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Abstract: Benzimidazole scaffolds became an attractive subject due to their broad spectrum of phar-
macological activities. In this work, a methodology was developed for the synthesis of N-substituted
benzimidazole derivatives from benzimidazoles and α, β-unsaturated compounds (acrylonitriles,
acrylate esters, phenyl vinyl sulfone) catalyzed by lipase TL IM from Thermomyces lanuginosus in
continuous-flow microreactors. Investigations were conducted on reaction parameters such as sol-
vent, substrate ratio, reaction temperature, reactant donor/acceptor structures, and reaction time.
The transformation is promoted by inexpensive and readily available lipase in methanol at 45 ◦C for
35 min. A wide range of β-amino sulfone, β-amino nitrile, and β-amino carbonyl compounds were
efficiently and selectively synthesized in high yields (76–97%). All in all, a microfluidic biocatalysis
system was applied to the synthesis of N-substituted benzimidazole derivatives, and could serve as a
promising fast synthesis strategy for further research to develop novel and highly potent active drugs.

Keywords: enzymatic synthesis; benzimidazole derivatives; continuous-flow reaction technology;
continuous-flow microreactor; aza-Michael addition

1. Introduction

Heterocyclic compounds are well-documented pharmaceutically active substances
that have been discovered to be crucial in drug design and development. Benzimidazole,
as an aromatic heterocyclic organic compound, has received extensive attention in the
field of drug research and development [1], due to its wide range of biological activi-
ties. Benzimidazole compounds with various substituents have been proven to possess
obvious anti-inflammatory pain [2], anti-viral [3], anti-tumor [4], anti-hypertension [5],
anti-diabetic [6], anti-HIV [7,8], excellent anti-fungal and bacterial activity [9–14], and
other effects. Many drugs containing a benzimidazole structure have been used in clin-
ical therapy, such as triclobendazole (anti-helminth drug and anti-fungal infection) [15],
candesartan (anti-hypertension) [16], omeprazole (proton pump inhibitor) [17], bendamus-
tine (anti-cancer) [18], selumetinib (first FDA-approved drug for neurofibromatosis type
(1) [19], astemizole (histamine receptor antagonist) [20], and albendazole (insecticide) [21]
(Figure 1).

The construction of C-N bonds is the key to synthesizing N-substituted benzimidazole
derivatives. Among the methods that have been developed, the aza-Michael addition reac-
tion of nitrogen nucleophiles to α, β-unsaturated compounds has been demonstrated to be
one of the simplest and most effective methodologies for the corresponding adducts, such
as β-amino acids, β-amino nitrile, β-amino ester, and β-amino sulfone [22–24]. Tradition-
ally, aza-Michael reactions proceed under strongly acidic or basic conditions that exhibited
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poor compatibility with various substrate functional groups and generated side products,
e.g., polymeric compounds; sometimes, a high temperature and long reaction time are
required [25]. Furthermore, these methods are limited in substrate scope to aliphatic amine
additions. In order to develop a more efficient aza-Micheal addition reaction suitable
for wide substrate scope, a variety of metal catalysts, including Cs2CO3, Cu(OAc)2, Pd,
Pd(OAc)2 [26], Pd2(dba)3 [27], AgO3SCF3 [28], and AgSbF6 [29], were intensively devel-
oped and used to catalyze the conjugate addition of benzimidazoles to electron-deficient
compounds. Despite great advances in metal-catalyzed aza-Michael additions, the use of
expensive precious metals and sometimes the air- and moisture-sensitive metal catalysts
raises the expense and difficulty of the reaction. In addition, these metal–catalyst methods
are not suitable for the addition of less nucleophilic aryl amines or benzimidazoles.
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Enzymes, as excellent biocatalysts, can be applied to many various reactions, including
kinetic resolution, esterification, hydrolysis, aminolysis, and transesterification [30–34]. The
use of enzymes as catalysts for the preparation of novel compounds has attracted much
attention in the fields of organic synthesis, pharmaceuticals, petrochemicals, and materials
over the past few years [30–33]. Among the numerous protocols involving aza-Michael
additions, enzyme-catalyzed processes are particularly attractive due to their high effi-
ciency and specificity. The first example of Michael addition catalyzed by enzymes was
reported in 1988 by Kitazume et al., (E)-ethyl 3-(trifluoromethyl)- and 2-(trifluoromethyl)-
propenates are readily converted to chiral Michael adducts via the addition of thiols or
dialkylamines with the presence of lipase PL 266 and lipase PL 679 (from Alcaligenes sp)
and lipase AL 865 (from Achromobacter) [35]. Novozyme 435 or Lipozyme RM IM was used
to catalyze Michael addition of various primary and secondary amines to acrylonitrile,
but the side product of aminolysis occurred when amines were added to the substituted
acrylates. Then, Michael addition reactions of substituted acrylates such as methyl croto-
nate and methyl methacrylate catalyzed by lipases from Pseudomonas stutzeri (PSL) and
Chromobacterium viscosum (CvL) were reported [36]. However, these enzymatic Michael
addition reactions have a common point of requiring a long reaction time to obtain the
desired yields. In previous studies, we reported lipase TL IM-catalyzed Michael addition
reactions of pyrimidines, anilines, and the enzymatic Michael addition of imidazoles and
acrylates in DMSO solvent [37–39]. Therefore, in this study, we decided to study further
the aza-Michael addition reactions of benzimidazoles catalyzed by lipase to select greener
solvents, simplify the steps of product purification, and synthesize a series of N-substituted
benzimidazole derivatives.

Continuous-flow reactors have significant processing advantages, including improved
thermal management, mixing control, and the application of extreme reaction conditions
compared to stirred tank reactors, which can greatly intensify the synthetic processes and
increase the reaction efficiency [40–44]. In 2007, the Green Chemistry Institute (GCI), part
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of the American Chemical Society (ACS), set up a roundtable in conjunction with several
pharmaceutical corporations. The roundtable listed several key areas where research was
required to facilitate the development of sustainable manufacturing, and the importance of
continuous processing was acknowledged [45]. With these factors in mind, there has been
renewed interest in the development of sustainable processes, with many of ‘big pharma’
looking towards new techniques for both research and production [46]. Many drugs con-
taining benzimidazole motifs have been used in clinical therapy. It is worthwhile to develop
a greener, more effective technology for the construction of benzimidazole derivatives with
potential pharmaceutical activities through continuous enzymatic processing.

The high selectivity of enzymes combined with the high efficiency of continuous-flow
technology may reinforce transformations of benzimidazole derivatives. Many works on
drug intermediates synthesis catalyzed by enzymes using continuous-flow technology were
developed [37–39,47,48]. Given that benzimidazoles are attractive scaffolds with a range of
pharmacological activities, it is imperative to find a more convenient and sustainable manu-
facturing technology to build the compounds library under the circumstances. In this work,
we report a microfluidic biocatalysis system applied for the synthesis of N-substituted
benzimidazole derivatives by aza-Michael addition. Benzimidazoles (benzimidazole, 2-
chlorobenzimidazole, 2-methylbenzimidazole), as less nucleophilic agents, reacted with
several α, β-unsaturated compounds (2-chloroacrylonitrile, acrylonitrile, methyl acrylate,
methyl methacrylate, phenyl vinyl sulfone) catalyzed by lipase TL IM from Thermomyces
lanuginosus in continuous-flow microreactors were studied (Scheme 1). Reaction param-
eters including solvent, substrate ratio, reaction temperature, reactant donor/acceptor
structures, and reaction time were investigated. A series of different N-substituted benzim-
idazole derivatives were synthesized efficiently with high yields in this continuous-flow
enzymatic strategy.
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2. Results
2.1. Effect of Reaction Solvent

As non-aqueous reaction mediums, organic solvents play a crucial role in enzyme-
catalyzed synthesis reactions, which may affect the reaction results. We studied the ef-
fect of solvent on the enzymatic synthesis of N-substituted benzimidazole derivatives in
continuous-flow microreactors. Benzimidazole (Table 1, 1a) reacted with 2-chloroacrylonitrile
(Table 1, 2a) catalyzed by lipase TL IM from Thermomyces lanuginosus in continuous-flow
microreactors was selected as the model reaction. Several solvents, including methanol,
tert-amyl alcohol, DMSO, isopropanol, acetonitrile, n-hexane, and DMF, were investi-
gated, and the results are shown in Table 1. As we can see from Table 1, methanol is
the optimal reaction solvent for the Michael addition reaction of benzimidazole and 2-
chloroacrylonitrile (Table 1, Entry 2). Therefore, methanol was selected as the reaction
solvent for further research on the enzymatic synthesis of N-substituted benzimidazole
derivatives in continuous-flow microreactors.
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Table 1. The effect of solvent on the enzymatic synthesis of N-substituted benzimidazole derivatives
in continuous-flow microreactors a.
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a General experimental conditions: in the continuous flow reactors, feed 1, 10 mL solvent contained 5.0 mmol
benzimidazole (1a); feed 2, 10 mL solvent contained 30.0 mmol 2-chloroacrylonitrile (2a), 45 ◦C, flow rate
17.8 µL min−1, residence time 35 min, enzyme 870 mg. b Isolated yield. Yield: 100 × (actual received amount/ideal
calculated amount). The data are presented as average ± SD of triplicate experiments. n.d. means no reaction
was found.

2.2. Effect of Substrate Ratio

As for enzyme-catalyzed reactions, the molar ratio of the reactants affects the catalytic
efficiency of the enzyme and the final product yields. In this study, substrate molar ratios
(benzimidazoles: α, β-unsaturated compounds) from 2:1 to 1:8 were studied, the results are
shown in Figure 2. From Figure 2, we can find that the yield of the target product increases
gradually with the increase in α, β-unsaturated compounds. The highest yield 95% is
obtained when the substrate molar ratio (benzimidazoles: α, β-unsaturated compounds)
is 1:6. At this time, continuing to increase the substrate molar ratio (benzimidazoles: α,
β-unsaturated compounds) leads to the production of by-product and affects the yields.
Therefore, we chose benzimidazoles: α, β-unsaturated compounds = 1:6 as our optimal
substrate molar ratio in the further parameter research.

Catalysts 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. The influence of substrate ratio (benzimidazoles: α, β-unsaturated compounds) on the 
synthesis of N-substituted benzimidazole derivatives catalyzed by lipase TL IM from Thermomyces 
lanuginosus in continuous-flow microreactors. 

2.3. Effect of Reaction Temperature 
The rate of chemical reactions increases with temperature, but enzymes are proteins 

and temperature affects the responses of enzymes mainly by affecting their activity. 
When the temperature is low, the reaction rate increases with increasing temperature. 
However, when the temperature exceeds a specific range, the thermal denaturation 
factor of the enzyme dominates, and the reaction speed slows down with the increase in 
temperature. In methanol solvent, we adjusted the reaction temperature from 35 °C to 55 
°C, and the results at different temperatures with 35 min residence time are shown in 
Figure 3. The best yield of 95% is obtained when the reaction temperature is 45 °C, and 
the yield decreases when the temperature continues to increase. Therefore, we chose 45 
°C as the optimal reaction temperature. 

 
Figure 3. The influence of reaction temperature on the synthesis of N-substituted benzimidazole 
derivatives catalyzed by lipase TL IM from Thermomyces lanuginosus in continuous-flow 
microreactors. 

2.4. Effect of Residence Time 
A crucial variable in the microfluidic process is residence time. Insufficient reaction 

time affects the contact reaction between reactants and enzymes. If the reaction time is 

0

20

40

60

80

100

2:1 1:1 1:2 1:4 1:6 1:8

Yi
el

d 
(%

)

substrate ratio (benzimidazoles : α, β-unsaturated compounds)

3-(1-benzimidazolyl)-2-chloropropanenitrile (3a)

0

20

40

60

80

100

35 40 45 50 55

Yi
el

d 
(%

)

reaction temperature (°C)

3-(1-benzimidazolyl)-2-chloropropanenitrile (3a)

Figure 2. The influence of substrate ratio (benzimidazoles: α, β-unsaturated compounds) on the
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2.3. Effect of Reaction Temperature

The rate of chemical reactions increases with temperature, but enzymes are proteins
and temperature affects the responses of enzymes mainly by affecting their activity. When
the temperature is low, the reaction rate increases with increasing temperature. However,
when the temperature exceeds a specific range, the thermal denaturation factor of the
enzyme dominates, and the reaction speed slows down with the increase in temperature.
In methanol solvent, we adjusted the reaction temperature from 35 ◦C to 55 ◦C, and the
results at different temperatures with 35 min residence time are shown in Figure 3. The best
yield of 95% is obtained when the reaction temperature is 45 ◦C, and the yield decreases
when the temperature continues to increase. Therefore, we chose 45 ◦C as the optimal
reaction temperature.
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2.4. Effect of Residence Time

A crucial variable in the microfluidic process is residence time. Insufficient reaction
time affects the contact reaction between reactants and enzymes. If the reaction time is too
long, side reactions may occur, and undesirable by-products may be generated. The effect of
residence time on the lipase-catalyzed synthesis of N-substituted benzimidazole derivatives
was studied by increasing the residence time from 20 to 50 min, and the results are shown
in Figure 4. As we can see from Figure 4, the best yield is reached in 35 min; continuing to
prolong the reaction time does not improve the reaction yield much. Therefore, 35 min was
selected as the optimal residence time in the following study.
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2.5. The Effect of Enzyme Reusability

Since immobilized lipase can further reduce costs by allowing for recycling and reuse,
we explored the reproducible amount of lipase TL IM under optimal conditions. The
enzyme was reused ten times, with yields of N-substituted benzimidazole derivatives
above 57% (Figure 5). The short reaction time, coupled with the excellent reuse potential
of the lipozyme, may lead to significant productivity gains in the synthesis of related
benzimidazole derivatives.
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Figure 5. The influence of number of repeated reaction on the synthesis of N-substituted benzimidazole
derivatives catalyzed by lipase TL IM from Thermomyces lanuginosus in continuous-flow microreactors.

2.6. The Scope and Limitation of the Synthesis of N-Substituted Benzimidazole Derivatives
Catalyzed by Lipozyme TL IM in Continuous-Flow Microreactors

Finally, to explore the scope and limitations of this new high-speed aza-Michael
addition of benzimidazole derivatives to α, β-unsaturated compounds, 3 benzimidazoles
(benzimidazole, 2-chlorobenzimidazole, 2-methylbenzimidazole) and 5 α, β-unsaturated
compounds (2-chloroacrylonitrile, acrylonitrile, methyl acrylate, methyl methacrylate,
phenyl vinyl sulfone) were subjected to the general reaction conditions, using continuous-
flow microreactor processing. The corresponding adducts were synthesized parallelly
in a single experiment using lipase-catalyzed aza-Michael addition of benzimidazoles
to α, β-unsaturated compounds under continuous flow conditions, which proves that
good scalability of this process (Table 2). We find that the yields decrease when there are
electron-withdrawing groups on the benzimidazole ring, because the nucleophilicity of the
nitrogen atom can be weakened (Table 2, Entry 6–8 and 10), while the yields are basically
not affected when there are electron-donating groups on the benzimidazole ring (Table 2,
Entry 11–13 and 15). We also study the effects of different α, β-unsaturated compounds
on the reaction and find that phenyl vinyl sulfone is the best reactant, as the phenyl vinyl
sulfone derivatives have the best yields. The reaction yield of 2-chloroacrylonitrile is higher
than acrylonitrile, which may be due to the enhancement of electropositivity of β-carbon
atom by electron-withdrawing groups. Due to the steric hindrance effect, the reaction yield
of methyl methacrylate is trace.
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Table 2. Continuous process for the synthesis of N-substituted benzimidazole derivatives catalyzed
by lipase TL IM from Thermomyces lanuginosus in continuous-flow microreactors a.
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3. Materials and Methods
3.1. Materials

All chemicals in this study were obtained from commercial sources and did not re-
quire further purification. Lipozyme TL IM from Thermomyces lanuginosus was purchased
from Novo Nordisk (Copenhagen, Denmark). Benzimidazole, 2-chlorobenzimidazole, 2-
methylbenzimidazole, 2-chloroacrylonitrile, acrylonitrile, methyl acrylate, methyl methacry-
late, phenyl vinyl sulfone were purchased from Aladdin (Shanghai, China). Harvard
Instrument PHD 2000 syringe pump was purchased from Harvard University (Holliston,
MA, USA). The flow reactor and Y-mixer were purchased from Beijing Haigui Medical
Engineering Design Co., Ltd. (Beijing China). A 400 MHz NMR spectrometer (Billerica,
MA, USA) were also used in this study.

3.2. Experimental Setup and Experiment Conditions

A continuous-flow protocol for the aza-Michael addition of benzimidazoles to α, β-
unsaturated compounds in microreactors is described in Figure 6 as well as in Figure S1.
The experimental setup consists of two syringe pumps, coil reactor 1, coil reactor 2, and
Y-shaped mixers (ϕ = 1.8 mm). Syringe pumps (Harvard apparatus PHD 2000) were used
to introduce separate feed streams to 3.1 mL PFA coil reactors (2.0 mm I.D.). Silica gel tubes
were filled with lipase TL IM and immersed in a constant temperature water bath to control
the temperature. A total of 5 mmol of benzimidazole derivative was dissolved in 10 mL of
methanol (feed 1), and 30 mmol of α, β-unsaturated compounds was dissolved in 10 mL
of methanol (feed 2). Feeds 1 and 2 were placed in separate 10 mL feeders and mixed at a
flow rate of 8.91 µL min−1 in a Y-mixer at 45 ◦C. The resulting stream (17.8 µL min−1) was
connected to a sample vial for collection of the final mixture. The final mixture was then
evaporated and the residue was separated by silica gel chromatography (200–300 mesh).
Grades containing the major product were combined and the solvent was evaporated. The
main products were determined by 1H NMR and 13C NMR.
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3.3. Analytical Methods
3.3.1. Thin-Layer Chromatography (TLC)

TLC analysis was performed with methanol/dichloromethane 1/20 (v/v) as the eluent.
The results were detected by UV irradiation at 254 nm.

3.3.2. Nuclear Magnetic Resonance (NMR) and High-Resolution Mass Spectrometry (HRMS)

The product obtained by column chromatography separation and purification was
subjected to 1H NMR, 13C NMR, and HRMS structure confirmation.

3-(1H-benzo[d]imidazol-1-yl)-2-chloropropanenitrile (3a). White solid. 1H NMR (400 MHz,
DMSO-d6) δ 8.30 (s, 1H), 7.80 (dt, J = 8.1, 1.0 Hz, 1H), 7.72–7.65 (m, 1H), 7.27 (dddd,
J = 21.6, 8.4, 7.2, 1.2 Hz, 2H), 5.77 (t, J = 6.2 Hz, 1H), 5.04 (dd, J = 6.2, 1.4 Hz, 2H). 13C NMR
(101 MHz, DMSO-d6) δ 144.64, 143.13, 133.75, 122.93, 122.29, 119.63, 116.64, 111.17, 46.91,
42.68. HRMS (ESI): calculated for C10H9ClN3 [M + H]+: 206.0480, found 206.0474.

3-(1H-benzo[d]imidazol-1-yl)propanenitrile (3b). White solid. 1H NMR (400 MHz, DMSO-
d6) δ 8.28 (s, 1H), 7.69 (ddt, J = 16.9, 7.8, 0.9 Hz, 2H), 7.26 (dddd, J = 25.2, 8.3, 7.2, 1.2 Hz,
2H), 4.58 (t, J = 6.5 Hz, 2H), 3.12 (t, J = 6.5 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 144.06,
143.38, 133.44, 122.68, 121.97, 119.59, 118.64, 110.62, 39.91, 18.56. HRMS (ESI): calculated for
C10H10N3 [M + H]+: 172.0869, found 172.0863.

methyl 3-(1H-benzo[d]imidazol-1-yl)propanoate (3c). Transparent liquid. 1H NMR (400 MHz,
DMSO-d6) δ 8.21 (s, 1H), 7.69–7.59 (m, 2H), 7.23 (ddd, J = 14.6, 7.8, 1.3 Hz, 2H), 4.50 (t, J = 6.7 Hz,
2H), 3.56 (s, 3H), 2.93 (t, J = 6.7 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 171.28, 144.21, 143.42,
133.57, 122.39, 121.59, 119.50, 110.43, 51.61, 39.99, 33.83. HRMS (ESI): calculated for C11H12N2O2
[M + H]+: 205.0982, found 205.0974.

1-(2-(phenylsulfonyl)ethyl)-1H-benzo[d]imidazole (3e). White solid. 1H NMR (400 MHz,
DMSO-d6) δ 8.13 (s, 1H), 7.85–7.79 (m, 2H), 7.70–7.63 (m, 1H), 7.60–7.51 (m, 3H), 7.45 (dt,
J = 8.2, 0.9 Hz, 1H), 7.26–7.14 (m, 2H), 4.59 (t, J = 6.6 Hz, 2H), 4.00 (t, J = 6.6 Hz, 2H). 13C
NMR (101 MHz, DMSO-d6) δ 144.12, 143.29, 138.76, 133.96, 133.27, 129.36, 127.41, 122.40,
121.66, 119.44, 110.27, 53.54, 38.19. HRMS (ESI): calculated for C15H15N2O2S [M + H]+:
287.0849, found 287.0836.

2-chloro-3-(2-chloro-1H-benzo[d]imidazol-1-yl)propanenitrile (3f). Transparent liquid. 1H
NMR (400 MHz, DMSO-d6) δ 7.86–7.80 (m, 1H), 7.64 (dd, J = 7.5, 1.1 Hz, 1H), 7.32 (dtd,
J = 21.4, 7.5, 1.3 Hz, 2H), 5.78 (dd, J = 7.3, 6.0 Hz, 1H), 5.03 (qd, J = 15.5, 6.6 Hz, 2H). 13C
NMR (101 MHz, DMSO-d6) δ 140.98, 140.42, 134.81, 123.39, 123.09, 118.75, 116.28, 111.40,
46.47, 41.66. HRMS (ESI): calculated for C10H8Cl2N3 [M + H]+: 240.0090, found 240.0088.

3-(2-chloro-1H-benzo[d]imidazol-1-yl)propanenitrile (3g). White solid. 1H NMR (400 MHz,
DMSO-d6) δ 7.75–7.68 (m, 1H), 7.66–7.59 (m, 1H), 7.31 (dtd, J = 21.2, 7.4, 1.3 Hz, 2H), 4.59 (t,
J = 6.4 Hz, 2H), 3.10 (t, J = 6.4 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 141.19, 140.03,
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134.69, 123.37, 122.94, 118.84, 118.36, 110.94, 48.73, 17.75. HRMS (ESI): calculated for
C10H9ClN3 [M + H]+: 206.0480, found 206.0474.

methyl 3-(2-chloro-1H-benzo[d]imidazol-1-yl)propanoate (3h). Transparent liquid. 1H
NMR (400 MHz, DMSO-d6) δ 7.72–7.54 (m, 2H), 7.27 (dtd, J = 23.4, 7.3, 1.3 Hz, 2H), 4.51
(t, J = 6.9 Hz, 2H), 3.37 (d, J = 1.4 Hz, 3H), 2.87 (t, J = 6.9 Hz, 2H). 13C NMR (101 MHz,
DMSO-d6) δ 170.79, 141.13, 139.90, 134.73, 123.03, 122.49, 118.65, 110.75, 51.66, 39.95, 33.13.
HRMS (ESI): calculated for C11H12ClN2O2 [M + H]+: 239.0582, found 239.0577.

2-chloro-1-(2-(phenylsulfonyl)ethyl)-1H-benzo[d]imidazole (3j). White solid. 1H NMR
(400 MHz, DMSO-d6) δ 7.86–7.79 (m, 2H), 7.72–7.63 (m, 1H), 7.59–7.46 (m, 4H), 7.25 (dtd,
J = 19.2, 7.4, 1.3 Hz, 2H), 4.58 (t, J = 6.7 Hz, 2H), 3.99 (t, J = 6.7 Hz, 2H). 13C NMR (101 MHz,
DMSO-d6) δ 141.01, 139.73, 138.59, 134.44, 134.01, 129.35, 127.30, 123.01, 122.58, 118.59,
110.71, 52.49, 38.02. HRMS (ESI): calculated for C15H14ClN2O2S [M + H]+: 321.0459, found
321.0456.

2-chloro-3-(2-methyl-1H-benzo[d]imidazol-1-yl)propanenitrile (3k). White solid. 1H NMR
(400 MHz, DMSO-d6) δ 7.75–7.65 (m, 1H), 7.59–7.48 (m, 1H), 7.25–7.13 (m, 2H), 5.78–5.70
(m, 1H), 5.02 (dd, J = 15.4, 6.2 Hz, 1H), 4.93 (dd, J = 15.4, 7.7 Hz, 1H), 2.61 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) δ 152.29, 142.20, 134.95, 121.88, 121.85, 118.30, 116.69, 110.70, 45.81,
42.01, 13.77. HRMS (ESI): calculated for C11H11ClN3 [M + H]+: 220.0636, found 220.0634.

3-(2-methyl-1H-benzo[d]imidazol-1-yl)propanenitrile (3l). White solid. 1H NMR (400 MHz,
DMSO-d6) δ 7.65–7.58 (m, 1H), 7.58–7.49 (m, 1H), 7.18 (pd, J = 7.2, 1.4 Hz, 2H), 4.52 (t, J = 6.6 Hz,
2H), 3.05 (t, J = 6.6 Hz, 2H), 2.59 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 151.84, 142.36, 134.70,
121.69, 121.57, 118.80, 118.31, 110.04, 38.72, 17.87, 13.50. HRMS (ESI): calculated for C11H12N3
[M + H]+: 186.1026, found 186.1020.

methyl 3-(2-methyl-1H-benzo[d]imidazol-1-yl)propanoate (3m). Transparent liquid. 1H NMR
(400 MHz, DMSO-d6) δ 7.58–7.45 (m, 2H), 7.16 (pd, J = 7.2, 1.4 Hz, 2H), 4.43 (t, J = 7.0 Hz,
2H), 3.56 (s, 3H), 2.85 (t, J = 6.9 Hz, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 171.24,
151.81, 142.43, 134.75, 121.48, 121.25, 118.24, 109.86, 51.56, 38.99, 33.35, 13.40. HRMS (ESI):
calculated for C12H14N2O2 [M + H]+: 219.1129, found 219.1118.

2-methyl-1-(2-(phenylsulfonyl)ethyl)-1H-benzo[d]imidazole (3o). White solid. 1H NMR
(400 MHz, DMSO-d6) δ 7.90–7.82 (m, 2H), 7.74–7.65 (m, 1H), 7.57 (t, J = 7.8 Hz, 2H), 7.48–7.40
(m, 1H), 7.33–7.25 (m, 1H), 7.17–7.06 (m, 2H), 4.49 (t, J = 6.8 Hz, 2H), 3.93 (t, J = 6.8 Hz,
2H), 2.46 (s, 3H). 13C NMR (101 MHz, DMSO-d6) δ 151.68, 142.28, 138.76, 134.49, 133.99,
129.38, 127.35, 121.53, 121.38, 118.20, 109.68, 52.95, 36.97, 13.36. HRMS (EI): calculated for
C16H16N2O2S [M]+: 300.0932, found 300.0903.

4. Conclusions

In summary, a microfluidic biocatalysis system applied for the synthesis of N-substituted
benzimidazole derivatives by aza-Michael addition was developed with sustainable and
convenient manipulation. Benzimidazoles (benzimidazole, 2-chlorobenzimidazole, 2-
methylbenzimidazole), as less nucleophilic agents, reacted with α, β-unsaturated com-
pounds (acrylonitriles, acrylate esters, phenyl vinyl sulfone) catalyzed by lipase TL IM
from Thermomyces lanuginosus in continuous-flow microreactors were studied. Reaction pa-
rameters including solvent, substrate ratio, reaction temperature, reactant donor/acceptor
structures, and reaction time were investigated. In this continuous-flow enzymatic strategy,
a series of N-substituted benzimidazole derivatives are synthesized and characterized,
which proves that the microfluidic enzymatic process in aza-Michael addition has good
scalability. The salient feature of this method, including mild reaction conditions (methanol,
45 ◦C), short reaction time (35 min), easily available, and reusable catalyst, made this ap-
proach a promising fast synthesis strategy for further research to develop novel and highly
potent active drugs. In our further research, we plan to develop a two-step tandem syn-
thesis method of benzimidazole propionamide derivatives. Benzimidazole propionamide
derivatives were reported as having anti-proliferative activity against human prostate
cancer and potential peptidyl-prolyl cis/trans isomerase Pin1 inhibitory activity, and could
be introduced into drug molecules to prepare novel anti-tumor drugs. Synthesis of N-
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substituted benzimidazole derivatives by aza-Michael addition developed in this work laid
a preliminary foundation for further research on drugs of benzimidazole propionamide.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12121658/s1, Figure S1: Continuous flow microreactor.
References [22,25,49,50] are cited in the Supplementary Materials.
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