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Abstract: The catalytic hydrogenation of captured CO2 by different industrial processes allows
obtaining liquid biofuels and some chemical products that not only present the interest of being
obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution
problem but also constitute an energy vector, which can facilitate the storage and transport of very
diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical
products and biofuels has become attractive for different processes such as power-to-liquids (P2L)
and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into
value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an
important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study
of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the
Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons
by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result,
the current review aims to provide an overall picture of the most recent research, focusing on the last
five years, when research in this field has increased dramatically.

Keywords: CO2 hydrogenation; power-to-gas; power-to-liquid; green methanol; methanation reac-
tion; Fischer-Tropsch process; E-fuels; synthetic fuels

1. Introduction

Nowadays, there is a serious concern about the danger caused by the high GHG
(greenhouse gas emissions) produced by our way of life, and in particular by the anthro-
pogenic emissions of carbon dioxide (CO2). Thus, if current trends continue, the planets
temperature could rise dangerously, accelerating the climate change and resulting in an
increase in the level of the oceans and their acidification. This scenario is already having a
very negative impact on the ecosystems of the planet, as well as having a deep negative
influence on the economic and social development of many countries all over the world [1].
To reduce the impact of this atmospheric pollutant, an important effort is being made,
embodied in different international treaties, to carry out the substitution of fossil fuels with
different renewable energy sources [2]. Considering that CO2 alone accounts for around
77% of total greenhouse gases and that natural removal of CO2 through forests and oceans
is not enough to remove the excessive amount of CO2 present in the atmosphere, other
CO2 mitigation strategies are required. Thus, in addition to renewable energies such as
hydropower, wind, and solar energy, which are being considered as alternatives for fossil
fuel mitigation, the use of various technologies for the Carbon Capture and Storage (CCS)
of CO2 [3], as well as its subsequent transformation into useful chemicals [4], is being
considered, because CO2 is a nontoxic chemical that is widely used as a C1 building block
in the synthesis of highly important chemicals (Figure 1) [5,6].

Catalysts 2022, 12, 1555. https://doi.org/10.3390/catal12121555 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12121555
https://doi.org/10.3390/catal12121555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0003-0440-0629
https://orcid.org/0000-0002-5332-0775
https://orcid.org/0000-0002-3558-4072
https://orcid.org/0000-0002-6854-5029
https://doi.org/10.3390/catal12121555
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12121555?type=check_update&version=2


Catalysts 2022, 12, 1555 2 of 42

Catalysts 2022, 12, x FOR PEER REVIEW 2 of 44 
 

 

Carbon Capture and Storage (CCS) of CO2 [3], as well as its subsequent transformation 
into useful chemicals [4], is being considered, because CO2 is a nontoxic chemical that is 
widely used as a C1 building block in the synthesis of highly important chemicals (Figure 
1) [5,6]. 
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In addition, CO2 is being used not only in chemical transformation but also in min-
eralization and biological processes, such as those of an autotrophic biota and some mi-
croorganisms such as algae, cyanobacteria, and chemoautotrophic bacteria that have CO2 
fixing mechanisms [7], following routes such as thermochemical, electrochemical, and 
photocatalytic conversion, with different levels of maturity and performance [8,9]. 

Hence, catalytic conversion of CO2 into chemicals and fuels is a “two birds, one 
stone” approach to fighting climate change, contributing also to solving the energy and 
green supply deficits in the modern world, as shown in Figure 2 [10]. 

In this way, as a complementary strategy to the capture and storage of CO2, it is also 
necessary to consider the capture, storage, and utilization (CCS/U) of CO2 as a feedstock 
for the synthesis of different fine chemical products, such as urea, methanol, formic acid, 
dimethyl ether, dimethyl or diethyl carbonates, and many others [5,11–13]. 

Therefore, it is completely pertinent to evaluate the technical possibilities to hydro-
genate the CO2 after its capture as one of the most promising ways to transform it into 
fine chemicals or biofuels. According to data in Table 1, considering blue hydrogen’s low 
emissions level, blue and green hydrogen could be used together to begin the transition 
to net zero emissions, which is planned for 2050. As can be seen, the blue hydrogen could 
constitute an intermediate for use in the CO2 hydrogenation processes, also considering 
that, at this time, the European Union Commission has labeled as sustainable some en-
ergy raw materials, such as nuclear and natural gas [14]. 

Figure 1. CO2-Promoted Reactions for the Synthesis of Fine Chemicals and Pharmaceuticals. Repro-
duced with permission from the author [6]. Copyright © 2021, American Chemical Society.

In addition, CO2 is being used not only in chemical transformation but also in min-
eralization and biological processes, such as those of an autotrophic biota and some mi-
croorganisms such as algae, cyanobacteria, and chemoautotrophic bacteria that have CO2
fixing mechanisms [7], following routes such as thermochemical, electrochemical, and
photocatalytic conversion, with different levels of maturity and performance [8,9].

Hence, catalytic conversion of CO2 into chemicals and fuels is a “two birds, one stone”
approach to fighting climate change, contributing also to solving the energy and green
supply deficits in the modern world, as shown in Figure 2 [10].
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material over time for any CO2 hydrogenation process carried out on an industrial scale. 
Besides, green hydrogen is greatly influenced by climatic factors, mainly wind intensity 
and solar radiation, so a supply of hydrogen obtained by a technology controlled by a 
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In this way, as a complementary strategy to the capture and storage of CO2, it is also
necessary to consider the capture, storage, and utilization (CCS/U) of CO2 as a feedstock
for the synthesis of different fine chemical products, such as urea, methanol, formic acid,
dimethyl ether, dimethyl or diethyl carbonates, and many others [5,11–13].

Therefore, it is completely pertinent to evaluate the technical possibilities to hydro-
genate the CO2 after its capture as one of the most promising ways to transform it into
fine chemicals or biofuels. According to data in Table 1, considering blue hydrogen’s low
emissions level, blue and green hydrogen could be used together to begin the transition to
net zero emissions, which is planned for 2050. As can be seen, the blue hydrogen could
constitute an intermediate for use in the CO2 hydrogenation processes, also considering
that, at this time, the European Union Commission has labeled as sustainable some energy
raw materials, such as nuclear and natural gas [14].

Table 1. A comparative summary of hydrogen production processes and hydrogen color codes.

Hydrogen Brown Grey Blue Green

Feedstock Coal Natural Gas Natural Gas Renewable electricity

Carbon Capture Gasification No
CCS

Steam methane
reforming No CCS

Advanced gas
reforming CCS Electrolysis

GHG: Emissions
(tonCO2/tonH2)

Highest
19

High emissions
11

Low emissions
0.2

Potential for zero GHG
emissions

Estimated Cost (per kg H2) $1.2–$2.1 $1–$2.1 $1.5–$2.9 $3–$7.5

CCS: carbon capture and storage; GHG: greenhouse gas; tCO2/tH2—ton of carbon dioxide per ton of hydrogen.

In addition, it must be taken into account that the production costs of both types of
hydrogen will continue to decline over the next few decades, favoring the CCS/U process,
as can be seen in Figure 3 [15].
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Furthermore, it is necessary to consider the necessary complementarity between both
types of hydrogen over a long period of time to guarantee a stable supply of this raw
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material over time for any CO2 hydrogenation process carried out on an industrial scale.
Besides, green hydrogen is greatly influenced by climatic factors, mainly wind intensity
and solar radiation, so a supply of hydrogen obtained by a technology controlled by a safe
raw material, such as natural gas, that generates very low CO2 emissions is foreseeable [16].

On the other hand, the massive production of electricity, obtained by renewable
technologies, can be used as another strategy that could complement the decarbonization
process. However, this requires an effective and economically viable method that allows its
storage, given the extreme dependence of these technologies on the climate. In this sense,
the transformation of CO2 and water by either power-to-liquids (P2L) and/or power-to-gas
(P2G) processes, employing this Renew Energy, has recently gained much attention as
an efficient way for CO2 mitigation and obtaining value-added synthetic crude and/or
synthetic natural gas [17]. Hence, combining the use of CO2 and renewable H2, obtained
by water electrolysis, to produce chemicals and biofuels seems to be the most promising
way for a larger H2 utilization as an energy vector, providing, for instance, methane or
methanol, as well as other light oxygenated hydrocarbons for fuel cell (FC) applications in
electric engines [18]. In this way, a closed loop between Renew Energy sources and CO2
reuse can be obtained, coupled with the benefits of clean energy sources and fossil fuels.
The main drawback of these processes is that they are not economically competitive yet in
comparison with processes carried out with conventional hydrogen (blue or gray), which
is obtained from fossil fuels, with the consequent CO2 emissions [19,20].

Up to date, there are still several applications more economically described for CO2
capture and utilization than catalytic hydrogenation processes, such as methane recovery
from hydrates [21], the production of biofuel and biomaterials by bacteria for the production
of value-added products such as biodiesel, bioplastics, extracellular polymeric substances,
biosurfactants, and other related biomaterials [22], or CO2 utilization in agricultural green-
houses. However, the CCS methods are recognized as the most useful procedures to reduce
CO2 emissions while using fossil fuels in power generation [23]. Furthermore, the economic
cost of producing green hydrogen is expected to fall rapidly, allowing the activation of
various catalytic hydrogenation procedures on an industrial scale capable of significantly
reducing GHG emissions. Thus, several studies are being conducted to develop innovative
hydrogen generation systems by using low-carbon energy like wind and solar, which could
enable the wide use, effective storage, and full market penetration of green hydrogen [24].

In this regard, either natural gas steam-methane reforming (SMR) or blue hydrogen
could be considered a viable partner for accelerating hydrogen penetration in CO2 capture,
storage, and utilization (CCSU) [25].

Thus, catalytic hydrogenation processes close the cycle that allows the recovery of
green hydrogen, obtained in very different amounts depending on seasonal fluctuations in
renewable energy production. In addition, through these catalytic hydrogenation processes,
a portfolio of useful chemicals and renewable fuels can be obtained, such as methane,
methanol, ethanol [26], cyclic carbonates [27,28], or higher hydrocarbons such as aromat-
ics [29,30], etc. Figure 4 [31].
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Among these processes, methanol obtained by hydrogenation of CO2 using electro-
catalytically generated green hydrogen presents a great interest for the development of a
complete strategy for the application of renewable energies since it can be used to convert
and store the excess of electrical energy into chemical energy, contributing to smooth the
natural fluctuation in the Renew Energy supply [32].

In fact, as can be seen in Figure 5, about 48% of the total methanol demand is for
chemical intermediate uses, whereas the remaining 52% is for energy uses. The predomi-
nant use of methanol, at 29%, is in the production of formaldehyde, followed by its use in
alternative fuels, such as gasoline blending, DME, and biodiesel, which make up 21% of
the total demand.
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Therefore, methanol could become a central compound in the worldwide energy landscape.
Summarizing, in the near future, the utilization of CO2 and H2 obtained by water

electrolysis to produce P2L and P2G is one of the most promising strategies for CO2
mitigation. However, due to economic limitations, CCS methods are recognized as the
most useful procedures to reduce CO2 emissions. In this sense, catalytic hydrogenation
of CO2 to obtain different products with added-value presents great interest. This review
provides an overview of the various CO2 heterogeneous catalytic hydrogenation reactions
that can be used for the storage and transport, with a focus on the so-called liquid and
gaseous organic hydrogen carriers, that is, the processes known as power-to-gas (P2G) and
power-to-liquids (P2L).

2. Catalytic Hydrogenation of CO2 to Renewable Methane

The catalytic hydrogenation of CO2 to methane and water is a thermochemical process
described over a hundred years ago and is known as the Sabatier reaction, or CO2 methana-
tion (Equation (1)) [33]. This is carried out catalytically at high temperatures (300–400 ◦C)
and pressures (30 bar) in the presence of a suitable catalyst [34], although low-catalytic low
temperature methanation has been studied in recent years [35]. By using green hydrogen,
synthetic natural gas (SNG) is obtained, which can be used directly or stored for later use,
allowing the transfer of electrical energy to a useful renewable fuel.

CO2 + 4H2 → CH4 + 2H2O, ∆H0
298K = −165 kJ/mol (1)
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The reaction is thermodynamically favored (∆G298K = −113.2 kJ/mol), but it involves
an eight-electron process to reduce the fully oxidized carbon to methane, with important
kinetic limitations, so that a catalyst is required in order to achieve high selectivity and
conversion. Thus, catalysts based on noble- and transition-metal materials (Ru, Rh, Pd, and
Ni) supported on metal oxides (Al2O3, CeO2, ZrO2, TiO2, SiO2, La2O3) are usually applied
for the CO2 methanation process [36–39]. Therefore, even though Ru is the most active
metal, its high cost limits the large-scale application of Ru-based catalysts. In contrast,
Ni-based systems are the most widely investigated for industrial purposes, as they combine
a reasonable high selectivity for methane with lower costs [40,41].

Nevertheless, sintering of Ni nanoparticles and carbon deposition on the support
surfaces of catalysts usually lead to their deactivation [42]. The carbon deposition phe-
nomenon occurs either through CO disproportionation reactions (Equation (2)), or via CH4
decomposition (Equation (3)), ref. [43]:

2CO→ C + CO2, ∆H0
298K = −173 kJ mol−1 (2)

CH4 → C + 2 H2, ∆H0
298K = 75 kJ mol−1 (3)

Thus, an incessant number of investigations currently aim at achieving the CO2
conversion to methane via hydrogenation, using deposited Ni on very different supports
and applying it with very different methodologies, since the tandem Ni/support exhibit a
higher performance/cost ratio. To optimize the efficiency of these supported Ni catalysts,
various inorganic materials, including Al2O3, SiO2, TiO2, CeO2, and ZrO2, that favor the
dispersion of Ni particles and enhance their activity and stability, have been studied. In this
respect, the sintering of Ni particles supported on Al2O3 can be inhibited to some extent,
so that Al2O3 seems to be superior to the other supports [42,44–48].

On the other hand, in order to optimize these Ni/Al2O3 systems, extensive studies
about the influence of operating conditions on carbon deposition, with special emphasis
on the effects of the operating temperature, reaction time, and H2/CO ratio, are being
carried out, given that all are significant factors in the morphology and amount of carbon
deposits, because until now it has not been possible to satisfactorily eliminate this carbon
deposition in the Ni/Al2O3 catalysts [44,45,49–52]. Furthermore, there is a substantial
amount of research being conducted on other factors that may influence both the catalytic
performance and the intensity of carbon deposition during successive reactions with reused,
supported Ni catalysts. Figure 6 collects a number of parameters influencing the catalyst
design to improve the low-temperature catalytic performance of supported Ni catalysts
toward the CO2 methanation process [53].
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On the other hand, mixtures of inorganic solids as supports, in many cases together
with Al2O3, as well as other metals as co-catalysts with Ni, such as Co, La, Ru, and many
others, have also been studied [46,55–59]. In this regard, the bimetallic systems Ni and
Ru have shown promising results [60,61], outperforming the reaction over monometallic
Ru or Ni catalysts. Thus, the formation of Ni-Ru alloys or the synergy between two
adjacent metallic phases open the door to new high-performance and low-cost methanation
catalysts [62,63], as illustrated in Figure 7.
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The determining steps in the reaction, using Ni and Ru catalysts, are the HCO*
dissociation to CH* and O* and the CH3* hydrogenation to CH4, respectively. Hence,
as the selectivity of the reaction on Ni is higher than that on Ru, the activity attained
on Ru catalysts is higher. Therefore, it can be concluded that the combination of both
metals allows for a characteristic synergistic activity, in which Ru drastically improves
the reducibility of Ni catalysts, also improving the Ni metallic dispersion and providing
additional methanation sites [62]. In addition, it is an important finding that the addition of
certain promoters, such as CeO2, La2O3, Sm2O3, Y2O3, and ZrO2 is clearly beneficial, not
only because the corresponding metal-oxide promoted catalysts exhibited higher catalytic
performance than Ni/Al2O3, but also because the stability along the successive uses is
clearly increased [64]. CO2 methanation has recently been achieved on Mg-promoted
Fe catalysts, where Mg/Fe2O3 catalysts exhibiting the highest yield of 32% (400 ◦C) in
CH4 production, under practical operation conditions (8 bar, 10,000 h−1) [65]. Thus, the
competitive advantage presented by the low price of these materials in comparison with
those usually used, Ni and Ru, should be highlighted.

Considering the huge amount of work regarding CO2 methanation, a review of
different catalysts usually investigated in carbon dioxide methanation by using different
noble and non-noble metals supported on different materials is collected in Table 2.

Table 2. A comparative summary of different metal-supported catalysts studied in the carbon dioxide
methanation process.

Metal Promoter Catalyst Support Conversion
(%)

T
(◦C)

P
(atm) * Ref.

Ni CeO2 γ-Al2O3 >60 300 0–10 [34]

Ru — TiO2 >60 210–300 1.0 [66]

Ru — Al2O3, CeO2, MnOx, ZnO 25–80 400 1.5 [67]

Ni — CeO2, Al2O3, Y2O3 60–80 250−500 1.0 [42]

Ni TiO2 Al2O3 40 550 3.0 [43]

Ni Mn TiO2 95 350 — [68]

Ni, Ni-Co — Al2O3 90 350–400 1.0 [44]

Ni — CeO2-ZrO2 55–99.8 200–350 — [49]

Ni — ZrO2 72 300 — [69]
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Table 2. Cont.

Metal Promoter Catalyst Support Conversion
(%)

T
(◦C)

P
(atm) * Ref.

Ni — Al2O3 5–75 350–450 1.0 [45]

Ni Ce SiC 80–95 600 10–15 [47]

Ni La Mg-Al 61 250 1.0 [50]

Ni La γ-Al2O3 4–14 377–400 1.0 [46]

Ni-Ru — CaO-Al2O3 84 380–550 1.0 [70]

Ni CeO2 Al2O3-ZrO2-TiO2 83 300–400 5.0 [51]

Ni-ZrO2 — Carb. Nanotubes 10–50 200–500 1.0 [52]

Ni — γ-Al2O3 66–92 250–350 —- [71]

Ni/Al2O3 — 3D-copper 3–45 300–500 1.0 [72]

Ni — Al2O3, CeO2, CeO2-ZrO2 60–80 200–450 1.0 [73]

Ni/GDC — Ceramic monolith,
Open-cell foam 70–52 300–600 1.0 [74]

Ni — Attapulgite 60–80 200–600 1.0 [75]

Ni — Al2O3, CeO2, ZrO2 70–90 200–600 1.9 [76]

Ni Sm2O3, Pr2O3, MgO CeO2 55 200−500 1.0 [77]

Ni — CeO2 nanocatalyst 84 220 1.0 [78]

Ni —- CeO2 81 250 1.0 [79]

Ni La Hydrotalcite-Al2O3 60–80 225–425 1.0 [55]

Ni — Sepiolite, Todorokite 70–100 250–450 1.0 [80]

Ni — ZSM-5@MCM-41 80 400 1.0 [81]

Ni La MgO, Al2O3 60–80 200–400 1.0 [82]

Ni-Ru — Al2O3 70–85 200–500 1.0 [60]

Ni — Al2O3 30 400 15.8 [48]

Ni Mg, Ca, Sr, Ba Al2O3 40–60 200–600 1.0 [56]

Ni — Al2O3, CeO2 60–80 200–500 1.0 [83]

Ni — Al2O3-ZrO2 60–77 160–460 1.0 [57]

Ni-Ru — Al2O3 40–85 250–550 1.0 [61]

Ni-Ru — MgO-Al2O3 40–65 650–550 1.0 [84]

Ni Pt, Ru, Rh CeO2, CeZrO4, CeO2/SiO2 65–70 200–400 1.0 [85]

Ni-Ru CeO2-ZrO2 50–80 200–450 1.0 [86]

Ni-Ru MgAl2O4 55–70 200–400 1.0 [87]

Ni CeO2, La2O3,
Sm2O3, Y2O3, ZrO2

Al2O3 75–95 200–300 5.0 [64]

* Atm = 1, indicates atmospheric pressure, in flow process.

As can be seen, very good CO2 conversion values have been obtained, as the 99.8%
value reported by Ashok et al. over a Ni supported on CeO2-ZrO2 [49]. In addition
to the importance of CO2 methanation by itself, the possibility of integrating the water
electrolysis and CO2 methanation is a highly effective way to store the excess of renewable
electricity produced by whichever renewable sources, such as wind and photovoltaic
power generation, are intermittent due to weather conditions [88]. Therefore, storage
of the electric excess is closely related to the power-to-gas (P2G) systems, so they are
promising technologies to achieve this purpose. Thus, the transformation of green energy
into synthetic natural gas (SNG) is carried out, which, as it comes from CO2 obtained by
capture and storage (CCS), exhibits a renewable character. Besides, the generated SNG can
be stored or directly injected into the existing natural gas network.

Figure 8 shows the integrated co-electrolysis and syngas methanation for the direct
production of synthetic natural gas from CO2 and H2O using a hydrotalcite-derived 20%Ni-
2%Fe/(Mg, Al)Ox catalyst and a commercial methanation catalyst (Ni/Al2O3) [89].
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Likewise, a general plant scheme to transform CO2 and water into synthetic natural
gas is shown in Figure 9 [90]. Thus, in a circular power to gas process, renewable hydrogen,
or green hydrogen, produced by water electrolysis powered by renewable electricity, such
as solar or wind, will be critical to achieving net-zero emissions, and major advances in
electrolyzer technologies are being developed in this regard [91–99]. However, the efficiency
of the plant processes, regardless of the technological methodology or the experimental
conditions used, strongly depends on the efficiency of metal-supported catalysts, Table 2.
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3. Catalytic Hydrogenation of CO2 in Power-to-Liquid (P2L) Processes

Various liquid organic hydrogen carriers (LOHCs) compounds, such as hydrocarbons
or high molecular weight alcohols, can be obtained through catalytic hydrogenation of
CO2, but the most prominent power-to-liquid (P2L) processes at this time are methanol
synthesis, DME production [100], and Fischer-Tropsch fuels [101].
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3.1. Catalytic Hydrogenation of CO2 to Renewable Methanol

Methanol is supposed to have potential not only as a hydrogen-alternative energy
vector (i.e., direct use as a fuel), but also as a hydrogen storage material. In addition,
given that methanol is already synthesized on a large scale, there is the possibility of using
existing infrastructure and production plants [102]. Accordingly, methanol is the simplest
C1 liquid product that can be obtained from CO2 (Figure 10). Therefore, methanol can
be considered a key component of the anthropogenic carbon cycle in the framework of
a “Methanol Economy” [103–105]. Indeed, the versatility of methanol, currently used to
obtain multiple chemical products such as formaldehyde, acetic acid, methyl tertiary-butyl
ether (MTBE), dimethyl ether (DME), or even olefins, as well as the possibility of its use as
renewable fuel, while also taking advantage of the existing infrastructures for the transport
and distribution of fuels, is what justifies the so-called “Methanol Economy” [106]. Thus,
even though most of the methanol is currently produced from natural-gas-derived syngas,
its alternative production using CO2, water, and renewable electricity could present an
opportunity to advance toward carbon neutrality [107].
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Regarding the different possibilities to obtain methanol from captured CO2, such as
electrochemical, photochemical, photoelectrochemical, and catalytic conversion, it is the
heterogeneous catalysis that attracts the most attention.

The heterogeneously catalyzed reaction of hydrogen with carbon monoxide and carbon
dioxide (syngas) to obtain methanol was described nearly 100 years ago, and the standard
catalyst Cu/ZnO/Al2O3, currently applied in the methanol industrial synthesis reaction,
has been used for the last 50 years [108,109]. This industrial reaction is currently taking
place over Cu-ZnO/Al2O3 catalysts at pressures of 5 and 100 atm and temperatures in the
220–300 ◦C interval. Despite the fact that the reaction is exothermic, the conversion of CO2
to methanol is kinetically limited, only obtaining a methanol conversion of around 15–25%.
Thus, methanol is produced from synthesis gas (syngas) on an industrial scale, which is
obtained from the steam reforming of fossil methane with a certain CO/H2 ratio called
metgas, which also contains about 3% by volume of CO2. When this metgas is treated with
H2 at high pressures and moderate temperatures in the presence of conventional catalysts,
Cu/ZnO/Al2O3, methanol is obtained (Equation (4)) [108]:

CO2 + 3H2 � CH3OH + H2O ∆H = −49.16 kJmol−1 (4)
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However, by starting with pure CO2 and H2, rather than a mixture of CO, CO2, and
H2 as in the syngas procedure, the chemical process is simplified, so the reaction and
purification processes in conventional methanol-producing industrial plants could also
be simplified. That is because, despite the direct synthesis of methanol from CO2 is less
exothermic (Equation (5)) and it is also accompanied by the reverse water–gas-shift (RWGS)
as a secondary reaction (Equation (6)), the high exothermic character of the methanol
formation from syngas (Equation (4)) necessitates the use of a very complex reactor capable
of providing efficient cooling for the heat generated. Conversely, the thermal control inside
the reactor during the methanol synthesis from CO2 is easier due to the lower heat profile
of this process.

CO2 + 3H2 � CH3OH + H2O ∆H = −49.16 kJmol−1 (5)

CO2 +H2 � CO + H2O ∆H = 41.22 kJmol−1 (6)

Another advantage of this process is that the only reaction impurities are essentially
limited to water and dissolved CO2 in the crude methanol. In this way, it is possible to
diminish the cost and improve the efficiency of the process in comparison with the process
of methanol production from syngas. Another important issue is the overall cost of the two
processes, given that today, syngas is cheaper than green hydrogen and captured CO2. For
this reason, great efforts are being made to obtain green hydrogen on an industrial scale or
other low-carbon hydrogen production methods, such as aqua hydrogen or blue hydrogen
(obtained via new technologies from fossil fuels but with a lower carbon footprint).

Given that there is a general motivation regarding the use of captured CO2 for the
methanol synthesis as a liquid-to-power process, a great effort is being devoted to im-
proving the current Cu-based catalysts employed to get more active, selective, and stable
heterogeneous catalysts [110]. On the other hand, new noble metal-supported catalysts,
able to increase the efficiency of this process for direct CO2 hydrogenation to obtain bio
methanol are being researched [111,112].

3.1.1. Hydrogenation CO2 to Methanol using Cu-Based Catalysts

Once the convenience of advancing the catalytic processes of direct hydrogenation
of CO2 to obtain methanol was accepted, the first candidates were copper-based catalysts
due to both their low cost and their good efficiency for methanol synthesis from synthesis
gas, or Syngas [113,114]. However, some disadvantages, such as the formation of CO as a
byproduct of the reverse water−gas shift (RWGS) reaction (Equation (6)), and the sintering
of copper particles, which are responsible for catalyst deactivation after several reuses,
determine the need to get better catalytic systems [115]. That is why numerous studies are
currently being carried out in an attempt to improve the catalytic behavior of Cu, for which
the role of various supports and/or additives that work as promoters is being investigated.
The supports mainly consist of several metal oxides, such as Al2O3, SiO2, ZnO, ZrO2, CeO2,
TiO2, or In2O3. The main role of these supports and promoters is to alter the electronic
and geometric properties of active centers, thereby altering the metal-support interactions.
Thus, various authors demonstrate that the yield to methanol is determined by active
sites modulated by metal-support interaction as well as the influence of promoters [116].
This electronic interaction between supports and catalytically active metals is manifested
through its influence on the energy levels of the frontier orbitals of the corresponding metal.
The closer they are to the corresponding HOMO-LUMO of the CO2 and H2 molecules, the
greater the catalytic efficiency of the reaction.

Thus, in a relatively short period of time, numerous studies have appeared on the
performance of Cu catalysts by examining the effects of the composition of the support and
the influence of the method of catalyst synthesis (Table 3), the influence of several additives
used as promotors (Table 4), as well as other factors of interest in the final behavior of
the catalyst, including the use of CuO instead of Cu metal as a catalytically active species
(Table 5). In Tables 3–5, the comparative performance of different Cu-supported catalyst
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systems in the carbon dioxide hydrogenation to methanol reaction is collected. In general,
the catalytic performance of the catalysts was tested in a fixed-bed stainless-steel tubular
reactor at different pressures and temperatures. Furthermore, the conversion and selectivity
to methanol limits values obtained are collected. In this regard, an extensive review of
supported Cu catalysts studied is presented, focusing on the last five years and highlighting
the special importance that the CO2 hydrogenation catalytic process has gained.

Table 3. Comparative performance of different Cu supported catalysts in the carbon dioxide hydro-
genation to methanol reaction obtained by using different solid supports and/or different synthesis.

Catalyst Support Conversion
(%)

SCH3OH
(%)

T
(◦C)

P
(Atm) Ref.

ZnO/Al2O3 60–90 50–80 210–250 60 [109]
ZnO/ZrO2 50–80 65–85 220 30 [117] a

ZnO/ZrO2 20–60 30–90 200–300 1–40 [113] b

Al2O3 50–70 50–65 180−300 1–360 [114] a

ZnO 2–9 45–95 220–300 30 [118]
Al2O3/MgO 0–25 20–30 150–250 10 [119]
ZrO2/CeO2 3–10 40–82 220−260 30 [120] c

SiO2 5 79 190−250 30 [121]
ZrO2/ZnO 30–70 30–70 190–250 10–30 [122]
Na-ZSM-5/ZnOx 2–12 25–100 200–300 30 [123]
CuO/ZrO2 5–15 15–70 230 10 [124]
Al2O3/MgO 20–35 5–35 200–400 20 [125]
Al2O3/ZnO 5–35 5–70 200–400 20 [126]
SiO2/TiIV Surf. 4–18 49–85 230 25.0 [127]
SiO2/ZnII Surf 1–5 48–86 230 50.0 [128]
ZnO/ZrO2/Mg-Al (LDH) 1–7 50–100 200–300 30.0 [129]
ZnO/MnO/SBA-15 silica 4–8 100 180 40.0 [130]
ZnO 9–13 65–80 240 30.0 [131]
ZnO/SiO2 90–100 65–100 250 40.0 [132]
ZrO2 2–7 30–70 350 10.0 [133]
ZnO/Attapulgite 12–18 7–25 320 6.0 [134]
ZnGa/LDH nanosheet 17–20 30–50 270 50.0 [135]
Sr-Perovskite 1–16 36–63 200–280 20–50 [136]
CexZryOz 5–16 45–95 200–300 30 [137]
ZrOx 13.1 78.8 260 45 [138] c

ZrO2 1.0–5.0 68–75 220 30 [139]
ZnO 1.0–25.0 10–90 200–300 20 [140]
ZnO/Faujasite 2.0 27–35 240−260 15 [141] a,c

ZnO/CeO2 1.0–3.5 20–70 250 30 [142] c

ZnO/ZrO2/C-nanofibers 8–14 78–92 180 30 [143]
ZnO/Al2O3 10–28 33–85 240 40 [144]
ZnO/SiO2 8–14 50–59 220 30 [145]
AlCeO 2–24 12–95 200–280 30 [146]
AlCeO 6–22 25–97 200–280 30 [147]
ZnO 1–14 1–60 150–300 1.0 [148]
CeO2 1–7 20–90 240–300 20 [149]
Al2O3/ZrO2/ZnO <7.0 43–59 230 30 [150]
ZnO/ZrO2 19.6 50 280 50 [151]
ZnO/ZrO2 9–15 87–98 250 50 [152]
Al2O3 50 - 325 1.25 [153]

a This study mainly deals with the effects of the CO2 hydrogenation reaction mechanism. b The catalysts’ ability
to be reused is determined. c Special attention is paid to the existence of strong metal-support interaction
effects (SMSI).
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Table 4. Influence of the use of different additives on the performance of the carbon dioxide hydro-
genation to methanol reaction using different Cu-supported catalysts.

Promoter Catalyst
Support

Conversion
(%)

SCH3OH
(%)

T
(◦C)

P
(Atm) Ref.

Pr2O3 ZnO 80–100 75–100 200–260 30 [115]
In2O3 ZrO2 1–6 60–90 210–290 10–250 [153]
CeO2 Al2O3 16–23 59–94 220–280 40 [147]
LaOx Silica SBA-15 45–85 45–81 220–280 30 [154]
W CeO2 13 87 250 35 [155]
Pd Ce0.3Zr0.7O2 15–25 90–95 250 50 [156] a

Sm2O3 ZrO2 8–14 50–80 230 10 [157]
Al + Ga ZnO 16–18 99 250 30 [158]
Al ZnO 1–17 99 250 30 [159] b

Zn Graphene 18–20 50–80 250 15.0 [160]
Hydrotalcite ZnO-Al2O3 6 64–73 250 15–30 [161]
ZnO-ZrO2 Hydrotalcite 3–6 35–65 250 25.0 [162]
Zn, Ga SiO2 0.5–5.0 10–80 220–280 8.0 [163]
Pd SiO2 6.6–3.7 12–30 300 41 [164]
Pd CexZr1-xO2 13–20 10–25 250–300 30–60 [156]
Ni CeO2-nanotube 2–18 75–86 220–300 20–40 [165]
ZnO Al2O3 10–20 50–100 160–250 10–25 [137] a

MgO ZnO 4–16 25–100 200–300 30 [166]
MgO, CaO, SrO, BaO, ZnO Al2O3 2–9 10–100 200–400 20 [167]

a This study focuses on the effects of the CO2 hydrogenation reaction mechanism. b The catalysts’ ability to be
reused is determined.
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Table 5. Comparative performance in the carbon dioxide hydrogenation to methanol reaction, of
different CuO supported catalysts, using different solid as supports, different synthesis methods or
different additives.

Promoter Catalyst Support Conversion
(%)

SCH3OH
(%)

T
(◦C)

P
(Atm) Ref.

ZrO2 5–15 15–70 230 10 [124]
ZnO/ZrO2 SBA-15 silica 10–25 20–35 250 30 [168]
ZnO/ZrO2 Mg-Al (LDH) 1–7 50–100 200–300 30.0 [129]
In2O3 CuO 5–12 50–90 220–280 5–30 [169]

CuO/ZrO2 2–12 20–70 230 10.0 [170]
CuO/CeO2/TiO2 1.5–6.5 28–52 190–235 30 [171]

MoO3/WO3/Cr2O3 CuO/ZnO/ZrO2 18–20 40–48 240 40 [172]
CuO/ZnO/Al2O3 10–16 >99 250 50 [173]

Ag CuO/ZrO2 4–8 25–45 270 10 [174]
CuO/Ce0.4Zr0.6O2 7–13 72–96 220–280 30 [175]
CuO/ZnO 38 70 270 50 [176]
CuO/ZnO/CeO2 14–20 95–98 240 1.0 [177] a

Cu/Zn/Ce/TiOx 4–7 25–45 275 30 [178]
CuO/ZnO/TiO2/Zr 3–25 15–85 200–280 30 [179]

CuO/ZnO/CeO2 TiO2 nanotubes 10–20 25–80 220–300 30 [180]
CuO/ZnO/ZrO2 9–17 40–54 300–600 30 [181]

Graphene oxide CuO/ZnO/ZrO2 2–25 10–76 200–280 20 [182]
Carbon CuO/ZnO 8–24 18–60 230–290 30 [183]
WO3 CuO-ZnO-ZrO2 5–20 42–64 240 30 [184]
ZrO2/Al2O3 CuO/ZnO 20–25 40–95 200−260 27.6 [185]
In2O3, Pd CuO/ZnO/Al2O3 7–16 99–100 250 50 [186]
La2O3 CuO/ZnO/Al2O3 1–18 5–100 160–260 1.0 [187]
SiO2 CuO/ZnO/ZrO2 2–5 10–70 200–280 20 [188]

CuO/ZnO/ZrO2 4–15 45–85 240 30 [189]
CuO/CeO2/ZrO2 5–20 2–8 200–260 30 [190] b

Ag CuO/ZrO2 1–7 30–70 230 10 [191]
Zeolite CuO/ZnO/ZrO2 5–20 5–12 260 30 [192]
CuO-ZnO Al2O3, SiO2 2–14 46–59 250, 270 30, 50 [193]

Ce1-xZrxO2 2–15 10–95 200–300 30 [194]
LaxSr1-xCuO Perovskite 1–16 4–55 250–300 30 [195]
ZrO2, MnO2 CuO-ZnO/SBA-15 8–9 10–25 250 30 [196]
CuO/ZnO Oyster Shells 1–2 50–70 250 30 [197]
Pd CuO/ZnO/Al2O3 1–10 10–90 180–240 50 [198]
La, Ti or Y CuZnIn/MZrOx 2–6 40–80 225 20 [199]
La, Ce, or Sm CuZnO/Zn-AlOx 25 54 250 40 [200]

a The reusability of the catalysts is determined. b This study mainly deals with the effects of the CO2 hydrogenation
reaction mechanism.

The influence of copper form, according to its size, i.e., bulk, nanoparticle, and cluster,
has been deeply studied. In general, copper nanoparticles would enable higher activity
due to having an overall higher Cu surface exposure, although more energy is generally
required to increase the reaction kinetics. Regarding copper clusters, small clusters of small
metallic particles tend to perform better at higher dispersion. For instance, the Cu4 clusters
exhibited a lower activation barrier to CO2 hydrogenation than bulk Cu(111) [201].

Promoters are added to the catalyst to achieve three possible outcomes: increasing
the number of available active sites, maintaining the Cu surface stability, particularly by
increasing the Cu dispersion, and increasing electron transfer to the active sites, all of which
can improve the catalyst activity. For their part, support materials are used to immobilize
Cu particles in order to increase active site dispersion and maintain high thermal stability.
Active metal–support interaction can promote a high synergy, increasing the reaction
activity, particularly if the support can adsorb and transfer the reactants to the active sites
without taking part in the reaction itself [116]. As can be seen in Tables 4 and 5, a great
number of additives, supports, and promoters have been tested. The results obtained with
this huge number of Cu catalysts studied usually fall within those usually described for the
Cu-ZnO/Al2O3 catalysts used in the catalyzed reaction of hydrogen with carbon monoxide
and carbon dioxide (syngas) to obtain methanol in the industrial synthesis reaction. This
special reactivity of this industrial catalyst for methanol synthesis is attributed to the effects
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of strong metal-support interactions (SMSI) that allow a favorable synergy between Cu and
the Zn atoms. This means that it is feasible to optimize the choice of catalysts, considering
other parameters of technical and economic importance, such as the cost of the catalyst and
the possibility of its reuse in successive reactions.

However, despite the fact that using waste CO2 should decrease the methanol pro-
duction cost, the significantly low price of this CO2 gas means that this process remains a
challenge, mainly caused by the lack of an efficient catalyst that can perform this reaction
in a successful way in terms of kinetics and methanol selectivity. For this reason, it is an
objective of extreme priority to advance in the development of new catalysts with good
activity and high selectivity for methanol synthesis through CO2 hydrogenation.

Despite the fact that to date, Cu-based catalysts are the most important catalysts for
the conversion of syngas to methanol due to their excellent reactivity and low cost, they
exhibit serious shortcomings when CO2 replaces CO because CO2 is more inert than CO,
leading to lower CO2 conversion. Besides, the water produced during this reaction results
in the sintering of catalytically active copper sites. For this reason, numerous investigations
are being directed to the search for efficient catalysts in this process using non-Cu-based
heterogeneous catalysts such as noble or rare metals or mixed oxide catalysts represented
by M-ZrOx (M = Zn, Ga, and Cd) solid solution catalysts, which present high methanol
selectivity and catalytic activity as well as excellent stability to improve the catalytic activity,
selectivity, and durability of catalysts in CO2 hydrogenation [202].

3.1.2. CO2 Hydrogenation to Methanol by Noble or Rare Metal-Based Catalysts

Despite their limited availability and high cost, many supported noble metal-based
catalysts (Pd, Pt, Au, and Ag) can achieve high methanol selectivity and catalytic activity
even at low temperatures with excellent stability. Hence, a large amount of research has
been conducted in recent years to optimize the catalytic behavior of systems based on noble
metals for the CO2 hydrogenation to methanol. In this sense, various factors can influence
the final catalytic behavior, such as the composition of the support, the synthesis method, or
the influence of various additives used as promoters (Table 6). In this respect, the catalytic
behaviour of bimetalic catalysts has also piqued the interest of researchers. In this respect,
the most interesting results are collected in Tables 6 and 7.

Table 6. A comparative summary of different noble metals and rare earth supported catalysts studied
in the carbon dioxide hydrogenation process to produce methanol.

Noble Metal Promoter Catalyst
Support

Conversion
(%)

SCH3OH
(%)

T
(◦C)

P
(Atm) Ref.

Au In2O3 5–13 60–100 250–300 50 [203] a

Ir In2O3 18 70 300 50 [204]
Pd Ga SiO2 1–5 81 230 25 [205]
Pd CeO2 2–18 4–100 200–280 10–250 [206]
Pd Al ZnO 2–14 15–70 250 30 [207]
Pd In2O3 3 100 280 50 [208]
Pt In2O3 37 63 30.0 1.0 [209]
Pd In2O3/SBA-15 13 83 260 50 [210]
Ni5Ga3 SiO2 3–35 11–16 200–300 1.0 [211]
Ni Ga2O3 0.5–1 10–100 160–300 5.0 [212]
Re TiO2 1–2 82 150 50 [213]
Ti MoOx/TiO2 80 70 150 50 [214]
ReOx TiO2 18 98 200 [215]
Co SiO2 2–14 10–80 260–320 20 [216]
Ag In2O3 5–30 75–100 200–275 50 [217]
Au ZrO2 5–9 40–70 140–220 30 [218]
Au MxOy b 5–45 10–95 200–350 1.0 [219]
Au In2O3-ZrO2 2–15 65–100 200–300 50 [220]
Au CuO/CeO2 4–10 30 200–300 30 [221]
Au CeO2 1∓2 5–45 240 5∓50 [222]
Ru In2O3 1–30 70–97 200–300 50 [223]
Au ZrO2 4–6 48–75 240 40 [224]
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Table 6. Cont.

Noble Metal Promoter Catalyst
Support

Conversion
(%)

SCH3OH
(%)

T
(◦C)

P
(Atm) Ref.

Au ZnO-ZrO2 4.5–6 82–95 320 55 [225]
Rh In2O3 1–17 56–100 250–300 50 [226]
Rh In2O3–ZrO2 1–18 65–100 250–300 50 [227]
Pt In2O3 1–15 54–100 225–300 50 [228] a

Pd In2O3 1–20 70–100 200–300 50 [229]
Ni In2O3 1–18 60–100 200–300 50 [230]
Au In2O3 2–14 70–100 225–300 50 [203] a

Rh In2O3 4–10 60–80 270–320 50 [231] a

Ni ZrO2 In2O3 1–18 43–100 200–300 50 [232]
Ni In2O3 6–15 30–80 280 50 [233]
Pd In2O3 10 72 295 30 [234] a

Pd SiO2 — 64–71 200 30 [235]
Pd Ga2O3 SiO2 10 17–65 220–250 30 [236]
Pd ZnZrOx 4–35 5–90 200–400 50 [237]
Pd CeO2 2–10 40–78 200–260 50 [238]
Pd SiO2 1–20 1–28 220–280 8.0 [239]

a Special attention is paid to the existence of strong metal-support interaction effects (SMSI). b MxOy: Al2O3, TiO2,
Fe2O3, CeO2, and ZnO.

Table 7. A comparative summary of different bimetallic-supported catalysts studied in the carbon
dioxide hydrogenation process to obtain methanol.

Metal Catalyst Support Conversion (%) SCH3OH
(%)

T
(◦C)

P
(Atm) Ref.

Ni/In/Al SiO2 1.6–3.8 1–12 210–290 1.0 [240] a

Ni/In SiO2-SBA-15 1–17 1–90 300 5−50 [241]
Co/In In2O3 19 69 300 50 [242]
In/Pd SiO2 2–5 61 300 40 [243]
Rh/In Al2O3 1–10 5–90 270 45 [244] a

Pd/Zn CeO2 8–17 65–98 220–270 20 [245]
Ca/Pd/Zn ZrO2 2–10 97–100 220–270 20–30 [246] a

In/Ru SiO2 1–5 20–85 200−240 34 [247]
Ni/Ga SiO2, CeO2, ZrO2 1–6 5–30 180–270 1–30 [248] a

Pd/Cu SiO2 1.6–2.8 18–27 300 30–50 [249]
Pd/Cu MxOy

b 7–16 28–34 300 40 [250] a

Pd/Cu SiO2 3–7 12–40 300 40 [251]
Pd/Cu SiO2 3–6 12–40 300 40 [252]
Cu/Ni Graphene 7.87 98.7 225 40 [253]
Pd/Cu/Zn SiC 1–11 10–100 150–300 1.0 [254]
Cu/Ni Mordenite 100 30–60 220 30 [255]
Ru/Mo Ru−Mo Phosphide 0.5–4.5 5–75 180–220 65–72 [256]
Rh/Co nanospheres 100 96 150 24 [257]
Pd/Zn/Al ZnO, Al2O3 0.5–4.0 15–70 250 30 [207]
Ni/Sn InZrO2 1–5 55–100 225–275 25 [258]
Pd/Cu TiO2-MO2

c 7–16 25–40 250 40 [259]
Ni/Ga Hydrotalcite 2–3.5 60–100 200–300 30 [72]
Pd/Cu CeO2 2–17 24–84 190–270 30 [260] a

Cu/Zn Coord. polymer 13–20 25–59 220–260 40 [261]
Cu/Zn UiO-66 (Zr) MOF 12–22 28–54 220–300 30 [262]
Cu/ZnO Al2O3 5–11 64–87 220–260 30 [263] a

Ag/Cu Mordenite —- 48–61 230 30 [264]
Cu/Zn UiO-66 (Zr) MOF 25–30 15–24 230 50 [265]
Cu/Pd SiO2 2–32 1–4 220–360 40 [266] a

Pd/In Unsupported
nanoparticles <3.0 25–90 190–270 50 [267]

a Special attention is paid to the existence of strong metal support interaction (SMSI), and/or geometric and/or
electronic effects. b MxOy: TiO2, ZrO2, CeO2, Al2O3, SiO2. c TiO2-MO2: TiO2-CeO2 and TiO2-ZrO2.

As can be seen, a wide screening of heterogeneous catalysts containing noble or rare
metals (e.g., Pd, Pt, Au, Rh, Ru, Ir, and Re based catalysts), as well as bimetallic systems
have been studied. In general, the results obtained have revealed their excellent catalytic
activity, stability, and resistance compared with Cu-based catalysts. In this regard, special
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attention has been paid to the effects of metal content exhibit on the activation degree for
the hydrogen adsorption in the active centers, as well as the effect of support in metal
dispersion and the resistance of the catalyst deactivation along the susceptive uses.

From the results depicted in Table 6, the In2O3 seems to be one of the best options as a
support for noble metals, achieving CO2 conversion between 10–20% and selectivity values
up to 100% with Pt, Pd, and Ni as metals.

On the other hand, metal sintering, as well as the effect of different synthesis methods
in the development of different morphological and/or metal-support interaction effects
have also been considered, as well as the Single-Atom Catalysts (SACs) technique, which
promotes atomically distributed active metal sites on the support surfaces. In this way,
SACs provide great advantages in minimizing the usage of precious metals with a 100%
atom-utilization efficiency, which thus results in improved catalytic reactivity [268].

It is noteworthy that bimetallic catalysts are best suited for methanol hydrogenation in
comparison to their monometallic counterparts. Herein, a summary regarding the advances
of the bimetallic catalysts (Ni, Cu, Pd, Rh, Ru, Zn, and In-based bimetallic systems) for
methanol production in recent years, as well as the different strategies to enhance the
catalytic activity, including regulating the active species, nanoparticle size, and catalyst
support, have been included, Table 7.

3.1.3. CO2 Hydrogenation to Methanol over Mixed Oxide-Based Catalysts

Despite the fact that catalysts based on the use of supported Cu [269] or noble met-
als [270] have demonstrated their ability to produce methanol as a product of CO2 hydro-
genation, the investigation of simple metal oxides or diverse metal oxides mixtures (MOs)
to obtain heterogeneous systems with enough catalytic activity, selectivity, and durability
for the synthesis of methanol from CO2 hydrogenation is currently an important line of
research, collecting a large number of publications in recent years. The most interesting re-
sults are summarized in Table 8. In this regard, a rational design of Mos has been proposed,
i.e., the general optimization framework followed to fine-tune non-precious metal oxide
sites and their surrounding environment through appropriate synthetic and promotional
or modification routes, as shown in Figure 11 [271].
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The multiple studies collected in Table 8 show that there are fundamentally two
options that meet expectations. On the one hand, results obtained using binary metal
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oxides ZnO-ZrO2 and, and on the other hand, heterogeneous catalysts including In2O3,
either alone or in various hybrid mixtures. In this sense, some research is currently directed
to the optimization of the ZnO-ZrO2 mixtures, evaluating parameters that implement
the highly selective production of CH3OH [272,273], whereas the other line intends the
evaluation of the promoting effect of incorporating Ga or small amounts of Cu into ZnZrOx
solid solutions [274,275].

Table 8. A comparative summary of different active metal oxides catalysts studied in the carbon
dioxide hydrogenation process to obtain methanol.

Metal Oxides Conversion (%) SCH3OH
(%)

T
(◦C)

P
(Atm.) Ref.

NiO/In2O3 1–3 50–60 250 30 [276] a

In2O3 1–10 45–95 240–330 30 [277] b

InOx/ZrO2 0.5–2.5 70−80 250–300 50 [278] a

ZnO/ZrO2 10 86–91 315–320 50 [279] c

ZrO2/In2O3 0.4–5.0 85 220–300 50 [280] a

GaxIn2−xO3 7–35 0.5–35 320–400 30 [281] a

In2O3-ZrO2 3–11 53–91 255–300 40 [282]
MaZrOx

d 4.3–12.4 80 250–300 50 [283]
GaZnZrOx 7.7–8.8 86–88 320 50 [274]
In2O3/ZrO2

e e 270–310 30–55 [284]
In2O3 17 92.4 300 50 [285]
In2O3/Support f 0.1–6.0 5–40 220–300 1.0 [286] a

In2O3/Support g 1–20 5–51 260–360 30 [287]
ZnO/ZrO2 9.2 50–95 320 30 [288]
MnOx/Co3O4 3–57 2–22 250 10 [289]
GaxIn2−xO3 7–38 — 320–400 30 [281]
ZnO/ZrO2 10 10–85 320 50 [272]
Co3O4/In2O3 10 30–70 300 40 [290]
ZnZrOx

h 1–18 30–90 200–360 45 [291]
In2O3/ZrO2 3–8 65–90 300 50 [292]
CoxOy/MgO 7–35 8–30 i 1.0 [293]
InNi3C0.5/ZrO2 25.7 90.2 325 60 [294] a

In2O3/ZrO2 5–30 — 320–400 20 [295]
ZrZnOx/zeolite 1–8 5–30 400 30 [273]
In2O3/GO j 1–14 5–100 200–450 30 [296]
In2O3 4–18 20–85 260–360 40 [297]

a Special attention is paid to the existence of strong metal support interaction (SMSI) and/or geometric and/or
electronic effects. b A phase-mixing strategy is used in the synthesis of catalysts. c The ability of the catalysts
for their reuse is determined. d (Ma = Cd, Ga). e Results are expressed in terms of methanol space-time yield. f

Supports ZrO2 and CeO2. g Supports MnO and MgO. h Promoters, small amounts (<2%) of Cu, Pd, or Pt. i Non
thermal plasma-catalysis DBD reactor. j Graphene oxide, GO.

Besides, it has also been verified that several mixed systems with oxides [287,296],
including ZrO2, or transition metals, such as Co, Ni, Sn, Pd [298,299], or CuO [300]. More-
over, PdZn alloy catalysts supported on ZnFe composite oxides [301] or molybdenum
phosphide catalysts have also been studied, attaining very promising results [302].

Nevertheless, from the different options covered to date, indium oxide-based catalysts
are attracting the highest interest due to their excellent selectivity to methanol and high
activity for CO2 conversion. Therefore, most of the new high-performance catalysts are
described over ternary Cu-based catalysts with several promotor compounds, including In,
Ce, Zn, or Zr [303,304].

3.1.4. Methanol Reaction Process for CO2 Hydrogenation to Fuels and Chemicals

By coupling two successive reactions using a bifunctional catalyst, the hydrogenation
of CO2 to methanol can be applied to obtain C2+ compounds, including dimethyl ether
(DME), light olefins, and gasoline-type hydrocarbons [59]. Thus, after the conversion of
CO2 and H2 to CH3OH on the surface of a suitable catalyst, the methanol is dehydrated or
coupled on zeolites, alumina, or some other suitable acid-base catalyst, according to the
scheme shown in Figure 12. Consequently, the synthesis of products with two or more
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carbons (C2+) from CO2 hydrogenation can be achieved by first converting of CO2 to
carbon monoxide or methanol and then conducting a C–C or C–O coupling reaction with a
bifunctional or hybrid catalyst [305].
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In this respect, dimethyl ether (DME) is a versatile raw material and an interesting
alternative fuel that can be produced directly by catalytic hydrogenation of CO2 [105,306].
Therefore, this process is considered a potential vector to contribute to the CO2 reduction
because of its lower operating costs compared to the classic two-step synthesis of DME, CO,
and hydrogen. Figure 13 shows a general scheme of the DME formation. In recent years,
a great number of studies have been carried out with the aim of finding a good catalyst
for the production of DME from syngas. However, multiple investigations are currently
comparing direct CO2-to-DME to bifunctional/hybrid catalytic systems. Table 9 collects
a comparative summary of the different bifunctional/hybrid catalytic systems recently
studied in the carbon dioxide hydrogenation process to obtain DME.
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Table 9. Comparative summary of different bifunctional/hybrid catalytic systems for improving the
direct conversion of CO2 to DME.

Metal Catalyst Acid Catalyst Conversion
(%) SCO (%) SCH3OH

(%) SDME (%) T
(◦C)

P
(Atm.) Ref.

CZZA a HZSM-5 25–28 20–80 5–7 10–70 220–280 27.6 [185]
CuO/ZnO/ZrO2 Zeolite 2–20 15–20 5–12 1–30 260 30 [192]
CuO/ZnO/Al2O3 SiO2-Al2O3 5–9 49–65 11–17 22–35 260 30 [307]
Cu-BTC MOF b Al2O3 2–26 15–25 5–50 14–90 260 30 [308]
CuO/ZnO/ZrO2 Zr(SO4)2 14–17 60–80 7–20 14–28 260 20 [309]
CuZnAlZrCe ZSM-5 13–19 59–63 9–11 26–33 250 30 [310]
In2O3 HNT c 1–5 0.0 20–80 10–70 200–300 10–40 [311]
CZA/HPW d TiO2 5–22 14–17 5–99 7–59 250 30 [306]
CuZnAlSi/Sn —— 10 50–60 5–9 80–85 280 40 [312]
CuO/ZnO/ZrO2 SAPO-11 40–50 0.0 10–50 50–90 250–325 10–50 [313]
CZA e HZSM-5 25 25–28 7.0 65–70 220–280 21–42 [314]
CuO/ZnO HZSM-5 15–35 10–30 5–88 10–80 200–260 15–20 [315]
CuZnOZrO2 WOx/Al2O3 10–20 64–69 8–17 15–28 300 20 [316]
Cu/ZnO/MOx

f SAPO-34 5–20 50–90 19–24 25–31 200–260 10 [317]
Cu/ZnO/ZrO2 HZSM-5 1–11 9–90 6–18 5–75 200–330 30 [318]
GaZrOx —— 1–9 10–88 10–100 10–25 240–380 30 [319]
CuO/ZnO/Al2O3 SAPO-18 1–8 5–8 3–15 85–90 250–350 20–40 [320]
CuO/ZnO/Al2O3 MCM-41-TPA g 2–7 23–65 18–50 18–25 220–250 45 [321]
Cu/ZnO/ZrO2 ZSM5 8–11 15–49 24–26 38–58 240 30 [322]
nano-Pd/In2O3 H-ZSM-5 6–11 40–45 17–19 36–42 280–300 30 [323]
Gallium nitride 1–25 40–82 18–42 0–80 300–450 20 [324]

a CZZA: CuO/ZnO/ZrO2/Al2O3. b Cu-BTC MOF: Cu-1,3,5-benzenetricarboxylate metal–organic framework
(Cu-BTC MOF). c HNT: natural clay halloysite nanotubes, and HNT modified with Al-MCM-41 silica arrays.
d CZA-HPW: Cu/ZnO/Al2O3-H3PW12O40. e CZA: CuO/ZnO/Al2O3. f MOx: Al2O3, CeO2, or ZrO2. g TPA:
tungstophosphoric acid.

In summary, it can be said that DME is currently considered a firm candidate for its
application in the circular process of capturing and using CO2, not only to carry out an
effective mitigation of environmental problems [325], but also to contribute to obtaining
chemical products of interest to society [326].

3.2. One-Step Process for the Conversion of CO2 to Light Olefins

Light olefins such as ethylene, propylene, and butylene are currently among the top
petrochemicals and fuels produced. These olefins are used to produce a wide variety of
polymers, plastics, solvents, and cosmetics. Moreover, light olefins can be oligomerized
into long-chain hydrocarbons that can be used as fuels, making them a desirable product
with high potential. Thus, their production from CO2 hydrogenation can contribute to a
great extent to the elimination of CO2 emissions. Nowadays, there are mainly two methods
for the synthesis of light olefins from captured CO2. The first one is the modified Fischer-
Tropsch synthesis (FTS), where carbon monoxide is obtained by the reverse water gas
shift (RWGS) reaction in a first step and, in a second step; CO is hydrogenated to lower
hydrocarbons (HCs) [327,328]. On the other hand, the production of light olefins can be
obtained by a different two-step process, usually called the methanol to olefins process,
consisting of the hydrogenation of CO2 into methanol and subsequently a dehydration-
condensation process, as shown in Figure 14. These pathways will be discussed in more
detail in the following subsections.Catalysts 2022, 12, x FOR PEER REVIEW 22 of 44 

 

 

 
Figure 14. General scheme for the synthesis of DME by direct hydrogenation of CO2 with hybrid or 
bifunctional catalysts Reaction scheme for CO2 hydrogenation to light olefins [328]. 

3.2.1. CO2 Hydrogenation in a One-Step Process over Bifunctional or Hybrid Catalysts 
At present, the production and marketing of low molecular weight olefins is already 

being carried out through the MTO process, which has high selectivity values for C2–C4 
olefins [329], since this process, along with the methanol-to-gasoline (MTG) process, are 
technological discoveries in the synfuels arena, first introduced by Mobil Oil Corporation 
[330]. However, although considerable progress has been made in the hydrogenation of 
carbon dioxide to various C1 chemicals, it is still a great challenge to synthesize val-
ue-added products with two or more carbons directly from CO2, given the technical and 
economic interest of the process. In this regard, a great number of investigations have 
been carried out. Most of these studies aimed at evaluating the experimental conditions 
and/or the bifunctional catalysts able to couple two successive reactions, the hydrogena-
tion of CO2 to methanol, followed by its dehydration or coupling on zeolites, alumina, or 
some other suitable acid-base catalyst. A comparative summary of the different bifunc-
tional/hybrid catalysts recently studied in the MTO process with high selectivity for light 
olefins is collected in Table 10. 

Table 10. Comparative summary of different bifunctional/hybrid catalytic systems for the MTO 
process for improving the direct conversion of CO2 to light olefins. 

Metal Catalyst Acid Catalyst 
Conversion 

(%) 
SCO (%) SC2-C4 (%) SC5 (%) 

T 
(°C) 

P (Atm) Ref. 

In2O3 HZSM-5 12–15 45–50 20–25 79 340 30 [331] 
Cu/CeO2 SAPO-34 4–20 30–75 30–65 4–9 300–500 20 [332] 
ZnZrOx Zeolites a 18–24 ----- 1.5–2.8 2–9 325–400 10 [333] 
InCo Zn-zeolite beta 8.0 6 8 85 300 50 [334] 
In2O3/ZrO2 SAPO-34 17–26 64–70 65–82 2–5 380 30 [335] 
ZnO/ZrO2 SAPO-34 42–45 b 4–22 76–85 2–3 375 15 [336] 
ZnGaOx spinel SAPO-34 7–50 ----- 15–76 5–7 400 40 [337] 
In2O3/ZrO2 SAPO-34 15–21 c ----- 3–6 ---- 400 30 [338] 
In2O3/ZrO2 SAPO-34 23–25 2–6 2–7 ---- 400 30 [339] 
In-Zr SAPO-34 35 ----- 93 ---- 400 30 [340] 
Mn2O3-ZnO SAPO-34 9–30 50–91 86–92 3–13 380 30 [341] 
Fe/Co K-Al2O3 37–42 12–16 67 17–21 320 20 [342] 
Fe5C2 Zeolite d 8–56 1–49 12–93 e 1–56 300 10 [343] 
In2O3 SAPO-34 18–35 18–37 16–34 ---- 340–400 10–25 [344] 
ZnZrOx SAPO-34 9–14 40–43 82–83 ---- 380 30 [345] 
In2O3/ZrO2 SAPO–34 29–38 45–90 68–85 3–5 400 10–30 [331] 
ZnZrO SAPO-34 10–15 ----- 80.0 1–3 330–380 20 [346] 

Figure 14. General scheme for the synthesis of DME by direct hydrogenation of CO2 with hybrid or
bifunctional catalysts Reaction scheme for CO2 hydrogenation to light olefins [328].



Catalysts 2022, 12, 1555 21 of 42

3.2.1. CO2 Hydrogenation in a One-Step Process over Bifunctional or Hybrid Catalysts

At present, the production and marketing of low molecular weight olefins is already
being carried out through the MTO process, which has high selectivity values for C2–C4
olefins [329], since this process, along with the methanol-to-gasoline (MTG) process, are
technological discoveries in the synfuels arena, first introduced by Mobil Oil Corpora-
tion [330]. However, although considerable progress has been made in the hydrogenation
of carbon dioxide to various C1 chemicals, it is still a great challenge to synthesize value-
added products with two or more carbons directly from CO2, given the technical and
economic interest of the process. In this regard, a great number of investigations have been
carried out. Most of these studies aimed at evaluating the experimental conditions and/or
the bifunctional catalysts able to couple two successive reactions, the hydrogenation of CO2
to methanol, followed by its dehydration or coupling on zeolites, alumina, or some other
suitable acid-base catalyst. A comparative summary of the different bifunctional/hybrid
catalysts recently studied in the MTO process with high selectivity for light olefins is
collected in Table 10.

Table 10. Comparative summary of different bifunctional/hybrid catalytic systems for the MTO
process for improving the direct conversion of CO2 to light olefins.

Metal Catalyst Acid Catalyst Conversion
(%) SCO (%) SC2-C4 (%) SC5 (%) T

(◦C) P (Atm) Ref.

In2O3 HZSM-5 12–15 45–50 20–25 79 340 30 [331]
Cu/CeO2 SAPO-34 4–20 30–75 30–65 4–9 300–500 20 [332]
ZnZrOx Zeolites a 18–24 —– 1.5–2.8 2–9 325–400 10 [333]
InCo Zn-zeolite beta 8.0 6 8 85 300 50 [334]
In2O3/ZrO2 SAPO-34 17–26 64–70 65–82 2–5 380 30 [335]
ZnO/ZrO2 SAPO-34 42–45 b 4–22 76–85 2–3 375 15 [336]
ZnGaOx spinel SAPO-34 7–50 —– 15–76 5–7 400 40 [337]
In2O3/ZrO2 SAPO-34 15–21 c —– 3–6 —- 400 30 [338]
In2O3/ZrO2 SAPO-34 23–25 2–6 2–7 —- 400 30 [339]
In-Zr SAPO-34 35 —– 93 —- 400 30 [340]
Mn2O3-ZnO SAPO-34 9–30 50–91 86–92 3–13 380 30 [341]
Fe/Co K-Al2O3 37–42 12–16 67 17–21 320 20 [342]
Fe5C2 Zeolite d 8–56 1–49 12–93 e 1–56 300 10 [343]
In2O3 SAPO-34 18–35 18–37 16–34 —- 340–400 10–25 [344]
ZnZrOx SAPO-34 9–14 40–43 82–83 —- 380 30 [345]
In2O3/ZrO2 SAPO–34 29–38 45–90 68–85 3–5 400 10–30 [331]
ZnZrO SAPO-34 10–15 —– 80.0 1–3 330–380 20 [346]
InCeOx/InCrOx SAPO-34 5–20 15–60 70–90 3–7 300–350 10–35 [347]
CuZnZr(CZZ) SAPO-34 10–20 57–86 70–88 0.5–5 400 20 [348]
NiCu/CeO2 SAPO-34 12–20 55–85 62–79 2–4 350–450 20 [349]
ZnO/Y2O3 SAPO-34 6–28 75–97 90–94 1–5 390 40 [350]
ZrS/Fe2O3@KO2 SAPO-34 46–48 24–27 42–55 25–38 375 30 [351]
10K13Fe2Co100Zr Polymetallic fibers 10–48 —– 70–80 —- 400 30 [352]
ZnO/ZrO2 MnSAPO-34 f 15–21 —– g 90–99 0.4–7.6 380 20 [353]
GaZrOx SAPO-34 5–12 50–60 92–95 1–3 370–410 30 [354]
CuO/ZnO/Al2O3 SAPO-34 50–56 4–10 50–56 —- h 250–450 30 [355]
In2O3 SAPO-34 i 27–51 3–75 50–92 5–20 360 25 [356]
CuO/ZnO kaolin/SAPO-34 33–58 7–10 78–81 —- j 400 30 [357]
Y2O3/Fe/Co SAPO-34 7–18 31–35 75–85 1–3 300–400 10–25 [358]
FeZnK SAPO-34 42–50 14–20 54–61 8–25 280–360 15 [359]
FeNa Supports k 19–33 10–60 17–73 —- 320 20 [360]

a Zeolites and silicoaluminophosphates with different topologies, MOR, FER, MFI, BEA, CHA, and ERI. b CH4
selectivity, 2–9%. c oxygenates (MeOH and DME): 0.0–0.5%. d Containing K, Ce or La. e CH4 Conversion 7–86%.
f Polymetallic fibers. g CH4: 2.4–8.6. h CH4: 15–18. i With Fe-Co/K-Al2O3 as composite. j CH4: 11–112. k SiO2,
Al2O3, ZrO2 and CNT (multi-walled carbon nanotube).

According to recent research developed, in this tandem catalytic process, methanol is
obtained as the product of CO2 hydrogenation in this tandem catalytic process by using
various metal oxides; however, in the second acid-catalyzed C–C coupling reactions, zeo-
lites SAPO-34 are the main catalysts used. In this respect, the acidity and pore structure of
the zeolites seem to be decisive factors in obtaining this coupling process among silicoalu-
minophosphate (SAPO) zeotype materials. Current research seems to show that SAPO-34
is the best acidic catalyst for obtaining C2–C4 olefins and is superior to other catalysts such
as ZSM-5 or SSZ-13 [361–363].
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On the other hand, they are also being evaluated with promising results, including the use
of Fe-based catalysts promoted with K, Na, Mn, Zn, and Ce to increase lower olefin selectivity,
owing to their enhanced CO2 adsorption ability and facilitation of the formation and stability
of active species Fe5C2. Furthermore, the favorable effect of Fe-Co bimetallic systems on the
formation of C2+ hydrocarbons in these supported catalysts has been demonstrated [364].
Thus, the combination of these various factors—the application of Fe catalysts supported on
different solids, activated by metals such as Co and alkali metals—constitute promising lines
of research for obtaining light olefins from the hydrogenation of CO2 [365]. Finally, using
this tandem technique of hydrogenation of CO2 in the presence of supports of an acid nature,
attempts are also being made to obtain various aromatic compounds. Thus, the use of a series
of metal oxides (In2O3, Cu-Zn-Al, and ZnZrxO) with different spherical HZSM-5 zeolites has
been investigated to obtain the direct conversion of CO2 to aromatics [366].

3.2.2. Modified Fischer-Tropsch Synthesis Route

The modified Fisher-Tropsch synthesis route has a clear controlling factor, determined
by the RWGS reaction, since it exhibits an endothermic and reversible character, which
limits the CO2 conversion to CO at values around 20% [367]. However, the FTS process,
on the other hand, is a well known route for the transformation of syngas (CO + H2)
into C2+ hydrocarbons, that proceeds on catalyst surfaces through the following steps:
(1) adsorption and dissociation of CO and H2; (2) formation of CHx (x = 0–3) species on
catalyst surface; (3) C–C bond formation through coupling of CHx species, that leading to
chain growth and surface CnHm intermediates or CH4 by the hydrogenation of CHx species;
(4) dehydrogenation or hydrogenation of CnHm into olefins or paraffins compounds [368].

Fe, Co, and Ru metals are conventionally employed as active catalyst components
owing to their capabilities in both CO dissociation and C–C coupling or chain growth [369].
However, the C–C coupling is uncontrollable on these metal surfaces, leading to a statistical
distribution of products, i.e., the Anderson-Schulz-Flory (ASF) distribution. Consequently,
one of the main objectives of the research on these catalytic systems is finding supports,
either metal or bimetallic. In this sense, it has been shown that Ni-Fe catalysts improved
selectivity towards CO without significantly compromising FTS process activity, coupling
the high activity of Ni catalysts with the high CO selectivity of Fe [370]. Similarly, a large
number of studies have recently evaluated the behavior of different supports, different
metals, and different operating conditions in the CO2-FT process, as collected in several
reviews [328,371,372]. Besides, a comparative summary of the different FTS catalysts
recently studied are collected in Table 11. Obviously, this table expresses very summarized
values of several selected parameters, obtained from very extensive studies addressing
different goals but aiming to carry out an approximate comparison between the different
catalysts currently evaluated in FTS reactions.

Table 11. Comparative summary of different catalytic systems for FTS process activity improving the
direct conversion of CO2 to light olefins.

Metal Catalysts Alkali
Metal Support Conversion

(%) SCO (%) SCH4 (%) SC2-C5 (%) T
(◦C)

P
(Atm) Ref.

Fe — Carbon 14–52 5–49 3–8 5–38 300 25 [373]
Co — SAPO-34 —- 64–74 24–28 65–70 220 20 [374]
Fe3O4/Mn Na —– 22–30 14–32 12–36 64–88 320 5.0 [375]
Co K Al2O3 15–97 1–34 2–33 2–57 200–350 1–50 [376]
Fe5C2 — —– 41–50 3–10 20–46 51–70 320 30 [377]
Fe/Co K —– 32–58 2–10 8–36 62–82 300 25 [378]
Fe/Mn K —– 38.2 5.6 10.4 22.3 300 10 [379]
Co/Mn Na SiO2 45–47 18–20 2.0 52–54 260–270 50 [380]
Fe/Co (Ru) K —– 30–57 2–16 7–30 54–84 450 2.0 [381]
Co3O4/MnO2 — —– 42–48 2–39 4–23 90–96 270 1.0 [382]
Co/Pt — ZSM-5 10–28 —- 52–100 10–48 200–500 1–30 [383]
Fe Na ZSM-5 18–22 28–32 22–41 30–54 450 20 [384]
Fe/C K X-ZSM-5 a 34–36 18–20 10–15 85–89 320 20 [385]
CuFeO2 — —- 13–18 28–32 1–60 40–95 300 10 [386]
Cu/Fe — Al2O3 35–42 23–42 28–38 51–91 300–400 30 [387]
Fe SMC b 8–45 16–86 5–11 70–89 260 10 [388]
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Table 11. Cont.

Metal Catalysts Alkali
Metal Support Conversion

(%) SCO (%) SCH4 (%) SC2-C5 (%) T
(◦C)

P
(Atm) Ref.

Ru/Ni(NPs) c —- 2–30 0–47 1–100 7–76 150 2–8.5 [389]
Raney-Fe, Fe —- SiO2 4–12 14–27 5–22 22–78 220–265 20 [390]
Fe/Ti d K —- 30–35 38–85 23–25 72–75 320 20 [391]
FeMn — HZSM-5 28–40 64–68 —– 58–69 280 10 [392]
RuCl3/Ru — —- —- 0–85 14–100 17.5 180 50 [393]
Co, CoO, Co3O4 —- SixAlyOz 3–35 0–12 6–31 15–93 220–260 20 [394]
Fe3O4 —- SiO2 5–7 2–5 57–93 7–43 220 1.0 [395]
Fe3O4/FexCy Na 36–46 8–11 36–60 16–52 320 20 [396]
Fe3O4/FeCx Mesop. C 15–54 5–31 13–75 25–87 320 30 [397]
Co/Ce/La —- Al2O3 13 49–52 15 99–100 230 20 [398]
Co@CoOx/Co2C-
Mn Na 1–62 1–92 45–70 29–54 230–310 40 [399]

Fe-/Co —- SiO2 4–20 11–13 26–45 43–70 260–280 20 [400]
FeCo X,(X: La,
Mn, Zn) K Al2O3 65–100 30–38 0–58 44–100 300 10 [401]

Co —- C/SiO2
e 2–8 6–14 21–32 62–70 250 5 [402]

Co6/MnOx —- ——- 15 0–0.7 —– 0–99 200 8 [403]
Fe2O3 K Al2O3 40–47 19–33 20–31 40–50 400 30 [404]
Fe-Co K Al2O3 37–49 9–29 14–23 58–68 320–360 20–30 [405]
Fe-Cu K —– 24–41 6–16 5–10 79–88 250–340 20 [406]
X-Fe5C2/ZnO Na —– 2–28 15–36 10–16 68–89 280–370 25 [407]
Ni MgAl2O4 6–70 2–96 3–98 —- 330–400 1.0 [408]
FeAlOx Na HZSM-5/SiO2 29–48 8–18 10–35 47–88 f 335–400 35 [409]
Fe-Zn K SAPO 43–48 14–18 15–40 36–57 320 15 [359]
Fe-Zn Na —- 15–39 14–30 12–48 52–88 340 25 [410]
ZnCoxFe2-xO4 SiO2 24–52 6–16 16–21 36.1 260–340 25 [275]
Fe (Cu, Mn, V,
Zn, Co) K Al2O3 29–40 10–20 15–22 65–74 340 20 [411]

a X: K+, Na+, Cu2+, Mn2+, Mg2+, Ce2+, La3+, or Cs2+. b spherical mesoporous carbon: (SMC). c nanoparticles
(2–3 nm), in a hydrophobic ionic liquid (IL). d K–Fe–Ti layered metal oxides (LMO). e oxygenates, including
alcohols and aldehydes Sel.(%): 2–8. f Selectivity to aromatics: 7–30.

As can be seen, the majority of catalysts investigated in the two consecutive processes
for CO2 Fischer-Tropsch synthesis (CO2–FTS) contain metallic Fe as the active species,
enhanced with different inorganic supports, other transition metals, and/or alkali metals.
Therefore, these are similar catalysts to those employed in the last few years to obtain
olefins from syngas. The main handicap is that these catalysts also work for the water-gas-
shift reaction (WGSR), producing large amounts of CO2 as areaction product [412–414].
Some recent research using different catalysts as well as different kinds of feedstocks
(coal, biomass, methane via reforming, and nonconventional energy sources) to obtain the
syn-gas (CO and H2) is shown in Table 12.

Table 12. Comparative summary of different catalytic systems for Fischer-Tropsch (FTS) improving
the direct conversion of the water-gas-shift reaction (WGSR) to light olefins.

Metal Catalysts Alkali
Metal Support Conversion

(%) SCO2 (%) SCH4 (%) SC2-C5 (%) T
(◦C)

P
(Atm) Ref.

α-Fe2O3 SiO2, Al2O3 18–65 25–36 16–19 81–94 280 10 [415]
Fe-Mn, Cu SiO2 75–96 23–45 15–19 80–85 200 20 [416]
CoMnAlOx

a —- SiO2 5–14 9–48 2–24 45–85 b 260 10 [417]
Co-Re, Pt-ZSM-5 —- Al2O3 5–75 —- —– 24–43 c 225–255 20–30 [418]
Fe Na ZSM-5 24–87 26–42 16–41 57–85 300 10 [419]

Co, Re —- Al2O3, CNT
d 2–4 —- 42–56 44–58 210 1.9 [420]

Fe-Zn Na Zeolites e 47–44 88–95 11–16 75–80 360 1.0 [421]

CoO-Co SiO2, TiO2,
Al2O3

24–75 —- —- 45–83 210 20 [422]

Fe-Cu K 65–90 16 19–37 63–81 340 15 [423]
Fe1Zn1.2Ox Na 38–95 31–37 15–19 85–87 340 20 [424]
Fe, Fe3C Carbon 80–90 10–14 7–9 88–90 250–350 34–85 [425]
Fe K Al2O3 7–90 18–70 7–8 12–74 300–420 20 [426]

a Composite oxides. b Oxygenates, including alcohols and aldehydes Sel.(%): 6–14. c Selectivity C10-C20 (%).
d γ-alumina, α-alumina and carbon nanotube (CNT). e Zeolites: HY, NaY, ZSM-5, SAPO-34, Hβ, Liβ, Naβ,
Kβ, and Rbβ.

Therefore, from the conventional Fischer-Tropsch reaction, it is possible to access
catalytic systems that could be tested in modified Fischer-Tropsch processes capable of
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using CO2 as a raw material to access light olefins (C2-C4) widely used in different fields
such as the synthesis of polymers and pharmaceutical intermediates. However, the chain
length distributions are given by the Anderson-Flory (ASF) distribution, which limit the
C2-C4 range to less than 58% [427]. Finally, it is possible to integrate waste CO2 in synthesis
using Fe-based Fischer-Tropsch with green H2 as well as olefin oligomerization, thereby
increasing the production of value-added liquid hydrocarbons [428].

4. Concluding Remarks, Challenges, and Research Outlook

The use of CO2 as a raw material for the production of various chemicals via catalytic
hydrogenation is currently a necessary eventuality, not only because global warming is a
risk, but also, and more importantly, because there is a real possibility of technologically
accessing sufficient amounts of green hydrogen at an affordable, economical cost. In this
respect, the use of hydrogen as an energy vector, not only in a significant number of heavy
industries but also in transportation fuels, is expected to decisively contribute to meeting
decarbonization goals to achieve net zero emissions in the next two decades. However,
these objectives do not only mean to address efficient hydrogen production but also its
trustworthy transportation and storage. For this purpose, it is currently considered that the
use of different liquid organic hydrogen carriers (LOHCs) is a valuable solution to making
available a reliable and on-demand hydrogen supply. However, green hydrogen can also
be stored and transported as a ‘green’ feedstock for the synthesis of biofuels and several
fine chemicals.

Therefore, the production of green hydrogen via electrolysis and its storage and trans-
portation using some hydrogen carriers such as ammonia or methanol must be considered
as part of sustainable chemical and biofuel manufacturing. Thus, the power-to-ammonia
concept allows producing ammonia by the Haber–Bosch process, the currently second
most produced industrial chemical, from air, water, and (renewable) electricity. Besides,
methanol synthesis, with a global production capacity of around 85 million metric tons
per year, which is expected to rise in the coming years, can be obtained by catalytic CO2
hydrogenation. In this regard, methanol is one of the most important industrial chemicals,
serving as a feedstock for a wide range of chemical products. Besides, it is also being used
increasingly as a fuel additive and as a transportation fuel alternative. This assumption is
confirmed by the high number of investigations carried out in recent decades. As can be
seen in Figure 15, the production of methanol from CO2 hydrogenation is the option most
investigated, followed by CO2 methanation.

The primary industrial process relevant to the current scenario, developed to reduce
global warming, is CO2 to methanol conversion. However, extensive commercialization of
green methanol from CO2 hydrogenation is still seriously limited by its economic viability
due to various factors. These include the difficulty in accessing renewable H2 and sources
of CO2 recovered from industrial processes, in enough quantity and purity. In addition, it
must be added to these factors that the current low price of methanol, due to the low price
of natural gas, has been used until now for its industrial production. Despite this, in the last
decade there has been widespread industrial interest in the development of technologies in
this field, probably encouraged by the increasing implementation of legal regulations on
fossil fuels to mitigate climate change and the general introduction of a strict carbon tax.

Furthermore, the actual introduction of Renew Energy technologies in many countries
have made solar and wind the cheapest sources of energy in many parts of the world. This
has not only caused the rapid decarbonization of the electricity sector but also opened the
possibility of obtaining several chemicals by CO2 hydrogenation via electrolysis.
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This new scenario allows us to consider that an exemplary carbon capture and utiliza-
tion cycle based on mature technologies can meet the energy requirements of the “industrial
carbon cycle”, an emerging paradigm in which industrial CO2 emissions are captured and
reprocessed into chemicals and E-fuels. In this context, methanol would come to occupy a
central role as a platform molecule from which most chemical commodities could be ob-
tained (Figure 16), partially replacing the ethanol role granted by the paradigm associated
with so-called green chemistry, which is primarily based on biomass feedstocks.
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At the very least, the massive use of anthropogenic CO2 would free up huge amounts
of agricultural land that, in the paradigm of green chemistry, should be used for crops
destined for industrial uses. For this reason, the application of CO2 as a raw material for
obtaining methanol and other chemicals could constitute the main chemical reaction to
be developed in the 21st century, similar to what happened in the past 20th century with
the catalytic hydrogenation reaction of nitrogen gas for the production of ammonia by the
Haber–Bosch process.

Therefore, based on the existing investigations, it can be concluded that there are two
priority directions that should be followed in the immediate future. On the one hand, the
performance of the electrolysis processes to obtain green hydrogen must be increased as
much as possible. On the other hand, implement the processes for catalytic hydrogenation
of CO2 to obtain green methanol. In this sense, it would be necessary to consider the
development of more efficient heterogeneous catalysts, both in the yield obtained and
in their behavior over successive uses. Likewise, it is a priority to try to obtain catalytic
systems that are as economical as possible, through the use of non-noble metals, in order
to obtain, in a viable technical and economic way, green methanol, which would be the
platform molecule on which, in the present century, the fine chemistry will foreseeably rest.
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104. Lee, B.; Lee, H.; Lim, D.; Brigljević, B.; Cho, W.; Cho, H.-S.; Kim, C.-H.; Lim, H. Renewable methanol synthesis from renewable

H2 and captured CO2: How can power-to-liquid technology be economically feasible? Appl. Energy 2020, 279, 115827. [CrossRef]
105. Bowker, M. Methanol synthesis from CO2 hydrogenation. ChemCatChem 2019, 11, 4238–4246. [CrossRef]
106. Simon Araya, S.; Liso, V.; Cui, X.; Li, N.; Zhu, J.; Sahlin, S.L.; Jensen, S.H.; Nielsen, M.P.; Kær, S.K. A review of the methanol

economy: The fuel cell route. Energies 2020, 13, 596. [CrossRef]
107. Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022, 12, 403. [CrossRef]
108. Guil-López, R.; Mota, N.; Llorente, J.; Millán, E.; Pawelec, B.; Fierro, J.L.G.; Navarro, R. Methanol synthesis from CO2: A review

of the latest developments in heterogeneous catalysis. Materials 2019, 12, 3902. [CrossRef] [PubMed]
109. Laudenschleger, D.; Ruland, H.; Muhler, M. Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3

catalysts. Nat. Commun. 2020, 11, 3898. [CrossRef] [PubMed]
110. Dang, S.; Yang, H.; Gao, P.; Wang, H.; Li, X.; Wei, W.; Sun, Y. A review of research progress on heterogeneous catalysts for

methanol synthesis from carbon dioxide hydrogenation. Catal. Today 2019, 330, 61–75. [CrossRef]
111. Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J.G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous

catalysis. Chem. Rev. 2020, 120, 7984–8034. [CrossRef]
112. Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2

hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413. [CrossRef]
113. Marcos, F.C.; Cavalcanti, F.M.; Petrolini, D.D.; Lin, L.; Betancourt, L.E.; Senanayake, S.D.; Rodriguez, J.A.; Assaf, J.M.; Giudici, R.;

Assaf, E.M. Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph
catalysts: Characterization and kinetics. Chem. Eng. J. 2022, 427, 130947. [CrossRef]

114. Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X. Plasma-Catalytic Methanol Synthesis
from CO2 Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catal. 2022, 12,
1326–1337. [CrossRef]

115. Zhang, G.; Liu, M.; Fan, G.; Zheng, L.; Li, F. Efficient Role of Nanosheet-Like Pr2O3 Induced Surface-Interface Synergistic
Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO2 Hydrogenation. ACS Appl. Mater. Interfaces
2022, 14, 2768–2781. [CrossRef] [PubMed]

116. Murthy, P.S.; Liang, W.; Jiang, Y.; Huang, J. Cu-Based Nanocatalysts for CO2 hydrogenation to methanol. Energy Fuels 2021, 35,
8558–8584. [CrossRef]

117. Wang, Y.; Kattel, S.; Gao, W.; Li, K.; Liu, P.; Chen, J.G.; Wang, H. Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for
efficient CO2 hydrogenation to methanol. Nat. Commun. 2019, 10, 1166. [CrossRef]

118. Huang, C.; Wen, J.; Sun, Y.; Zhang, M.; Bao, Y.; Zhang, Y.; Liang, L.; Fu, M.; Wu, J.; Ye, D. CO2 hydrogenation to methanol over
Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology. Chem. Eng. J. 2019, 374, 221–230.
[CrossRef]

119. Tada, S.; Otsuka, F.; Fujiwara, K.; Moularas, C.; Deligiannakis, Y.; Kinoshita, Y.; Uchida, S.; Honma, T.; Nishijima, M.; Kikuchi,
R. Development of CO2-to-Methanol Hydrogenation Catalyst by Focusing on the Coordination Structure of the Cu Species in
Spinel-Type Oxide Mg1–xCuxAl2O4. ACS Catal. 2020, 10, 15186–15194. [CrossRef]

120. Wang, H.; Zhang, G.; Fan, G.; Yang, L.; Li, F. Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted
by a Microliquid Film Reactor for Efficient CO2 Hydrogenation to Produce Methanol. Ind. Eng. Chem. Res. 2021, 60, 16188–16200.
[CrossRef]

121. Yu, J.; Yang, M.; Zhang, J.; Ge, Q.; Zimina, A.; Pruessmann, T.; Zheng, L.; Grunwaldt, J.-D.; Sun, J. Stabilizing Cu+ in Cu/SiO2
catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol. ACS Catal. 2020, 10, 14694–14706. [CrossRef]

122. Chen, H.; Cui, H.; Lv, Y.; Liu, P.; Hao, F.; Xiong, W. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO
morphology and oxygen vacancy. Fuel 2022, 314, 123035. [CrossRef]

123. Cui, W.-G.; Li, Y.-T.; Yu, L.; Zhang, H.; Hu, T.-L. Zeolite-Encapsulated Ultrasmall Cu/ZnOx Nanoparticles for the Hydrogenation
of CO2 to Methanol. ACS Appl. Mater. Interfaces 2021, 13, 18693–18703. [CrossRef] [PubMed]

http://doi.org/10.1016/j.renene.2021.01.153
http://doi.org/10.1016/j.energy.2021.120375
http://doi.org/10.1016/j.rser.2021.111209
http://doi.org/10.1038/s41467-022-28953-x
http://doi.org/10.3390/molecules23010031
http://doi.org/10.1039/D0EE01187H
http://doi.org/10.1016/j.ijhydene.2019.03.063
http://doi.org/10.1016/j.joule.2020.11.005
http://doi.org/10.1016/j.apenergy.2020.115827
http://doi.org/10.1002/cctc.201900401
http://doi.org/10.3390/en13030596
http://doi.org/10.3390/catal12040403
http://doi.org/10.3390/ma12233902
http://www.ncbi.nlm.nih.gov/pubmed/31779127
http://doi.org/10.1038/s41467-020-17631-5
http://www.ncbi.nlm.nih.gov/pubmed/32753573
http://doi.org/10.1016/j.cattod.2018.04.021
http://doi.org/10.1021/acs.chemrev.9b00723
http://doi.org/10.1039/C9CS00614A
http://doi.org/10.1016/j.cej.2021.130947
http://doi.org/10.1021/acscatal.1c04678
http://doi.org/10.1021/acsami.1c20056
http://www.ncbi.nlm.nih.gov/pubmed/34994552
http://doi.org/10.1021/acs.energyfuels.1c00625
http://doi.org/10.1038/s41467-019-09072-6
http://doi.org/10.1016/j.cej.2019.05.123
http://doi.org/10.1021/acscatal.0c02868
http://doi.org/10.1021/acs.iecr.1c03117
http://doi.org/10.1021/acscatal.0c04371
http://doi.org/10.1016/j.fuel.2021.123035
http://doi.org/10.1021/acsami.1c00432
http://www.ncbi.nlm.nih.gov/pubmed/33852283


Catalysts 2022, 12, 1555 31 of 42

124. Tada, S.; Fujiwara, K.; Yamamura, T.; Nishijima, M.; Uchida, S.; Kikuchi, R. Flame spray pyrolysis makes highly loaded Cu
nanoparticles on ZrO2 for CO2-to-methanol hydrogenation. Chem. Eng. J. 2020, 381, 122750. [CrossRef]

125. Dasireddy, V.D.; Neja, S.Š.; Blaž, L. Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst
activity and selectivity in CO2 hydrogenation to methanol. J. CO2 Util. 2018, 28, 189–199. [CrossRef]

126. Dasireddy, V.D.; Likozar, B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol
productivity. Renew. Energy 2019, 140, 452–460. [CrossRef]

127. Noh, G.; Lam, E.; Alfke, J.L.; Larmier, K.; Searles, K.; Wolf, P.; Copéret, C. Selective hydrogenation of CO2 to CH3OH on supported
Cu nanoparticles promoted by isolated TiIV surface sites on SiO2. ChemSusChem 2019, 12, 968–972. [CrossRef] [PubMed]

128. Lam, E.; Noh, G.; Larmier, K.; Safonova, O.V.; Copéret, C. CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites:
Enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3. J. Catal. 2021, 394, 266–272. [CrossRef]

129. Fang, X.; Men, Y.; Wu, F.; Zhao, Q.; Singh, R.; Xiao, P.; Du, T.; Webley, P.A. Improved methanol yield and selectivity from CO2
hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH). J. CO2 Util. 2019, 29,
57–64. [CrossRef]

130. Koh, M.K.; Khavarian, M.; Chai, S.P.; Mohamed, A.R. The morphological impact of siliceous porous carriers on copper-catalysts
for selective direct CO2 hydrogenation to methanol. Int. J. Hydrogen Energy 2018, 43, 9334–9342. [CrossRef]

131. Lei, H.; Zheng, R.; Liu, Y.; Gao, J.; Chen, X.; Feng, X. Cylindrical shaped ZnO combined Cu catalysts for the hydrogenation of
CO2 to methanol. RSC Adv. 2019, 9, 13696–13704. [CrossRef]

132. Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K. Simple strategy synthesizing stable CuZnO/SiO2
methanol synthesis catalyst. J. Catal. 2019, 372, 163–173. [CrossRef]

133. Tada, S.; Oshima, K.; Noda, Y.; Kikuchi, R.; Sohmiya, M.; Honma, T.; Satokawa, S. Effects of Cu precursor types on the catalytic
activity of Cu/ZrO2 toward methanol synthesis via CO2 hydrogenation. Ind. Eng. Chem. Res. 2019, 58, 19434–19445. [CrossRef]

134. Guo, H.; Li, Q.; Zhang, H.; Peng, F.; Xiong, L.; Yao, S.; Huang, C.; Chen, X. CO2 hydrogenation over acid-activated
Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu-ZnO based catalysts. Mol. Catal. 2019, 476, 110499. [CrossRef]

135. Li, M.M.-J.; Chen, C.; Ayvalı, T.C.E.; Suo, H.; Zheng, J.; Teixeira, I.F.; Ye, L.; Zou, H.; O’Hare, D.; Tsang, S.C.E. CO2 hydrogenation
to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors. ACS Catal. 2018, 8, 4390–4401. [CrossRef]

136. Prašnikar, A.; Dasireddy, V.D.; Likozar, B. Scalable combustion synthesis of copper-based perovskite catalysts for CO2 reduction
to methanol: Reaction structure-activity relationships, kinetics, and stability. Chem. Eng. Sci. 2022, 250, 117423. [CrossRef]

137. Li, H.-X.; Yang, L.-Q.-Q.; Chi, Z.-Y.; Zhang, Y.-L.; Li, X.-G.; He, Y.-L.; Reina, T.R.; Xiao, W.-D. CO2 Hydrogenation to Methanol
Over Cu/ZnO/Al2O3 Catalyst: Kinetic Modeling Based on Either Single-or Dual-Active Site Mechanism. Catal. Lett. 2022, 152,
1–15. [CrossRef]

138. Liu, T.; Hong, X.; Liu, G. In Situ Generation of the Cu@ 3D-ZrO x Framework Catalyst for Selective Methanol Synthesis from
CO2/H2. ACS Catal. 2019, 10, 93–102. [CrossRef]

139. Wu, C.; Lin, L.; Liu, J.; Zhang, J.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S.; Deng, Y.; Yang, F. Inverse ZrO2/Cu as a highly efficient
methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun. 2020, 11, 5767. [CrossRef]
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