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Abstract: The goal of this research was to investigate the effects of ZnO–TiO2 and its nanocomposites,
on the physical, mechanical, and ultraviolet protection of polyethylene terephthalate (PET). Exposure
to ultraviolet (UV) rays is a major cause of the degradation of the quality and optical properties
of materials in addition to skin cancer; therefore, research on UV-blocking materials that are safe
and have fewer side effects than currently available products is being actively conducted. In this
study, a material with UV-blocking capability was synthesized while ensuring the transparency of
ZnO and TiO2. ZnO–TiO2 and its various composites were successfully synthesized via a hydrother-
mal method followed by ball milling and their properties were systematically analyzed by using
scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, and
water contact angle measurements. Furthermore, a simple dip-coating method was employed to
prepare transparent polyethylene terephthalate (PET) films coated with the composites, which were
subsequently investigated for UV-blocking properties by exposing them to UV irradiation. The
hydroxyl groups of ZnO and TiO2, as representative inorganic sunblock components, were removed
by using 3-chloropropyl trimethoxy silane as a coupling agent to improve their wettability in an
organic solvent as well as their dispersibility and stability. The addition of a small amount of Tinuvin®

allowed the hybrid organic and inorganic components to exhibit transparent UV-blocking character-
istics, with a UV transmittance of ≤20% and 90% visible transmittance. These results, thus, serve as a
basis for contributing to applications in the field of packaging, health, and hygiene industries.

Keywords: UV protection; ZnO; TiO2; transparency; polyethylene terephthalate film; transmittance

1. Introduction

Because of its great transparency, strength in mechanical use, and outstanding barrier
qualities, polyethylene terephthalate (PET) is commonly used for packing liquids and
freshly cut fruit. Because PET is highly transparent to both visible and ultraviolet (UV)
light, it can be mixed with low molecular weight, UV-absorbing compounds to lessen the
nutrient deterioration that occurs when food is exposed to UV light. UV rays break the
chemical bonds of synthetic resins via photolysis, leaving them with cracks or discoloration
resulting in a decline in their physical properties, such as impact and tensile strengths [1,2].
The properties of synthetic resins, such as polyethylene and polypropylene, can be degraded
by their exposure to light, so UV protection (organic sunscreen and inorganic sunblock) is
used to prevent their deterioration (decomposition and discoloration). The primary cause
for the aging of synthetic resins is the UV rays of sunlight; thus, their weather and light
resistances can be improved by the addition of sunscreen or sunblock. Organic sunscreen
absorbs UV energy that has reached the surface of a material and often blocks UV-B
(280–320 nm) radiation, whereas inorganic sunblock physically scatters UV rays and mainly
employs ZnO and TiO2 for this purpose, making it effective in blocking UV-A (320–400 nm)
radiation, but it is not easy to ensure transparency, as shown in Figure 1A [3,4]. Among
the organic ultraviolet absorbers, benzotriazole, which has a good absorption effect of
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near-UV, light stabilizer, and synergistic effect, is the most widely used, and benzophenone,
cyanoacrylate, and triazine are used according to characteristics (Figure 1B); therefore, both
the blocking agents are used together to effectively defend against UV rays.
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Figure 1. (A) Schematic illustration of the way in which organic and inorganic sunscreens protect against
ultraviolet (UV) radiation and (B) the active ingredients for protection against UV-A (320–400 nm) and
UV-B (280–320 nm) rays.

Plants create their own sunscreen, such as sinapoyl malate, to prevent the UV rays of
the sun from damaging their DNA and hindering their growth. Sinapoyl malate has a ring
structure similar to those of common sunscreen components. Stavros et al. found that when
oxybenzone molecules—an organic sunscreen—absorb light and become excited, 90% of
them decompose and emit heat, but 10% remain excited without breaking; this is similar to
a phosphorescence phenomenon, in which light is applied to an object, and is then removed
for a long time. By manipulating the rotation area or vibrating the material to convert the
excess energy into heat, the material can be returned to a stable ground state [5].

A UV absorber is a synthetic resin additive that selectively absorbs UV energy and
converts it into thermal energy; benzotriazole is mainly used for this because it has the
best UV absorption ability and does not stain synthetic resins, thereby giving rise to color
stability over a long period of time. A representative product for this purpose is Tinu-
vin. It has already been reported that standard Tinuvin® UV absorbers are used in food
and packaging containers available in the market, with no known health issues associ-
ated with their use [6]. The requirements of a UV absorber are good light absorption
in the UV absorption wavelength range (280–400 nm), thermal and chemical stability,
low volatility, excellent compatibility with the target substance, light stability of the ab-
sorbent itself, transparency, odorlessness, nontoxicity, and a small amount for effective
use. A UV absorber absorbs light in the 250–400 nm wavelength range and converts it into
thermal energy.

ZnO, which has excellent UV-A and UV-B properties, and TiO2, which is more spe-
cialized in blocking UV-B, are white powders used in medicines, pigments, and cosmetic
raw materials. ZnO is a UV protection material recognized by the U.S. Food and Drug Ad-
ministration for its stability and effectiveness and is widely used in antibacterial products
due to its ecofriendliness, excellent thermal stability, low toxicity to the human body, and
strong resistance to bacteria and fungi [7]. In addition, TiO2 has the ability to absorb light
to induce photo-oxidation–reduction reactions via an electron transition and photocatalyt-
ically degrade bacteria and organic matter; therefore, it is used to develop antibacterial
functional packaging materials to maintain food quality and prevent its decay [8]. Studies
have reported that fine nanosized TiO2 particles show high scattering of UV rays, making
TiO2 an excellent material for use in UV protection applications [9]. Diaz–Visurraga et al.
found that chitosan films with 17–170 nm-sized TiO2 exhibit increased light absorption
toward both UV-A and UV-B, thereby showing superior UV protection compared to non-
doped films [10]. To ensure transparency, as well as UV protection for maintaining the
quality of products, nanoparticles with size <100 nm must be uniformly dispersed [11].
The factor that determines visible light transmittance and UV protection properties is the
size of the dispersed particles; nanoparticle materials have very good reactivity properties
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because of their high specific surface area [12]. In addition, Sabzi et al. demonstrated that
TiO2, which was surface-treated with the coupling agent amino propyl dimethoxy silane
to efficiently disperse nanosized TiO2, has an improved UV protection effect compared
with its pretreatment state [13]. In this study, we developed a coating material that is
transparent and exhibits guaranteed UV protection via two synthesis methods by using
ZnO, TiO2, and Tinuvin; it was confirmed that the silane-based coupling coating sup-
presses the photocatalytic activity of ZnO and TiO2, thereby improving their dispersibility
and safety.

2. Results and Discussion

As the size of ZnO and TiO2 particles decreases, the transparency of the visible light
region increases; hence, these materials were synthesized under two sets of synthesis
conditions, and their particle shapes were observed by using SEM analysis, with the results
shown in Figure 2. As can be observed in Figure 2A, the ZnO–TiO2–TEA sample exhibits a
wirelike structure with a size of several nanometers (195–252 nm). To widen the surface
area of ZnO, the nanotetrapod approach can be considered [14,15]. In comparison, the ZnO–
TiO2 nanocomposite exhibits the particles like structures with a size of several hundred
nanometers (61–124 nm), as shown in Figure 2B. Figure 2C shows the morphology of a
ZnO–TiO2–silane composite, which confirms that the ZnO–TiO2 surface was completely
coated with silane; moreover, EDX spectroscopy and elemental mapping results confirmed
the presence of Si in the composites.
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Figure 2. Scanning electron microscopy images and energy-dispersive X-ray spectra of (A) ZnO–
TiO2–TEA, (B) ZnO–TiO2, and (C) ZnO–TiO2–silane.

As shown in Figure 3A, all of the samples were synthesized ZnO particles with a
hexagonal wurtzite crystal structure with XRD peaks of (2θ, reflection plane) = (31.8◦, (100)),
(34.5◦, (002)), (36.3◦, (101)), (47.5◦, (102)) and (56.6◦, (110)) and were uniformly distributed
with TiO2 in three different phases. The prominent peak of TiO2 was consistent with the
anatase TiO2 phase (2θ = 25◦, (101)), and crystals of the rutile (2θ = 27.5◦, (100)) and brookite
(2θ = 31◦, (120)) TiO2 phases were also observed. In the case of TiO2, the average particle
size of the samples was estimated by applying the value of the main XRD peak centered at
approximately 25◦ to the Debye–Scherrer equation (D = 0.9λ/(βcosθ)) [16]. In this equation,
D is the average crystallite size, the constant with a value of 0.9 is the shape factor, λ is the
wavelength of the incident X-rays (1.5406 Å), β is the full width at half maximum, and θ is
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the diffraction angle of the maximum peak. The average crystallite sizes of ZnO and TiO2
are 75.45 and 68.24 nm, respectively.
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Figure 3B shows the FTIR spectra in the wavenumber range of 500–4000 cm−1 of
the samples for (a) ZnO–TiO2–TEA, (b) ZnO–TiO2 and (c) ZnO–TiO2–silane. Intense and
weak bands appearing below 1000 cm−1 are due to O–Ti–O bonding [17]. The sample
of Figure 3B(b,c) shows stronger O-Ti-O bonding at a wavenumber of 563 cm−1 than
Figure 3B(a). The peaks for C–H at 1000–1100 and 2898 cm−1 are due to the absorption of
alkane functional groups [18]. The function of C=C and C=C–C vibrations can be observed
at 1635 and 1447 cm−1, respectively [19]. The peaks at 1627 and 2370 cm−1 correspond to
the H–O–H vibrations in absorbed water molecules [20]. The sample of ZnO–TiO2–TEA
exhibits a more intense absorption hydroxyl peak (–OH) than that of ZnO–TiO2.

Figure 4 shows the dependence of the spectroscopic characteristics of ZnO–TiO2–TEA
and ZnO–TiO2 on the silane coupling agent and Tinuvin. The silane coupling agent blocks
UV-A transmittance by increasing the absorption in the UV-A region, whereas, Tinuvin
increases the absorption in both the UV-A and UV-B regions, thereby significantly lowering
the transmittance for all UV regions, e.g., lowering it to 20% for UV-A. Samples obtained
via the synthesis of ZnO–TiO2–TEA exhibit a transmittance of ≤2% in both the UV-A and
UV-B regions, but it is difficult to ensure transparency as the transmittance is limited to 25%
for visible light. Samples using Tinuvin, ZnO, and TiO2 entirely block UV-B, 80% UV-A,
and 80% visible light, thereby ensuring their transparency. In addition, it can be seen that
the sample treated with a silane coupling exhibits excellent UV-blocking of the ZnO and
TiO2 photocatalysts when exposed to UV rays, as shown in the spectra in Figure 4C. The
easiest way to protect against UV rays is to increase the concentration of UV blockers. This
is because according to the Beer–Lambert law A = −log(T) = log P0

P = εbc (A: absorbance,
T: transmittance, P0: incident radiant power, P: transmitted radiant powder, ε: molar
absorptivity, b: path length of sample, c: concentration of absorber) [21], the greater the
thickness and concentration of UV blockers is, the higher is the absorption rate of light;
however, if the concentration increases, it is difficult to ensure transmittance to visible light,
and the material becomes harmful to skin. Therefore, the use of small amounts of ZnO,
TiO2, and Tinuvin serves as an environmentally friendly and transparent sunscreen.

2.1. Mechanism for Silane Coupling ZnO–TiO2 UV Blocker

Surface modification allows changes to be made to a material and control of its surface
properties to improve its limitations. Figure 5 shows the contact angles before and after the
silane coupling of the ZnO and TiO2 powders, as well as the optical microscope images
at 40× magnification. Moreover, the samples were coated with PET film, and optical
microscopy images at 10 and 40×magnifications and contact angle measurements of the
films were obtained. The contact angle of the powder changed from superhydrophilic at
<2◦ to hydrophobic at 134◦ ± 2.1◦ by surface treatment via silane coupling. The effect of the
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silane coating on the powder is noticeable, but when a film is incorporated, the effect of the
film on the contact angle is unclear. Optical microscopy was used to observe the powder
distribution on a film to observe the silane coating effect. The film using the silane-coated
sample was very evenly dispersed, whereas, the film using the non-silane-coated sample
featured lumps of powder.
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Electrons (e−) and holes (h+) generate on the surface of ZnO and TiO2 under UV
radiation when used as photocatalysts; the e− reacts with oxygen on the photocatalyst
surface to form O−2 . The h+ reacts with moisture in the air to form hydroxyl radicals
(–OH) which can oxidize and decompose powerful organic substances, such as odorous
compounds, viruses, and bacteria, by converting them into H2O and CO2 [22]. However,
due to their superhydrophilicity, the hydroxyl groups aggregate and clump together;
therefore, to improve the dispersibility of the pigment, it is surface-treated with a coupling
agent, which improves the wettability of the organic solvent by removing hydroxyl groups,
as shown in Figure 6.
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2.2. Mechanism of Tinuvin UV Absorber

Polymer degradation is inhibited in the field of polymer science by screening out
incident UV radiation with UV absorbers [23]. Tinuvin is one of many benzotriazoles,
which also include UV absorption properties and exceptional photostability, that are used
as UV absorbers. By being exposed to UV radiation, the derivatives induce excited-state
intramolecular proton transfer (ESIPT) and produce zwitterionic structures that aid in
nonradiative deactivation as shown in Figure 7 [24]. Because there is a deactivation pathway
that passes through the conical junction, the internal conversion following ESIPT occurs
very quickly, making it challenging to deconstruct these derivatives during the limited
lifetimes of the excited states [25]. Damage-causing UV light is preferentially absorbed by
UV absorbers made of benzotriazoles, and through ESIPT-based nonradiative deactivation,
it is then released as thermal energy. Metal-free organic dyes can benefit from the idea of
UV absorbers stabilizing and protecting macromolecules.
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3. Materials and Methods
3.1. Materials

ZnAc (zinc acetate dihydrate, Zn[C2H3O2]2·2H2O, 99.5%), ZnO (zinc oxide, 99.5%),
and TiO2 (titanium oxide, 99.5%) powders were purchased from Daejung Chemical &
Material Co. Ltd., Republic of Korea and used to synthesize UV-blocking agents. Pure
ethanol and TEA (triethanolamine, C6H15NO3) were used as a solvent and stabilizer, respec-
tively. For the surface modification of ZnO and TiO2 powders, 3Cl-TMS (3-chloropropyl
trimethoxy silane, Cl(CH2)3Si(OCH3)3, 97%, Sigma-Aldrich, Merck Korea, Seoul, Republic
of Korea) was used as a silane coupling agent and MEK (methyl ethyl ketone, C4H8O, 99%,
Daejung, Republic of Korea) was used as a solvent. Propylene glycol monomethyl ether
acetate (PGMEA, C6H12O3, Sigma-Aldrich) was used without purification as a dispersion
solvent. The polyethylene terephthalate (PET) film is a thermoplastic polymer that can be
amorphous, crystalline, or a mixture of both depending on how it is processed. The PET
film used as a substrate was purchased as a commercial A4-sized film with the dimensions
210 × 297 mm and a thickness of 100 µm from the LamiAce company, Seoul, Republic
of Korea.

3.2. Synthesis and Surface Treatment Method

Synthesis of ZnO–TiO2–TEA: A mixture of ZnAc and TEA was prepared in a ZnAc:TEA
molar ratio 5:2 [26]. TEA was mixed in a reaction vessel with 40 mL of ethanol and stirred
by using a magnetic stirrer before the addition of ZnAc and further stirring of the resulting
mixture at 50–60 ◦C for 30 min. TiO2 equal to Zn molar ratio of ZnAc was mixed and stirred
for 15 min, to which 10 mL of deionized water was added and stirred for 30 min. PET film
was washed in a sonicator for 10 min in a mixture of ethanol and acetone; this film was
then coated via dipping method, and dried in an oven at 60 ◦C for 6 h.

Synthesis of ZnO–TiO2: ZnO and TiO2 powders were mixed in a mass ratio of 1:1
and ground by a ball milling, which was performed at 175 rpm for 4 h, where, in addition
to the powders, the ball mill was filled with an appropriate amount of alumina balls and
ethanol. After the completion of the milling and removal of the alumina balls, the sample
was washed with ethanol and covered with aluminum foil to prevent it being contaminated
with impurities, before being left to air dry for a day to allow evaporation of the ethanol.
The resulting powder was then dried in the oven at 80 ◦C for 3 h.

Silane coating: MEK (300 mL) and 3Cl-TMS (9 g) were introduced into a 500 mL
reaction vessel, which was well sealed to prevent solvent evaporation and ingress of
impurities before being sonicated for 30 min. ZnO and TiO2 samples (60 g) obtained via
the ZnO-TiO2 synthesis were added to the above solution, and the mixture was stirred
uniformly and slowly at room temperature (20–25 ◦C) for 6 h. When the stirring was
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completed, the remaining impurities and unreacted substances were removed by washing
with ethanol, and then the product was dried in the oven at 70 ◦C for 24 h to obtain
ZnO–TiO2–silane.

Tinuvin mixing: The ZnO–TiO2 composite was mixed in 9:1 ratio with PGMEA, to
which 5% wt thermosetting coating solution based on the composite weight was added and
coated on the PET film. Similarly, the ZnO–TiO2–silane–Tinuvin composite was synthesized
via the addition of ZnO–TiO2–silane.

3.3. Measurement and Characteristic Analysis

The crystal phase and morphology of the samples were compared and analyzed by
using an X-ray diffraction (XRD; D8 ADVANCE, Bruker, Billerica, MA, USA) and field emis-
sion scanning electron microscopy (FE-SEM; Merlin Compact, Carl Zeiss, Jena, Thuringia,
Germany), respectively. The structure and surface characteristics of the surface-modified
samples were analyzed by using Fourier-transform infrared (FTIR; Spectrum X, Perkin
Elmer, Waltham, MA, USA) and energy-dispersive X-ray (EDX; Aztec Energy X-MaxN,
Oxford instruments, Abingdon, Oxfordshire, England) spectrometers. In addition, the spec-
troscopic characteristics of the dispersed film coatings were obtained by using a diffusion
reflectance ultraviolet-visible-near-infrared (UV–vis –NIR) spectrometer (SolidSpec-3700,
Shimadzu, Kyoto, Kansai, Japan). The contact angles of the film and powder were mea-
sured by using a contact angle goniometer (L2004A1, Ossila, Sheffield, South Yorkshire,
UK), and the powder dispersibility of the film was measured by using a microscope (LCD
MICRO 5MP, Bresser, Rhede, North Rhine-Westphalia, Germany).

4. Conclusions

ZnO–TiO2 and its various composites were successfully synthesized by using a hy-
drothermal method followed by ball milling, and their properties were systematically
analyzed by using SEM, XRD, FTIR spectroscopy, and water contact angle measurements.
In addition, a simple dip-coating method was employed to prepare transparent PET films,
which were subsequently exposed to UV irradiation. ZnO and TiO2 have photocatalytic
properties, so when exposed to light, they generate hydroxyl groups and cause oxidation.
A coating was applied via silane coupling to overcome the limitations of the use of ZnO
and TiO2 due to their white cast color and photocatalytic properties. Silane coupling agents
were used to disperse and stabilize the inorganic ZnO and TiO2 sunscreen via a wetting
method. This improved the wettability of the organic solvent by chemically treating and
removing the hydroxyl radicals of the powder components. Silane coating was confirmed
to play a key role in the dispersal and stabilization of the sunscreen by optical microscopy.
The addition of a small amount of Tinuvin allowed the hybrid organic and inorganic sys-
tems to attain transparent UV-blocking characteristics, with a UV transmittance of <20%
and 90% visible transmittance.
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