−1

photocatalyst concentration; initial pH = 4.0 ± 0.05; and 2.0 v/v% ethanol.
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Table 3. Intrinsic Kinetic Rate Constants for Hydrogen and By-Products under Near-UV light with
2.0 v/v% Ethanol. The QEtOH, max adsorption constant for ethanol was set to 0.3 mol gcat

−1, as shown
in Section 3.3.

Intrinsic Kinetic Rate
Constant (mol gcat−1 h−1) STD (±) Confidence Interval

k2” 9.09 × 10−6 3.93 × 10−7 8.72 × 10−7

k3” 3.28 × 10−6 3.11 × 10−7 7.23 × 10−7

k4’ 1.67 × 10−5 6.89 × 10−7 1.48 × 10−6

k6” 1.71 × 10−6 1.74 × 10−7 4.16 × 10−7

k7” 7.75 × 10−6 6.79 × 10−7 1.52 × 10−6

k8” 1.50 × 10−5 4.61 × 10−7 9.98 × 10−7

k9’ 9.10 × 10−4 2.92 × 10−5 4.85 × 10−5

Table 3 shows the calculated intrinsic kinetic rate constants with limited standard devia-
tions. These results point to the adequacy of the intrinsic rate constants under near-UV light.
Regarding k1′ and k5′ , they were set to 1.90 × 10−3 mol gcat

−1 h−1 and 3.07 × 10−1 h−1

for OH• radical formation and OH− change, respectively. It is recommended to further
analyze the validity of these set values in future research studies.

Following the kinetic modeling development, the model was validated using reconcil-
iation plots, as reported in Figure 9. It was confirmed that the proposed kinetics provides a
good prediction of all chemical species concentrations.
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Figure 9. Reconciliation plot for predicted and experimentally observed species volumes. Notes:
(a) hydrogen volumes: 0 to 113 cm3 STP; (b) CO2, CH4, C2H4O, C2H6 and C2H4 volumes, 0 to
1.8 cm3; and (c) hydrogen peroxide volumes, 0 to 0.0022 cm3 STP. Conditions: 0.25 wt% Pd-TiO2

photocatalyst; 0.15 g L−1 photocatalyst concentration; near-UV light. Experimental error of ±3.4%.

3.5.2. Kinetic Parameters under Visible Light

The adequacy of the “in series-parallel” model for water splitting was also evaluated,
with the 0.25 wt% Pd-TiO2 being photoreduced for 1 h with near-UV light, followed by 5 h
of visible light irradiation. The selected conditions for the experiments were as follows:
0.15 g L−1 photocatalyst; 2.0 v/v% ethanol; and initial pH of 4.0 ± 0.05. Figure 10 reports
the experimental and model predictions, which display a common linear increasing trend
in the cumulative formation of hydrogen and various by-products. The hydrogen peroxide
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concentration was, however, the exception, yielding a non-linear trend, increasing first, and
stabilizing later, as reported in Figure 10f.

Table 4 reports the seven determined intrinsic kinetic constants along with their
small standard deviations and 95% confidence intervals. The k1′ constant was set to
3.45 × 10−4 mol gcat

−1 h−1, while the k5′constant for the pH increase was set to
9.11 × 10−2 h−1.
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Figure 10. Cumulative chemical species volumes obtained under 1 h of near-UV followed by 5 h
of visible light near-UV: (a) methane; (b) ethane; (c) ethylene; (d) acetaldehyde; (e) CO2; (f) H2O2;
and (g) H2. Experimental data are represented by (#) filled with different colors, each color repre-
sents each experimental run, and model predictions are represented with solid lines. Experimental
conditions: 0.25 wt% Pd-TiO2; 0.15 g L−1 photocatalyst concentration; initial pH = 4.0 ± 0.05; and
2.0 v/v% ethanol.

Table 4. Intrinsic Kinetic Rate Constants for Hydrogen Production and By-Product Formation under
Visible Light, with 2.0 v/v% Ethanol. Photocatalyst was photoreduced for 1 h under near-UV. The
QEtOH, max adsorption constant was set to 0.315 mol gcat

−1, as shown in Section 3.3.

Intrinsic Kinetic Rate Constant (mol gcat−1 h−1) STD (±) 95% Confidence Interval

k2” 1.15 × 10−9 7.03 × 10−11 2.14 × 10−10

k3” 4.98 × 10−9 3.07 × 10−10 8.98 × 10−10

k4’ 3.68 × 10−5 4.90 × 10−6 1.01 × 10−5

k6” 1.15 × 10−9 7.03 × 10−11 2.14 × 10−10

k7” 6.53 × 10−9 2.31 × 10−10 6.70 × 10−10

k8” 2.18 × 10−8 7.70 × 10−10 2.15 × 10−9

k9’ 5.11 × 10−7 7.01 × 10−8 1.76 × 10−7
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As in the case of the photocatalyst irradiated with only near-UV light, the adequacy of
the established kinetic model was further validated using reconciliation plots, as reported
in Figure 11. It was observed that the proposed kinetics provide a good prediction of the
experimental data, both hydrogen production and the formation of various by-products,
under the visible light irradiation period.
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Figure 11. Reconciliation plot for predicted and experimentally observed species volumes. Notes:
(a) hydrogen volumes, 0 to 10 cm3 STP; (b) CO2, CH4, C2H4O, C2H6 and C2H4 volumes, 0 to 0.5 cm3;
and (c) hydrogen peroxide volumes, 0 to 0.0022 cm3 STP. Conditions: 0.25 wt% Pd-TiO2 photocatalyst.
Experimental error of ±5.5%.

3.6. Quantum Yield (QY) Evaluation

The quantum yield is a parameter used to evaluate the photon utilization efficiency
in photocatalytic reactors [26]. For hydrogen production, a phenomenologically relevant
quantum yield can be defined in terms of the hydrogen radical formation rate over the
absorbed photon rate [27]. Therefore, a QYH•% can be calculated as follows:

QYH•% =

[
moles of H•/s

moles of photons absorbed by the photocatalyst/s

]
100. (22)

with QYH•% and QYH2
% being related as follows:

QYH•% =


(

dNH•
dt

)
Pa

100 = 2 QYH2;
% % = 2


(

dH2
dt

)
Pa

100 (23)

where dNH•
dt represents the rate of the moles of hydrogen radicals formed over the photocat-

alyst absorbed photon rate.
The QYH•% calculation requires the absorbed photon rate by the photocatalyst surface

(Pa). To determine Pa, Macroscopic Irradiation Energy Balances (MIEB) are required. MIEB
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can be established by using a “photocatalyst control volume”, established by Salaices,
Serrano and de Lasa [28] as follows:

Pa = Pi − Pbs − Pt (24)

where Pa is the rate of absorbed photons, Pi represents the rate of photons reaching the
reactor inner surface, Pbs stands for the rate of backscattered photons exiting the system and
Pt denotes the rate of transmitted photons in Einstein/s. Additional information regarding
MIEBs is provided by Rusinque et al. [25].

3.6.1. Evaluation of Quantum Yields under Near-UV Light

The calculated QYH•% for the 0.25 wt% Pd-TiO2 mesoporous photocatalyst, using
a 0.15 g L−1 photocatalyst concentration, 2.0 v/v% ethanol, an initial pH = 4 ± 0.05 and
near-UV light was determined.

Figure 12 reports a consistent and steady QYH•% over 6 h of near-UV irradiation.
During the first hour under near-UV irradiation, the QYH•% reaches a stable value of 13.7%,
remaining constant during the following 5 h and showing the stable performance of the
0.25 wt% Pd-TiO2 photocatalyst. This QYH•% is significantly higher than the 5.0% quantum
yield obtained for the undoped TiO2, at the same experimental conditions. Furthermore,
one can notice that this QYH•% improved when compared to the 8% quantum yield
reported by Escobedo et al. [29] for DP25 doped with Pt.
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Figure 12. QYH•% for a 0.25 wt% Pd-TiO2 and for undoped TiO2 at various irradiation times, under
near-UV Light. Conditions: 0.15 g L−1 of photocatalyst; initial pH = 4 ± 0.05; 2.0 v/v% ethanol.

Further QYH•% calculations were developed for the 0.25 wt% Pd–TiO2 at different
photocatalyst concentrations. Figure 13 reports the QYH•% obtained by augmenting the
photocatalyst concentration from 0.15 g L−1 up to 1.00 g L−1. It was observed that there was
a consistent increase of the QYH•%, which remained stable during the entire irradiation
period, with no noticeable photocatalyst activity decay. A detailed QYH•% calculation is
provided in Appendix B.

Thus, using a 0.25 wt% Pd loading on a TiO2 photocatalyst at 0.15 g L−1 and 1.00 g L−1

photocatalyst concentrations, and near-UV light, led to a favorable 13.7 QYH•% and to a
34.8 QYH•% respectively.
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Figure 13. QYH•% at various irradiation times under near-UV irradiation using 0.15 and 1.00 g L−1

photocatalyst concentrations. Note: 0.25 wt% Pd on TiO2; 2.0 v/v% ethanol. Initial pH = 4 ± 0.05.

3.6.2. Evaluation of Quantum Yields under Visible Light

The QYH•% for the mesoporous photocatalyst, doped with palladium (0.25%wt Pd-
TiO2), was established under the following conditions: (a) photocatalyst slurry concentra-
tions of 0.15 g L−1, (b) 2.0 v/v% ethanol, (c) pH = 4 ± 0.05 and (d) visible light. The QYH•%
was calculated for the photocatalyst under two different conditions: (1) photocatalyst
irradiated with visible light for 6 h, and (2) photocatalyst photoreduced for 1 h first under
near-UV light and then irradiated with visible light for the remaining 5 h.

The determined QYH•% for the 0.25%wt Pd-TiO2 under visible light only was 1.13%.
This QYH•% was moderately higher than the 0.23% obtained for the undoped TiO2. This
rather low QYH•% for the Pd-TiO2 photocatalysts under visible light was attributed to the
49.8 wt% amount of metallic palladium present, as described in Section 4.2.

On the other hand, the QYH•% for the 0.25 wt% Pd-TiO2, photoreduced for 1 h with
near-UV light and then irradiated with visible light, was 1.6%. This can be the result of the
81.7 wt% Pd0 present, after 1 h of near-UV photoreduction, as shown in the photocatalyst
characterization section of this paper.

Authors such as Ravishankar [30] reported a calculated quantum yield in the 0.36 to
0.43% range, for palladium loadings between 0.1 and 0.4 wt% under visible light. Thus,
the QYH•% obtained in the present study were 3–4 times larger than the ones reported by
Ravishankar [30].

Figure 14 reports the QYH•% for the 1 h near-UV photoreduced photocatalyst, exposed
later to visible light. The 1.6% QYH•% remains stable during the entire irradiation period,
without noticeable photocatalyst deactivation.

3.6.3. Effect of Photoreduction Period on Quantum Yields

Given that the highest QYH•% of 1.6% was observed for the 0.25 wt% Pd-TiO2 photo-
catalyst under 1 h of near-UV photoreduction, followed by 5 h of visible light irradiation,
further QYH•% evaluations were developed. To achieve this, the near-UV photocatalyst
photoreduction period was extended from 1 h to 24 h.
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Figure 14. QYH•% for the 0.25 wt% Pd-TiO2 photocatalyst, at 0.15 g L−1 photocatalyst concentration,
and various visible light irradiation times. Initial pH = 4 ± 0.05 and 2.0 v/v% ethanol. Note: the
photocatalyst reported with the pink line was photoreduced for 1 h under near-UV light, followed by
5 h of visible light irradiation.

Figure 15 and Table 5 report the QYH•% obtained for the 24 h of near-UV photoreduc-
tion, followed by 5 h of visible light irradiation. The selected conditions for the reaction
remained unchanged, as in previous experimental runs: (a) 2.0 v/v% ethanol; (b) initial
pH = 4 ± 0.05; and (c) 0.15 g L−1 of TiO2.
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Figure 15. QYH•% at various visible light irradiation times: (a) 1 h of near-UV photoreduction,
followed by 5 h of visible light irradiation; and (b) 24 h of near-UV photoreduction, followed by 5 h
of visible light irradiation. Note: Conditions: 0.15 g L−1 concentration of 0.25 wt% Pd on TiO2; 2.0
v/v% ethanol; initial pH = 4 ± 0.05.



Catalysts 2022, 12, 113 20 of 31

Table 5. Quantum Yields Using a 0.25%wt Pd-TiO2 Photocatalyst Based on moles of H2 and H• at
different conditions.

Conditions QY H2
%(%) =

[ (
dNH2

dt

)
Pa

]
100 QY H•(%)=

[ (
dNH•

dt

)
Pa

]
100

• Near-UV irradiation
• Photocatalyst concentration: 1.00 g L−1

• Ethanol concentration: 2.0 v/v%
• Initial pH: 4 ± 0.05

17.4 34.8

• Near-UV irradiation.
• Photocatalyst concentration: 0.15 g L−1

• Ethanol concentration: 2.0 v/v%
• Initial pH: 4 ± 0.05

6.9 13.7

• 5 h of visible light, after 24 h
• under near-UV irradiation.
• Photocatalyst concentration: 0.15 g L−1

• Ethanol concentration: 2.0 v/v%
• Initial pH: 4 ± 0.05

4.4 8.8

It was observed that using the extended 24 h near-UV photoreduction rather than the
1 h provided a noticeable increase in the QYH•% under visible light, with this reaching
8.80% as described in Figure 15. This QYH•% is five times greater than the one for the
photocatalyst photoreduced for 1 h under near-UV light. The observed rise in the QYH•%
was attributed to the almost 100 wt% of the palladium being present as Pd0, as shown with
XPS, and reported in Section 4.2.

Considering the reaction path as per Equations (2) and (3), with one absorbed photon
yielding one H• radical, a maximum theoretical QYH•% of 100% can be anticipated. The
quantum yield for a 0.25%wt Pd-TiO2 photocatalyst with a concentration of 1.00 g L−1

under near-UV light was 34.8%. The quantum yield for a 0.25%wt Pd-TiO2 photocatalyst
with a concentration of 0.15 g L−1 irradiated for 24 h under near-UV, followed by visible
light irradiation, was 8.8%. Thus, the performance of the photocatalysts of the present
study, as quantified using QYH•%, can be considered promising.

4. Experimental Methodology
4.1. Photocatalyst Synthesis

The mesoporous photocatalyst was synthesized by a sol–gel method, using evaporation-
induced self-assembly (EISA), as shown in Figure 16. For the photocatalyst preparation,
the following reagents were used: (a) ethanol USP (C2H5OH) obtained from commercial
alcohols; (b) hydrochloric acid (HCl, 37% purity); (c) a polymeric soft template (pluronic
F-127 (PEO106PPO70PEO106); (d) anhydrous citric acid; (e) a titanium precursor (titanium
IV isopropoxide); and (f) palladium (II) chloride (PdCl2, 99.9% purity). All the reagents
were purchased from Sigma Aldrich (Oakville, ON, Canada).

During the condensation sol–gel photocatalyst synthesis, Pd was present in a metallic
state. However, given that the organic template polymer had to be removed before pho-
tocatalyst use, a calcination step was implemented. As a result, palladium was oxidised.
Thus, following calcination, palladium had to be reduced to Pdo. To accomplish this, the
doping metal was contacted with 1 cm3/s of Ar/H2 gas blend (90/10%, Praxair) in a flow
reactor at 500 ◦C for 3 h [16]. Under these conditions, palladium was partially reduced, as
shown with the XPS analysis. Therefore, an additional step was implemented to ensure
complete palladium reduction. The prepared Pd-TiO2 was irradiated with a BLB near
UV-Lamp in the PCW-II reactor at room temperature for 60 min. More detailed information
about the synthesis of the photocatalyst can be found in Rusinque et al. [20].
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Figure 16. Schematic description of the Pd-TiO2 photocatalyst synthesis: (a) self-assembly step, ethanol
acts as a hydrophilic compound attaching to the hydrophobic PPO core of the polymer F-127;
(b) condensation step, micelles of the amphiphilic block copolymer are created, (c) the PEO tails become
attached to the metallic precursor TiO2, forming a hybrid layer; and (d) surfactant removal step, the
resultant gel is calcined for 6 h at 500 ◦C, yielding a well-defined 3D crystalline mesoporous titanium
photocatalyst [31–33].

4.2. Photocatalyst Characterization

Various physicochemical techniques were used to assess the photocatalyst Pd-TiO2
properties, including chemical composition (elemental composition and chemical state),
physical properties (surface area, pore size distribution and pore size, phase composition,
metal dispersion and metal crystallite size) and band structure (band gap).

The BET (Brunauer–Emmett–Teller) method was employed to establish the 131 m2 g−1

specific surface area for the 0.25 wt% Pd-TiO2. Furthermore, by using the Barrett–Joyner–
Halenda (BJH) method with an N2 desorption isotherm, the pore size distribution was
found to be unimodal with an average pore size of 16.5 nm.

An H2 Temperature Programmed Reduction (TPR) of the Pd-TiO2 photocatalyst was
carried out in a AutoChem II Analyzer (Micromeritics, Norcross, GA, U.S.A). The TPR
analysis showed that palladium oxide reduction yields four distinctive TPR peaks [34]. The
first negative peak, at 68 ◦C, was attributed to the decomposition of palladium β-hydride.
The second broad peak, at 225 ◦C, was assigned to palladium oxide reduction. The third
peak, at 415 ◦C, was ascribed to the interaction between the Pd species and the TiO2 support.
The fourth one, at 594 ◦C, was attributed to the reduction of Ti+4 ions surface species [35,36].

Pulse Chemisorption allowed one to determine the fraction of metal active species
available [37], and hydrogen chemisorption showed a high 75% metal dispersion for the
0.25 wt% Pd-TiO2.

The minimum TiO2 crystallite size was determined using the Scherrer Equation and
the XRD peak, broadening to be 11 nm for 0.25 wt% Pd-TiO2. This compared to the 21 nm
determined for undoped TiO2.

A UV–VIS–NIR Spectrophotometer (Shimadzu UV-3600, Nakagyo-ku, Kyoto, Japan)
equipped with an integrating sphere was used to determine the band gap. It employed
BaSO4 as a reference material [38]. By using the Kubelka–Munk (K–M) method, Tauc
plots were developed to establish the corresponding band gap. When using the 0.25 wt%
Pd-TiO2, a linear extrapolation yielded a 2.51 eV band gap, which was a smaller band gap
than the 3.2 eV obtained from undoped TiO2.

Scanning electron microscopy (SEM) (Hitachi SU-8230, Atlanta, GA, USA) provided
detailed high-resolution images of the photocatalyst as observed in Appendix C, show-
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ing the formation of photocatalyst agglomerates as large as 4 µm with 50 nm average
crystallite sizes.

X-ray photoelectron spectroscopy (XPS) (Kratos AXIS Supra, Manchester, U.K) analysis
was used to establish the elemental composition and the oxidation/reduction states in the
first atomic layers of the palladium in the synthesized photocatalyst [39,40]. Quantitative
XPS was carried out on the 0.25 wt% Pd-TiO2 as follows: (a) before photoreduction; (b) after
60 min of near-UV photoreduction; and (c) after 24 h of near-UV photoreduction. It was
observed that there was a significant increase in Pd0: from 49.8% after photocatalyst
synthesis to 81.7% after 1 h of near-UV irradiation, and up to close to 100% after 24 h
under near-UV. Additional details regarding photocatalyst characterization can be found
in Rusinque et al. [17,20,25,41].

4.3. Photo-CREC Water-II Reactor

The Photo-CREC Water-II (PCW-II) Reactor is an innovative photocatalytic slurry
batch unit used for hydrogen production. It was developed at the CREC (Chemical Reactor
Engineering Centre) at the University of Western Ontario. The unit is equipped, as shown
in Figure 17, with the following components: (a) a tubular photocatalytic reactor equipped
with two concentric tubes, a Pyrex glass inner tube and a near-UV opaque polyethylene
outer tube; (b) a centrifugal pump; and (c) a hydrogen stirred storing/sealing tank. The
light source (a near-UV lamp or, alternatively, a fluorescent visible light) is placed inside
the transparent borosilicate glass tube. This Pyrex glass absorbs only 5% of the near-UV
light emitted by the lamp [28]. The PCW-II reactor has a volume capacity of 6000 mL. The
free-flowing slurry photocatalyst suspension circulates in the concentric annular space
between the transparent Pyrex glass inner tube and the near-UV opaque polyethylene
outer tube.
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Water-II Reactor with downflow slurry circulation; (b) centrifugal pump; and (c) sealed hydrogen
storage tank.

For the photocatalytic water splitting reactions with near-UV light, a 15 W Ushio Black
Light Blue lamp was used. This lamp has a detected output power of 1.61 W and emits, on
average, 325.1 kJ/photon moles. The irradiation spectrum emitted is in the range of 340 nm
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to 410 nm, with a maximum spectral peak identified at 368 nm [42]. On the other hand,
for the visible light runs, a 15 W Philips mercury cool white lamp was used. The 1.48 W
output power fluorescent lamp emits an average photon energy of 274.5 kJ/photon moles
in the 300–700 nm range.

4.4. Photocatalytic Experiments

Photocatalytic experiments took place in the PCW-II reactor with a BLB near-UV
lamp or, alternatively, with a fluorescent visible light lamp. The storage/mixing tank was
initially loaded with 6000 mL of water and 2.0 v/v% of ethanol as a scavenger. The pH
was adjusted at the beginning of the reaction to 4 ± 0.05, using H2SO4 [2 M]. The 0.25 wt%
Pd-TiO2 photocatalyst was sonicated for 10 min to ensure good particle distribution. Then,
0.15 g L−1 of the photocatalyst were added to the solution. The lamp was turned on for
30 min prior to the reaction to achieve lamp stabilization. The photocatalyst was sonicated
for 10 min prior to its addition to the reactor, to ensure uniform particle distribution.

Once a uniform photocatalyst dispersion was achieved in the reactor, after turning
on the pump, the mixing tank was sealed. Argon was used as an inert gas for oxygen
removal, from the gas phase, in the hydrogen storage tank. Gas and liquid samples were
taken every hour.

4.5. Analytical Techniques

A Shimadzu GC2010 Gas Chromatograph (Mandel, Guelf, ON, Canada) with argon
(Praxair 99.999%) as a carrier gas was employed to analyze the gas phase chemical species.
The Gas Chromatograph unit was equipped with a HayeSepD 100/120 mesh packed
column (9.1 m × 2 mm × 2 µm nominal SS) (Sigma Aldrich, Oakville, ON, Canada) used
for the separation of hydrogen from air. Additional details and information regarding the
GC analysis of the Pd-TiO2 photocatalyst are provided in Appendix D.

A Shimadzu HPLC Model UFLC (ultra-fast liquid chromatography) System was
utilized, with 0.1% H3PO4 as a mobile phase, to analyze the liquid phase. The column used
was the Supelcogel C-610H 30 cm × 7.8 mm ID. This quantitative analysis was performed
by employing the RID (Refractive Index Detector) 10A, due to the polar nature of ethanol.
The HPLC separated ethanol from water for further quantification.

Regarding the H2O2, the low concentrations (0–10 mg L−1) were determined using
a colorimetric method in conjunction with a spectrophotometer Spectronic 200+ from
Thermo Spectronic (Thermo Fischer, Mississauga, ON, Canada). The H2O2 was detected
with KI and N-dimethyl-p-phenylenediamine (DPD). The collected sample was mixed with
ammonium molybdate, which decomposes the H2O2 and allows the KI to be oxidized
to iodine [30]. The formed iodine oxidizes the DPD compound, generating a pink color.
The pink color was then measured at 530 nm using a spectrophotometer (Spectronic 200+,
Thermo Spectronic, which provides a 340 nm to 950 nm wavelength range and a nominal
spectral bandwidth of 20 nm.

All the reagents used for hydrogen peroxide detection were purchased from Hach®

(London, ON, Canada). A commercial H2O2 technical-grade solution (30% w/w of H2O2)
was supplied by BioShop Canada (Burlington, ON, Canada).

The pH was measured with a digital pH meter Thermo Scientific Orion Star, with an
accuracy of ±0.05. The pH was monitored in the slurry every hour, to determine its effect
during the photocatalytic reaction.

5. Conclusions

(a) Suitable kinetics can be implemented for hydrogen production when using a meso-
porous Pd-TiO2 photocatalyst synthesized using a sol–gel method.

(b) The state of the added palladium as Pd0 in the Pd-TiO2 photocatalyst is critical to
achieving high hydrogen formation rates.

(c) The proposed kinetics can be successfully evaluated in a Photo-CREC Water-II Reactor
with controlled photon absorption rates.
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(d) An “in series-parallel” reaction network is found to be suitable for the hydrogen
formation kinetics when using a 0.25%wt Pd-TiO2 photocatalyst.

(e) A best 34.8 QYH•% can be obtained under near-UV light when employing a 0.25 wt%
Pd-TiO2 photocatalyst at a 1.00 g L−1 concentration.

(f) A best 8.80 QYH•% can be achieved under visible light when using a 24 h near-UV
photoreduced 0.25 wt% Pd-TiO2 at a 0.15 g L−1 concentration.
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Nomenclature

Ce Concentration in the liquid of adsorbate at equilibrium
CO Carbon monoxide
CO2 Carbon dioxide
CH4 Methane
C2H6 Ethane
C2H4 Ethylene
C2H4O Acetaldehyde
Dp Pore diameter (cm)
e− Electron
h+ Hole
F-127 Poly (ethylene oxide)/poly (propylene oxide)/poly (ethylene oxide)
H• Hydrogen radical
H2 Molecular Hydrogen
H2O Water
H2O2 Hydrogen Peroxide
K Adsorption constant
L-H Langmuir-Hinshelwood
nm Reaction rate order
OH− Hydroxide ions
OH• Hydroxyl radical
Pd Palladium
PdCl2 Palladium II chloride
PEO Poly (ethylene oxide)
PPO Poly (propylene oxide)
Qe Equilibrium adsorbent-phase concentration
Qe,max Maximum adsorption capacity
t Time (h)
TiO2 Titanium dioxide
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Acronyms
BLB Black Light Blue Lamp
BET Brunauer–Emmett–Teller Surface Area Method
DP25 Degussa P25 (TiO2)
DPD N, N-dimethyl-p-phenylenediamine
EISA Evaporation-Induced-Self-Assembly
FID Flame Ionization Detector
GC Gas Chromatography
HPLC High Performance Liquid Chromatography
LVRPA Local Volumetric Rate of Photon Absorption
MIEB Macroscopic Irradiation Energy Balance
PCW-II Photo-CREC Water-II Reactor
pH Potential of Hydrogen
QYH•% Quantum Yield based on H• radicals formed
QYH2% Quantum Yields based on H2 formed
STP Standard Temperature and Pressure (273 K and 1 atm)
TPR Temperature Programmed Reduction
TCD Thermal Conductivity Detector
UV Ultraviolet
VB Valence Band
VIS Visible light
XPS X-ray Photoelectron Spectroscopy
XRD X-ray Diffraction

Appendix A. Kinetic Modeling

Reaction rates for the formed oxidation by-products can be modeled as a function of
the ethanol adsorbed species as follows:

r = k′i KA
j QEtOH,max (A1)

1. For oxidation steps

(a) Acetaldehyde (C2H4O)

C2H5OH + 2OH•
k2→ C2H4O + 2H2O

− rEtOH = −1
2

rOH• = rC2 H4O =
1
2

rH2O

− rOH• = 2 rC2 H4O

− rOH• = 2 k2 QEtOH,max Qn1
OH•

rC2H4O = k2 QEtOH,max Qn1
OH• (A2)

(b) Carbon Dioxide (CO2)

C2H5OH + 12OH•
k3→ 2CO2 + 9H2

− rEtOH = − 1
12

rOH• =
1
2

rCO2 =
1
9

rH2O

− rOH• = 6 rCO2

− rOH• = 6 k3 QEtOH,max Qn2
OH•

rCO2 = k3 QEtOH,max Qn2
OH• (A3)

(c) Hydrogen Peroxide (H2O2)

OH• + OH•
k4→ H2O2
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− 1
2

rOH• = rH2O2

− rOH• = 2 rH2O2

− rOH• = 2 k4Q3
OH•

rH2O2 = k4Qn3
OH• (A4)

(d) pH Variation

OH•
k5→ e− + OH−

− rOH• = rOH−

− rOH• = k5Q4
OH•

rOH− = k5Qn4
OH• (A5)

(e) Hydroxyl Radical (OH•) Consumption—Formation

rOH• = k1 − 2 k2 QEtOH,max Qn1
OH• − 6 k3QEtOH,max Qn2

OH• − 2 k4 Qn3
OH• − k5 Qn4

OH• (A6)

By applying the steady state dNOH•
dt = 0 and the quasi-constant ethanol concentration

approximations, this results in the following equation:

k1 = 2 k2 QEtOH,max Qn1
OH• + 6 k3QEtOH,max Qn2

OH• + 2 k4 Qn3
OH• + k5 Qn4

OH• (A7)

Given that, from the OH• radicals formed, only a fraction of them is consumed at
any given irradiation time, at a steady state, the hydroxyl radical concentration can be
considered close to constant (QOH• ∼= constant) and can be expressed as:

k1 = 2 k2
′ QEtOH,max + 6 k3

′ QEtOH,max + 2 k4
′ + k5

′ (A8)

with k′i = ki QOH•.
Consider nm as the reaction rate order for each by-product.

2. For reduction steps Reaction rates for the formed reduction steps can be modeled as a
function of the H• and ethanol adsorbed species as follows:

(a) Methane (CH4)

C2H5OH + 4H•
k6→ 2CH4 + H2O

− rEtOH = −1
4

rH• =
1
2

rCH4 = rH2O

− rH• = 2rCH4

− rH• = 2 k6QEtOH,max Qn5
H•

rCH4 = k6QEtOH,max Qn5
H• (A9)

(b) Ethane (C2H6)

C2H5OH + 2H•
k7→ C2H6 + H2O

− rEtOH = −1
2

rH• = rC2H6 = rH2O

− rH• = 2rC2H6

− rH• = 2 k7 QEtOH,max Qn6
H•

rC2H6 = k7 QEtOH,max Qn6
H• (A10)

(c) Ethylene (C2H4)

C2H5OH
k8→ C2H4 + H2O
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− rEtOH = rC2H4 = rH2O

rC2H4 = k8 QEtOH,max (A11)

(d) Hydrogen (H2)

2H•
k9→ H2

− 1
2

rH• = rH2

− rH• = 2 rH2

− rH• = 2 k9 Qn7
H•

rH2 = k9 Qn7
H• (A12)

(e) H• Consumption—Formation

rH• = rH• − 2rCH4 − 2rC2H6 − 2rH•

Considering that rH• = rOH•, then:

rH• = k1 − 2 k6 QEtOH,max Qn5
H• − 2 k7 QEtOH,max Qn6

H• − 2 k9 Qn7
H• (A13)

By applying the steady-state approximation dNH•
dt = 0, and the ethanol concentration

inequality, this results in Equation (A14):

k1 = 2 k6 QEtOH,max Qn5
H• + 2 k7 QEtOH,max Qn6

H• + 2 k9 Qn7
H• (A14)

In addition, given that, at any given irradiation time, the H• radicals can be at a
steady state, the hydroxyl radicals concentration is close to constant (QH• ∼= constant) and
Equation (A14) can be expressed as:

k1 = 2 k6
′ QEtOH,max + 2 k7

′ QEtOH,max + 2 k9
′ (A15)

with k′i = ki QH•.

Appendix B. Quantum Yield Calculation

The QYH•% can be defined as the number of moles of hydrogen radicals produced
per absorbed photons on the photocatalyst surface.

A sample QYH•% calculation given below considers a hydrogen production rate of
0.2159 µmol*cm−3 h−1, using: (a) 0.25 wt.% Pd-TiO2; (b) a photocatalyst concentration of
1.0 g L−1; (c) ethanol at 2.0 v/v%; (d) initial pH = 4 ± 0.05; (e) near-UV light; (f) a gas phase
volume in the reactor of 5716 cm3, and (g) Pa = 1.97 × 10−6 Einstein s−1.

QYH• =
2 ∗
(

0.2159µmol
cm3h

)
∗
(

6.022× 1023 photon
mol H2

)
∗
(

1h
3600 s

)
1.97× 10−6 Einsteins/s

QYH• = 34.8%

Appendix C. Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) provides detailed high-resolution images of the
0.25 wt% Pd-TiO2 photocatalyst.

The semiconductor material was analyzed by scanning electron microscopy using a
Hitachi SU8230 Regulus ultra-high resolution field emission scanning electron microscope
(FESEM). SEM imaging was performed using accelerating voltages ranging from 1 to 2 kV,
as observed in Figure A1.
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Figure A1. Scan Electron Microscope images for the 0.25 wt% Pd-TiO2 photocatalyst at two different
accelerating voltages: (a) 1.0 kV; and (b) 2.0 kV.

Appendix D. Detection of H2 and Carbon Containing Species by a Shimadzu CG 2010

The several gases produced from the photocatalytic water splitting reaction with
ethanol as a scavenger were quantified using a Shimadzu GC2010 Gas Chromatograph
(Nakagyo-ku, Kyoto, Japan). Samples were taken every hour.

To accomplish this, argon (Praxair 99.999%) was used as a gas carrier. The GC was
equipped with two detectors: a Flame Ionization Detector (Nakagyo-ku, Kyoto, Japan)
(FID) coupled with a Methanizer and a Thermal Conductivity Detector (TCD). As a result,
the analytical equipment employed was able to detect hydrogen (H2), carbon monoxide
(CO), methane (CH4), carbon dioxide (CO2), ethane (C2H6), ethylene (C2H4), acetaldehyde
(C2H4O) and ethanol (C2H5OH).

The GC method used for the gas phase analysis is described as follows:
Column:

Temperature: 50 ◦C, equilibration time: 0.2 min

Table A1. Column Oven Temperature Program.

Rate Temperature (◦C) Hold Time (min)

- 50 4
20.0 200 18.5

FID:

Temperature: 230 ◦C, sample rate: 40 ms, make up gas: hydrogen

TCD:

Temperature: 210 ◦C, sample rate: 40 ms, make up gas: argon

Typical chromatograms obtained for hydrogen and carbon-containing by-products us-
ing the employed programmed oven temperature method are reported in Figures A2 and A3.
Air detected via the TCD was attributed to the air contained in the needle when injecting
the gas sample into the GC. This air gas volume is negligible and was disregarded in the
product analysis.
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Figure A2. Hydrogen peak as detected by the TCD.
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Figure A3. Carbon containing product species peaks as detected by the FID for: (a) carbon monoxide
(CO); (b) methane (CH4); (c) carbon dioxide (CO2); (d) ethylene (C2H4); (e) ethane (C2H6); (f)
acetaldehyde (C2H4O); and (g) ethanol (C2H5OH).

The H2 gas chromatographic peaks were quantified using the TCD calibration, as
reported in Figure A4. Calibration was established by using an H2 certified standard gas
mixture sample (10% H2 and 90% He Praxair) and different hydrogen volumes (0.1, 0.2, 0.3,
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0.4, 0.5 and 0.6 mL). Injected sample gas volumes were at room temperature and standard
pressure conditions (25 ◦C and 1 atm).
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