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Abstract: The methanol–toluene alkylation process over zeolites catalysts offers a promising route
for the production of p-xylene from low-cost feedstocks. Herein, we present a catalyst by preparing a
core-shell aluminosilicate zeolite with an epitaxial silicalite-1 shell that passivates acid sites on the
exterior surfaces. The para-selectivity was obviously increased due to the inhibition of the unselective
isomerization of p-xylene over the external acid sites, and the open porous structure of the silicalite-
1 shell ensured the mass transfer of reactants and products. Meanwhile, the carbon deposition
was suppressed over HZSM-5@silicalite-1 catalysts, as a result of the decreased external acid sites.
Furthermore, pulse chromatographic experiments revealed that the silicalite-1 coating could also
improve the separation efficiency of p-xylene over o-xylene and m-xylene, due to the steric hindrance
and extended diffusion path, resulting in a higher selectivity for p-xylene compared to that of the
parent HZSM-5. The HZSM-5@4%S-1 catalyst showed the highest p-xylene selectivity (>80%) and
methanol efficiency (66%), with good catalytic stability throughout the 170 h reaction time.

Keywords: heterogeneous catalysis; methanol toluene alkylation; HZSM-5; silicalite-1; para-xylene

1. Introduction

Para-Xylene (PX) is an important and highly desirable aromatic intermediate in the
polyester, pharmaceutical, chemical fiber, and pesticide industries [1,2]. Currently, p-xylene
is mainly produced from crude oil in a refinery, using an aromatic complex [3]. In addition,
it can also be obtained from the processes of toluene disproportionation, C8 aromatic
isomerization, and transalkylation of heavy aromatics [2,4]. However, these processes are
typically accompanied by energy-intensive and high-cost separation technologies for mixed
xylenes containing para- (p-), meta- (m-), and ortho- (o-) isomers, as the concentration of
p-xylene in xylenes produced in these processes is close to the thermodynamic equilibrium
composition (ca. 25%) [5,6]. In contrast, toluene methylation with methanol is a promising
route for the production of p-xylene, based on shape-selective zeolite catalysts [6–8].

ZSM-5 has been widely used in the alkylation of toluene with methanol to produce
p-xylene. ZSM-5 is a medium-pore zeolite with intersecting straight (0.54 nm × 0.56 nm)
and sinusoidal or zigzag (0.51 nm × 0.54 nm) 10 membered ring channels [9], which are
comparable to the size of p-xylene. However, the methylation of toluene on the parent
HZSM-5 zeolite catalysts also yields a thermodynamic equilibrium mixture of xylene
isomers [10], attributed to the isomerization of p-xylene to its isomers [6,11]. In order
to obtain a higher selectivity toward p-xylene, an effective way to solve this problem is
to modify HZSM-5 zeolite with addition of P [12], B [13], Mg [14], and Si [15], which
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act as acid-site neutralizing agents and provide diffusion obstacles for m-xylene and o-
xylene during the reaction. Although these modification techniques could increase the
para-selectivity, the catalytic activity was inevitably inhibited, because of the decreased
acidic sites in channels and the increased diffusion resistance of reactants and products,
due to the narrowing of the pore-opening size [16]. Moreover, these modifiers are also
susceptible to losses in the long run, giving a poor stability [2].

In addition, coating with an SiO2 membrane over original HZSM-5 crystals has also
proven to be effective for enhancing p-xylene selectivity [17–19], as this can cover strong
acid sites on the external surface and sequentially inhibit the isomerization of p-xylene,
which leaves the pores as well as the coke formation. Lercher et al. [17] reported novel
mesoporous nano-sized ZSM-5 crystals covered with an external SiO2 over-layer, which
could promote the formation of p-xylene, without losing catalytic activity, compared to
the parent zeolite. Li et al. [18] investigated the modification of ZSM-5 using chemical
liquid deposition of silica (SiO2-CLD), to obtain the highly shape-selective ZSM-5 catalyst
through toluene disproportionation. They found that the acid amount of the modified
ZSM-5 was less than that of parent ZSM-5, and a high selectivity of p-xylene of up to
96.2% was obtained over the modified ZSM-5 catalyst, compared to the 24.3% selectivity
of p-xylene over the parent ZSM-5 catalyst. However, these catalysts coated with SiO2
membranes are normally deactivated quickly due to the inhibition of reactants and the
product mass transfer through the thick layer [19–21].

In contrast, epitaxial growing of a silicalite-1 layer over HZSM-5 crystal, to synthe-
size an HZSM-5@silicalite-1 catalyst, is a better technical alternative for solving the above
problems [20,22]. Silicalite-1 has the same MFI crystal structure as the HZSM-5 substrate,
resulting in the formation of a single-crystal-like zeolite catalyst. This contributes to the
enhancement of catalyst stability. Meanwhile, the silicalite-1 shell can, not only passivate
the external acid sites of ZSM-5, but is also expected to extend the diffusion path length of
xylenes, without a blocking channel or narrowing of the pore opening size [23]. Longer
diffusion pathways are favorable for high para-selectivity and shape selectivity, as this
can promote the isomerization of o-xylene and m-xylene to p-xylene and then ensure the
release of p-xylene as a primary product from the outside channels [2]. Nishiyama et al. [24]
reported a single-crystal-like ZSM-5/Silicalite-1 composite catalyst, in which the thin layers
of silicalite-1 were grown over the HZSM-5 crystal surface. This catalyst showed an excel-
lent para-selectivity of 99% in the alkylation of toluene with methanol (toluene/methanol
(mol/mol) = 1), although the total selectivity of xylene was as low as ~36%. Yin et al. [25]
synthesized a core-shell HZSM-5@silicalite-1 composite by overgrowing silicalite-1 on the
external surface of HZSM-5. The obtained catalyst exhibited a para-selectivity of up to
76%, with no evidence of deactivation during the time on stream of 3 h through toluene
methylation with methyl bromide (toluene/CH3Br (mol/mol) = 0.5).

Although many researchers have found the excellent para-selectivity of HZSM-5@
silicalite-1 catalysts in the alkylation of toluene, the promotion function of the silicalite-1
shell on the MFI zeolite structure and reaction performance still need to be further studied
and improved. Moreover, the effect of the silicalite-1 shell on the long-term catalytic stability
in alkylation of toluene is poorly understood. Herein, a series of HZSM-5@Silicalite-1
zeolites were synthesized by hydrothermal crystallization strategy, using TPAOH as a
template and TEOS as the silica source. The effects of the silicalite-1 shell on the acid
properties, textural structure, and shape-selective function of HZSM-5 were investigated.
In the toluene methanol alkylation reaction, the HZSM-5@Silicalite-1 core-shell catalyst
showed a highest p-xylene selectivity of >80% with a toluene conversion of >10%, and it
exhibited good resistance to coking and excellent durability in a 170 h service life test. The
various catalysts were characterized by N2 physisorption, SEM, XRD, XRF, XPS, 27Al MAS
NMR, FTIR spectra, pulse chromatography, and NH3-TPD.
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2. Results and Discussion
2.1. Catalysts Characterization

The as prepared XRD patterns of the parent HZSM-5 and HZSM-5@silicalite-1 samples
are shown in Figure 1. All the samples had a good crystallinity and exhibited the typical
diffraction peaks of MFI structure zeolites in 2θ = 7.9◦, 8.8◦, 23.1◦, 23.3◦, and 23.9◦ (JCPDS
44-0003) [20]. No characteristic signals of amorphous silica (in the region of 2θ = 20~30◦) or
other impurities could be observed in any samples, implying that the structure of HZSM-5
was not destroyed after silica coating and that a HZSM-5@silicalite-1 core-shell structure
was synthesized successfully during this modification process [20,22]. This was further
confirmed by SEM imaging. Figure 2 presents SEM images of the as-synthesized HZSM-5
and HZSM-5@silicalite-1 samples with different TEOS additions. The parent HZSM-5
crystal had a regular hexagonal prism shape with a smooth surface, and the particle size
was ca. 2 µm. After silicalite-1 coating (Figure 2b–d), the HZSM-5@silicalite-1 core-shell
samples retained their hexagonal prism morphology and a similar particle size, but with the
surfaces roughened. It can clearly be observed that the silicalite-1 crystals were covered on
the surface of HZSM-5, especially for the HZSM-5@2.5%S-1 and HZSM-5@4%S-1 samples.
Meanwhile, we did find any amorphous silica species in the zeolites, indicating a relatively
high crystallinity, which is consistent with the XRD results.
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Figure 1. XRD patterns of the as prepared parent HZSM-5 and HZSM-5@silicalite-1 samples.

In order to investigate the effect of silicalite-1 coating on the textural structure of the
HZSM-5@silicalite-1 catalysts, the as prepared parent HZSM-5 and HZSM-5@silicalite-1
samples were further characterized by low temperature N2 adsorption–desorption experi-
ment. As shown in Figure 3, all samples had typical type I nitrogen physical adsorption
isotherms, indicating that all samples possessed a microporous structure [26]. At p/p0 = 0.1–
0.2, the adsorption isotherm appeared as a step-wise isotherm. This step-wise behavior
can be explained by the fluid-to-crystalline-like phase transition of the adsorbed phase in
the micropores and does not indicate any real porosity [27]. Moreover, as listed in Table 1,
the BET surface area and total pore volume of the HZSM-5@2.5%S-1 and HZSM-5@4%S-1
samples were similar to those of the original parent HZSM-5, indicating the open porous
structure of the silicalite-1 shell [25]. Hence, it was confirmed that the silica layer on the
surface of HZSM-5 was crystalline silicalite-1 and that the shell formation did not result in
appreciable pore blockage. However, for the HZSM-5@1%S-1 sample, it was found that the
specific surface area (297.2 m2/g) was much lower than that of the original parent HZSM-5
(352.6 m2/g). Considering the SEM images in Figure 2b, we proposed that the lower TEOS
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content in HZSM-5@1%S-1 sample was insufficient to form an epitaxial silicalite-1 shell on
the external surface of HZSM-5, which led to the formation of new small silicalite crystals
that blocked the pore openings of the parent HZSM-5. This was confirmed by the result that
the micropore volume of the HZSM-5@1%S-1 sample (0.07 cm3/g) was obviously decreased
compared with the parent HZSM-5 (0.11 cm3/g), according to the NL-DFT method. The
corresponding pore size distribution showed that the average pore diameter of HZSM-5
and HZSM-5@silicalite-1 core-shell samples were ca. 0.5 nm. These results support that the
pure siliceous silicalite-1 formed an epitaxial layer on the HZSM-5 crystals in this work,
and the silicalite-1 coating did not affect the microporosity of the zeolites.
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Figure 2. SEM images of (a) HZSM-5, (b) HZSM-5@1%S-1, (c) HZSM-5@2.5%S-1, and (d) HZSM-
5@4%S-1 catalysts, as prepared.

Table 1. Textural properties of the as prepared parent HZSM-5 and HZSM-5@silicalite-1 catalysts.

Samples
SBET
m2/g

Smicro
m2/g

Sexternal
m2/g

Vtotal
cm3/g

Vmicro
cm3/g

Vmeso
cm3/g

Si/Al Ratio

XRF XPS

HZSM-5 352.6 269.3 83.3 0.19 0.11 0.08 186 72
HZSM-5@1%S-1 297.2 198.2 99.0 0.16 0.07 0.09 195 118

HZSM-5@2.5%S-1 348.7 253.5 95.2 0.19 0.10 0.09 196 128
HZSM-5@4%S-1 347.1 255.0 92.1 0.20 0.11 0.09 195 152
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Figure 3. N2 adsorption/desorption isotherms of the as prepared parent HZSM-5 and HZSM-
5@silicalite-1 samples.

The structure of a thin silicalite-1 shell on the HZSM-5 crystals was further confirmed
using a combination of XRF and XPS analytical techniques, as summarized in Table 1. The
XRF results recorded the change in bulk Si/Al ratio of the zeolites samples, while the XPS
results recorded the change in Si/Al ratio on the external surface of the zeolites samples.
The XRF data show that the bulk Si/Al ratios of all HZSM-5@silicalite-1 samples were
slightly higher than the parent HZSM-5, due to the formation of a thin silicalite-1 shell.
Meanwhile, the XPS data indicate a significant increase in the surface Si/Al ratio after the
epitaxial growth of the silicalite-1 shell, and the surface Si/Al ratio of HZSM-5@silicalite-1
samples increased with the increase of TEOS. The highest surface Si/Al ratio (152) was
obtained for the HZSM-5@4%S-1 sample. In view of the short sampling depth of XPS (i.e.,
on the order of nanometers) [22], we proposed that the silicalite-1 shells formed for all
HZSM-5@silicalite-1 samples were very thin. In addition, the lower Si/Al ratio in the XPS
measurements suggests the potential for so-called “Al zoning”, a common phenomenon
in ZSM-5 synthesis, wherein crystallization leads to a Si/Al gradient that decreases in
magnitude from the particle interior to its exterior [28].

Figure 4 shows the 27Al MAS NMR spectra of the parent HZSM-5 and HZSM-
5@silicalite-1 samples. The chemical shift at around 56 ppm is attributed to the four
coordinated Al species in the zeolite framework [29]. No apparent additional peak centered
at 0 ppm was observed, which corresponds to the extra-framework aluminum in octahe-
dral coordination [30]. These results indicate that all Al atoms in the HZSM-5@silicalite-1
samples were fully incorporated into the zeolite framework, even after the silica coating
process. In addition, it is worth noting that the peak at 56.7 ppm corresponding to the
framework of Al in HZSM-5 shifted downfield marginally to 55.9 ppm (HZSM-5@2.5%S-1)
and 53.7 ppm (HZSM-5@4%S-1) after the silica coating treatment. This could have been
due to the interactions between the silicalite-1 shell and external framework Al of the
parent HZSM-5.
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Figure 4. 27Al MAS NMR spectrum of the as prepared parent HZSM-5 and HZSM-5@silicalite-1
samples.

The acidic properties of the parent HZSM-5 and HZSM-5@silicalite-1 samples were
measured by temperature-programmed desorption of ammonia (NH3-TPD). As shown in
Figure 5a, two distinct NH3 desorption peaks could be observed in the temperature regions
of 100–250 ◦C and 250–400 ◦C for all samples in the NH3-TPD profiles, corresponding to
the weak and strong acid sites, respectively [25]. It was found that the concentrations of
weak and strong acidic sites were obviously reduced after coating the silicalite-1 shell on
the HZSM-5 crystals, which might have been related to the coverage of surface acidic sites
on the HZSM-5 crystals by the pure-silica shell [31]. Moreover, compared with the parent
HZSM-5, the strong acid desorption peak of the HZSM-5@silicalite-1 core-shell samples
shifted to a low temperature, and the peak area decreased with the increase of TEOS,
indicating that the introduction of a pure silicalite-1 shell reduced the acid strength of the
zeolites. As reported, the acid sites required for toluene methylation are weaker than for the
isomerization and disproportionation reactions [2]. Therefore, the decrease in acid strength
for HZSM-5@silicalite-1catalysts favored the main methylation reaction and suppressed
the disproportionation and para-isomerization side reactions in this study. The amount of
external Brønsted acid sites was further probed using the FTIR spectra of the adsorbed di-
tert-butyl-pyridine (DTBPy) (Figure 5b), owing to its larger probe molecule, which cannot
enter the internal pores of the ZSM-5 zeolite. The amount of external Brønsted acid sites that
could be determined by the intensity of the characteristic band at 1616 cm−1 [32] decreased
significantly after coating with the silicalite-1 shell. These results validated that the external
Brønsted acid sites were successfully suppressed by coating with the silicalite-1 shell.

The diffusion of aromatic molecules in the zeolite catalysts plays a vital role in catalyst
activity and product selectivity; particularly the reactants and desired products whose size
is comparable to the catalyst pore size [2]. The pore size of the HZSM-5 crystal is almost
comparable to the molecular size of p-xylene, but is smaller than the other two isomers
(meta- and ortho-). It is proposed that these channels permit a quick diffusion of p-xylene
molecules (minimum critical dimension of 0.53 nm), while restricting the meta- and ortho-
isomers having a low diffusion coefficient. For verification and comparison, adsorption of
the three pure xylene isomers (p-xylene, m-xylene, and o-xylene) over the parent HZSM-5
and HZSM-5@silicalite-1 samples was tested with a pulsed chromatography experiment
at a lower temperature (220 ◦C) than the real reaction temperature (470 ◦C), as 250 ◦C
is high enough to cause the isomerization reaction of xylene isomers [7]. During this
experiment, larger molecules that cannot enter the zeolites pore elute first, because they
have the least volume to move, leading to a shorter retention time. Correspondingly, the
smaller molecules that can enter the pores of HZSM-5 elute last, with a longer retention
time [7]. As shown in Figure 6a, o-xylene, the largest molecule among the three xylene
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isomers, flowed out of the parent HZSM-5 sample packed column with the least retention.
In contrast, the m-xylene molecule is relatively smaller and thus easier to diffuse into the
micropores of the parent HZSM-5, which led to its slightly longer retention time in the
column [33]. However, for all HZSM-5@silicalite-1 samples, there was no clear separation
of m-xylene from o-xylene, indicating that the diffusion of m-xylene molecules from the
external surface to the micropores of HZSM-5@silicalite-1 samples was also inhibited due
to the higher internal barriers caused by the epitaxial growth of the silicate-1 layer. The very
fast elution of m-xylene and o-xylene, together with the peak tailing in all samples, indicated
that both m-xylene and o-xylene could not easily enter the pores of the coffin-shaped ZSM-5,
although a small number of molecules could still diffuse into the pores, with slow intrapore
diffusivity [33].
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Figure 5. (a) NH3-TPD curves of the parent HZSM-5 and HZSM-5@silicalite-1 samples; (b) 2,6-DTBPy
adsorbed FT-IR spectra of the parent and modified HZSM-5@silicalite-1 samples.
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Figure 6. Pulse chromatography signal of xylene isomers (OX: o-xylene; MX: m-xylene; PX: p-xylene)
passing through columns packed with as prepared (a) HZSM-5, (b) HZSM-5@1%S-1, (c) HZSM-
5@2.5%S-1, and (d) HZSM-5@4%S-1 samples. The black solid lines illustrate a partial enlargement of
the PX signal.

In addition, two weak peaks were found in the chromatogram of pure p-xylene for all
samples over 120 min, as shown in Figure 6. The first small peak at the retention time of
~0.1 min can be ascribed to a very small part of the p-xylene molecules, without entering
the ZSM-5 channel. Meanwhile, the second broad peak accompanied by obvious tailing
at the retention time of 40–120 min could be explained by the p-xylene molecules, which
entered the molecular sieve channel and flowed out throughout the 120 min. p-xylene is
the smallest molecule among the three isomers and can be easily absorbed by the classic
ZSM-5 micropores, and thus showed the longest retention time [7]. Meanwhile, it was
found that the retention time of p-xylene in all silicalite-1 coated samples was much longer
than for the parent HZSM-5, and the retention time of the HZSM-5@silicalite-1 samples
increased with the increase of TEOS addition (Figure 6b–d). This was considered to be a
result of the diffusion path of p-xylene molecules being extended in HZSM-5@silicalite-1
samples, due to the presence of an epitaxial silicalite-1 shell, which prolonged the pore
length of the parent HZSM-5. This is in accordance with the results indicated by the N2
physisorption, SEM, XRD, XRF, XPS, 27Al MAS NMR, and NH3-TPD. Hence, we proposed
that this silicalite-1-coated HZSM-5 structure can enhance the pore shape-selective function,
because of their steric hindrance, which led to the meta- and ortho-isomers eventually
undergoing isomerization to p-xylene, to diffuse through the pores.
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2.2. Catalytic Performance

The influence of the silicalite-1 coating on the p-xylene selectivity and catalytic stability
of all zeolites catalysts in toluene methylation with methanol was investigated at 470 ◦C,
1 bar, and WHSV = 8 h−1. As shown in Figure 7, the toluene conversion of the parent
HZSM-5 and all HZSM-5@silicalite-1 samples was almost same, being ca. 11.0% under
our reaction conditions. This result indicated that the epitaxial growth of the silicalite-1
layer on the external surface of the HZSM-5 crystal did not affect the intrinsic activity of
the parent zeolites, since the textural structure and acidic sites in the channels of HZSM-5
were well maintained in all HZSM-5@silicalite-1 samples. It should be noted that the mole
ratio of toluene to methanol was 6 in this study, which is much higher than in most other
reports. Although this would lead to a relatively lower single-pass toluene conversion,
the utilization efficiency of methanol for all catalysts in this reaction was improved to
ca. 66%. The total xylene (p-xylene, m-xylene, and o-xylene) selectivity of all catalysts
was higher than 95.4%, and the fractions of other aromatics (such as benzene, trimethyl
benzenes, and ethyl toluenes) and light hydrocarbons were lower than 3.8% and 0.8%,
respectively. In addition, compared with the parent HZSM-5, the p-xylene selectivity of
HZSM-5@silicalite-1 samples gradually increased with the increase of TEOS (Figure 7).
The HZSM-5@4%S-1 catalyst obtained the highest p-xylene selectivity of up to 78.4%. It is
proposed that the silicalite-1 coated ZSM-5 could significantly passivate the external acid
sites through the formation of a silicalite-1 layer that completely shielded the framework
of Al on the external surface, and thus effectively avoided the occurrence of non-shape
selective p-xylene isomerization on the external surface of the catalysts, resulting in a higher
p-xylene selectivity [20,34]. In addition, the increase of p-xylene selectivity can be attributed
to the extended diffusion path length of the xylenes in the HZSM-5@silicalite-1 samples,
which enhanced the pore shape-selective function of the methanol toluene alkylation [23].
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Figure 7. Catalytic performance of parent the HZSM-5 and HZSM-5@silicalite-1 catalysts in the
methanol-toluene alkylation reaction. Reaction conditions: 0.2 g catalyst, 1 bar, 470 ◦C, WHSV =
8 h−1, H2 55 mL/min. The data were taken at 3 h time on stream. Xylene selectivity signifies the total
selectivity of p-xylene, m-xylene, and o-xylene.

Figure 8 shows the catalytic performance in alkylation of toluene with methanol
over the parent HZSM-5 and HZSM-5@silicalite-1 catalysts, as a function of the reaction
time. The parent HZSM-5 catalyst had a maximum p-xylene selectivity of 67.9% at TOS
of 30 h, which was obviously lower than that (80.0~82.7%) of the HZSM-5@silicalite-1
catalysts at the TOS of 80~120 h. The initial toluene conversion of the parent HZSM-5 and
HZSM-5@silicalite-1 catalysts were all ca. 11%; however, after reaction for 50 h, the toluene
conversion of the parent HZSM-5 catalyst decreased to less than 9%, due to coke formation.
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By contrast, the reduction in the toluene conversion to 9% over HZSM-5@1%S-1 took more
than 130 h, since the coke formation was significantly hindered by the coverage of the
surface acidic sites on the zeolites. Moreover, this deactivation time was progressively
extended with the increase of amount of TEOS. The toluene conversion of HZSM-5@4%S-
1 catalyst remained higher than 9%, even after a TOS of 170 h. These results indicate
that the construction of HZSM-5@silicalite-1 catalysts, not only enhanced the p-xylene
selectivity, but also prolonged the catalyst lifetime in the toluene methanol alkylation
reaction. Meanwhile, it is interesting to note that a slow but continuous increase in the
p-xylene selectivity had occurred before the first signs of deactivation, which is thought
to be a result of the coke formation and its conversion to the geometry of the catalyst
pore [20,35]. For the HZSM-5@4%S-1 catalyst, the long-term stability test showed that the
toluene conversion remained stable at around 10%, and the selectivity of p-xylene remained
at >80%, after a time-on-stream of 170 h. This suggests the potential of the present catalysts
in industrial applications.
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Figure 8. Long-term stability test of the parent HZSM-5 and HZSM-5@silicalite-1 catalysts. Reaction
conditions: 0.2 g catalyst, 1 bar, 470 ◦C, WHSV = 8 h−1, H2 55 mL/min. The pink arrow and orange
arrow represent toluene conversion and p-xylene selectivity, respectively.

The TG analysis profiles (TGA) of all used catalysts after 20 h of reaction (Figure 9)
revealed that the weight loss from the combustion of the retained coke species significantly
decreased, from 14.3% on the parent HZSM-5 to only 3.5% on the HZSM-5@1%S-1 sample.
This further decreased with the increase of TEOS. The HZSM-5@4%S-1 catalyst exhibited
the lowest coke content (2.4%) among all catalysts, supporting that the coke formation was
strongly suppressed in the core-shell structured HZSM-5@Silicalite-1 zeolite compared with
the parent HZSM-5 catalyst. The results suggest that the epitaxial growth of the silicalite-1
shell on HZSM-5 passivated the surface acid sites and prevented the formation of coke
species from aromatic molecules on the external surface of the HZSM-5@silicalite-1 cata-
lyst [36], followed by improving the catalytic performance and the stability of the catalyst.
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Figure 9. TGA curves of the parent HZSM-5 and HZSM-5@silicalite-1 catalysts after the toluene
methanol methylation reaction for 20 h.

3. Materials and Methods
3.1. Preparation of Parent HZSM-5 (Si/Al = 150)

HZSM-5 was prepared using a seed-assisted hydrothermal synthesis method. Specif-
ically, an NaAlO2 aqueous solution (0.15 mol/L) was first mixed with TPABr aqueous
solution (1.7 mol/L) to obtain the turbid sol, followed by sequential addition of silica gel
and n-butylamine. Commercial HZSM-5 zeolite (0.01 g) with Si/Al ratios of 30 (purchased
from Nankai University Catalyst Factory, Tianjin, China) was added to the above gel mix-
ture as a seed crystal. The molar ratio of the obtained mixture was 300 SiO2:1 Al2O3:1
Na2O:13.5 TPABr:42 n-Butylamine:1160 H2O. Hydrothermal synthesis was performed in
a Teflon-lined stainless-steel vessel at 180 ◦C for 48 h. The obtained product was washed
with deionized water several times, filtrated, and dried at 100 ◦C for 24 h. The resulting
white powder was calcined at 550 ◦C for 6 h, to obtain the Na-ZSM-5, using a temperature
increase of 2 ◦C/min. After that, the Na-ZSM-5 was mixed with a 1.0 M ammonium nitrate
solution to yield a 5 wt% suspension. This suspension was then heated at 80 ◦C for 3 h, to
allow the exchange of extra-framework Na+ ions with NH4

+, and then calcined at 450 ◦C
for 5 h to obtain the proton-formed zeolite.

3.2. Preparation of HZSM-5@Silicalite-1 Catalysts

The HZSM-5@silicalite-1 catalysts were prepared following a procedure similar to
that reported in [22]. The as prepared HZSM-5 crystal with a high Si/Al ratio of 150 was
used as a parent zeolite, as the growth of silicalite-1 crystals on ZSM-5 zeolites with lower
Si/Al ratios (<50) is more difficult [20]. First, tetraethyl orthosilicate (TEOS), tetra-propyl
ammonium hydroxide (TPAOH), and deionized water were mixed, to form a gel with a
molar ratio TEOS:TPAOH:H2O = 17:14:9500. Then a certain amount of HZSM-5 powder
was added to the gel, followed by stirring for 1 h. The above mixed aqueous solution
was transferred to a Teflon-lined autoclave and hydrothermally treated at 170 ◦C for 48 h.
Afterwards, the suspension obtained by crystallization was centrifuged and washed with
deionized water until neutral, dried at 120 ◦C for 12 h, and calcined at 550 ◦C for 6 h. The
final HZSM-5@silicalite-1 core-shell material was obtained and marked as HZSM-5@X%
S-1, where X represents w (SiO2):w (HZSM-5).
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3.3. Catalyst Characterization

Powder X-ray diffraction (XRD) patterns of all samples were determined at room
temperature on a Bruker D8 Advance diffractometer (Bruker, Karlsruhe, Germany) with
Cu Kα radiation (λ = 0.1542 nm) and a scanning rate of 8 min−1, in the range of 2θ, from
5◦ to 55◦. X-ray photoelectron spectroscopy (XPS) was carried out on a ThermoFisher
ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA), to characterize the chemical state of the surface species. A monochromatized Al
Kα source (1486.6 eV) was used as the X-ray source. The Si/Al ratio of the samples was
analyzed using an X-ray fluorescence spectrometer (XRF, Bruker S8 tiger, Bruker). Scanning
electron microscope (SEM) images of the as prepared samples were obtained on an FEI
Nova Nano SEM 450 (Hillsboro, OR, USA). The N2 static adsorption desorption curves of
the HZSM-5 and HZSM-5@S-1 core-shell materials were measured using a micrometrics
3flex surface area analyzer at 77 K. Before adsorption measurements, the sample needs
to be degassed at 350 ◦C overnight. The BET method was used to calculate the specific
surface area; the t-plot method was used to calculate the micropore surface area, surface
area, and micropore volume; and the NLDFT model was used to calculate the pore size
distribution of the sample. Temperature programmed ammonia desorption (NH3-TPD)
was performed using a Micromeritics auto Chem II 2920 instrument (Norcross, GA, USA),
employing helium as the carrier gas with a thermal conductivity detector (TCD). 27Al MAS
NMR was carried out on a Bruker AVANCE III 500 NMR instrument (Bruker), and the
corresponding 27Al spectrum was obtained, to study the existing state of aluminum in
the catalyst. The resonance frequency of 27Al was 104.2 MHz and the rotating speed was
7 KHz. Thermo-gravimetric analysis (TGA) was performed on the spent catalysts, to test
coke amounts using a TG-DTA EXSTAR6000 instrument (Seiko Instruments Inc., Chiba,
Japan). The samples were heated up at a rate of 10 ◦C/min.

The acidity of the external surface of the zeolite was measured using IR spectroscopy,
using the adsorption of 2,6-di-tert-butylpyridine (2,6-DTBPy) on a Bruker Tensor 27 FT-IR
spectrometer instrument (Bruker). First, the zeolite samples were pressed into a thin wafer.
After pretreatment at 400 ◦C and 10−2 Pa for 2 h, the sample was cooled to 150 ◦C. The
spectra of the degassed samples were collected as a background. Then the FTIR spectra
were recorded after the samples were exposed to 2,6-DTBPy at 150 ◦C for 30 min.

Pulse chromatography was used to evaluate the pore opening shape selectivity of
HZSM-5@S-1 core-shell samples. Approximately 150 mg of pristine powder HZSM-5
was packed in a 100 mm “1/8” stainless steel tube through vacuum suction, to form an
adsorption column. The adsorption column was connected to an Agilent 7890B GC (Santa
Clara, CA, USA) equipped with a flame ion detector (FID). The GC oven temperature was
controlled at 220 ◦C to ensure the least isomerization during the adsorption test.

3.4. Catalyst Evaluation Tests

The alkylation of toluene with methanol reaction was carried out at atmospheric
pressure, using a fixed-bed tubular quartz reactor with an inner diameter of 8 mm and a
length of 50 cm. The pristine zeolite powder was used directly, without granulation and
tableting. Then, 0.20 g of the catalyst was loaded into the central zone of the reactor between
two quartz wool layers. To increase the utilization efficiency of methanol as a methylation
reagent, a T/M = 6 (molar ratio of toluene to methanol) ratio was used for the reaction.
The toluene and methanol (0.03 mL/min) mixture was pumped into a reactor operating
at 470 ◦C for reaction (WHSV = 8 h−1) and fed into the reactor with H2 (55 mL/min).
The products from the reactor were analyzed online using a 7890B gas chromatograph
equipped with a flame ionization detector (FID) and an INNOWAX capillary column for
product composition analysis. Toluene conversion and p-xylene selectivity were calculated
according to the following formula:

CT(%) =
∑10

i=7 CN H2N−6

1 + ∑10
i=7 CN H2N−6

× 100%
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SPX(%) =
Np−xylene

Nxylene
× 100%

where CT is the conversion of toluene, SPX is the selectivity of p-xylene in the xylene mixture,
CNH2N−6 (carbon number from 7 to 10), Np−xylene, and Nxylene is the number of aromatic
moles detected by GC.

The methanol efficiency was calculated using the following formula:

η =
CT

Cmax
× 100%

where η is the efficiency of methanol, CT is the conversion of toluene, and Cmax is the
theoretical upper limit of toluene that can be reached with the specific toluene to methanol
molar ratio, supposing that the methyl group in methanol was 100% transferred to toluene.
For example, with a toluene to methanol molar ratio of 6, the Cmax is 16.6%.

4. Conclusions

In summary, high-performance core-shell structured HZSM-5@silicalite-1 catalysts for
toluene methylation with methanol could be obtained using a seed-assisted hydrothermal
synthesis method. The epitaxial growth of silicalite-1 along the HZSM-5 crystal could
better cover the external surface acidic sites of the parent zeolites, while basically reserving
the pore structure of the parent zeolites, with an almost unchanged surface area and pore
volume. As a result, the core-shell HZSM-5@silicalite-1 catalysts show an enhanced reaction
lifetime and higher p-xylene selectivity compared with the conventional HZSM-5 catalyst.
At atmospheric pressure, 470 ◦C, WHSV 8 h−1, and toluene/methanol (mole/mole) = 6, the
HZSM-5@4%S-1 catalyst exhibited the highest p-xylene selectivity (>80%), with a toluene
conversion of ca. 10% and an exceptionally long stability (170 h).
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