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Abstract: A multi-step ion-exchange methodology was developed for the fabrication of Cu(LaTa2O7)2

lamellar architectures capable of wastewater depollution. The (001) diffraction line of RbLaTa2O7

depended on the guest species hosted by the starting material. SEM and TEM images confirmed
the well-preserved lamellar structure for all intercalated layered perovskites. The UV–Vis, XPS, and
photocurrent spectroscopies proved that Cu intercalation induces a red-shift band gap compared to
the perovskite host. Moreover, the UV–Vis spectroscopy elucidated the copper ions environment in
the Cu-modified layered perovskites. H2-TPR results confirmed that Cu species located on the surface
are reduced at a lower temperature while those from the interlayer occur at higher temperature
ranges. The photocatalytic degradation of phenol under simulated solar irradiation was used as a
model reaction to assess the performances of the studied catalysts. Increased photocatalytic activity
was observed for Cu-modified layered perovskites compared to RbLaTa2O7 pristine. This behavior
resulted from the efficient separation of photogenerated charge carriers and light absorption induced
by copper spacer insertion.

Keywords: copper spacer; layered perovskite; phenol; photocatalysis; simulated solar irradiation

1. Introduction

Layered perovskites represent an emerging class of materials whose applications are
constantly rising in various fields spanning from dielectrics [1], superconductivity [2], or
luminescence [3] to catalysis and photocatalysis [4,5]. The development of stable, low-cost,
and high-efficiency photocatalysts that utilize solar energy could solve many environmental
concerns [6]. Among various semiconductors, Dion-Jacobson (DJ)-type layered perovskites
are effective photocatalysts for water splitting under solar light irradiation [7]. Their
interlamellar space allows for achieving stronger light absorption with more efficient charge
carrier separation. In this way, the photocatalytic performance of the new composites
dramatically increases.

The class of DJ perovskites possesses a composition of M[An−1BnO3n+1], where M
is an alkali metal, A is a lanthanide, B is a d0 transitional metal, and n is the number
of BO6 octahedra. For example, the 2D blocks of RbLaTa2O7 are composed of corner-
shared TaO6 octahedra, interleaved with 12 coordinate La3+ cations, and separated by
a Rb+ interlayer cation. An essential feature of these materials consists of their ability
to accommodate a variety of spacers into the inorganic matrix while the structure of
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perovskite blocks remains unchanged. Due to the layered structure flexibility, their physico-
chemical properties are tailored through ion exchange, pillaring, exfoliation, or restacking
methods [8]. Compounds such as clay minerals, graphite, and transition metal dichalco-
genides are known to accommodate guest species in their interlayer space. Therefore, a
unique nanoarchitecture with attractive properties is obtained compared to those of the
parental materials. Layered perovskites are amenable to alkali-proton exchange reactions to
obtain solid acid phases. Protons located between galleries can be further exchanged with
various molecules (alcohols, amines, phosphorous, alcohols, and carboxylic acids) leading
to new organic-inorganic hybrid compounds [9,10]. Exfoliation into ultrathin nanosheets
is feasible for the fabrication of nanostructured devices [11] or used as building blocks
for novel materials [12]. It is worth noting that the size and configuration of the spacer
cation influence the physicochemical properties of the photocatalysts [13]. The recent work
by Minich et al. [14] revealed that the interlayer water plays a crucial role in the forma-
tion of n-alkylamines intercalated perovskite-like bismuth titanate H2K0.5Bi2.5Ti4O13·H2O.
Fan et al. [15] demonstrated that (Pt, TiO2) intercalated HLaNb2O7 possesses superior pho-
tocatalytic H2 evolution compared to unmodified TiO2. Wu and coworkers [16] fabricated
Fe2O3/HLaNb2O7 through an intercalation route, which showed an enhanced hydrogen
production rate compared to individual oxides.

An approach to improve the charge separation efficiency in layered perovskites
refers to noble metal intercalation at specific interlayer sites. As an example, RuO2- [17]
and Pt- [18] intercalated KCa2Nb3O10 possess high photocatalytic performance for water
splitting. Unfortunately, the high cost, the limited availability, as well as the non-uniform
distribution of these guests restrict their practical application. Regarding the photocatalysis
field, TiO2 has served as a benchmark of light-related photocatalytic processes. However, its
large band gap, the fast carrier recombination, or the particle agglomerations are factors that
limit the TiO2 efficiency. To overcome these drawbacks, searching for innovative functional
materials for (i) expanding the light-harvesting wavelength range and (ii) suppressing the
quick recombination of photogenerated charge carriers is highly desirable.

Copper oxide p-type semiconductors have become a promising alternative in the field
of catalysis, photovoltaics, and energy storage applications [19]. These materials possess
outstanding properties, such as narrow band gap, non-toxicity, and low price. CuO has a
band gap of 1.21–2.1 eV and a monoclinic crystal structure, while Cu2O has a band gap
of 2.2–2.9 eV and a cubic crystal structure [20]. Alternatively, the interlayer gallery of the
layered perovskites provides a space-confined environment for the exchangeable ions.

One strategy for developing visible-light-driven photocatalysts is to create a new
valence band (VB) located at more negative potentials than O 2p orbitals, giving rise
to a narrower band gap [21]. Recently, new visible-light-driven H2- and O2- evolving
photocatalysts have been developed by Ag+ and Cu+ alkali-ion exchanges in various wide-
band-gap perovskites [22]. Similarly, Cu(I)-ion-exchanged K2La2Ti3O10 photocatalysts
demonstrated enhanced activity for H2 production with a response up to 620 nm [23].
Therefore, engineering the interlayer spacing of lamellar materials is a reliable route to
improve photocatalytic performance.

Phenolic compounds are a class of ubiquitous contaminants frequently present in
wastewater due to their employment in industry and human activities [24]. Alternative
approaches have been developed over the last few decades to remove persistent organic
pollutants [25]. The photocatalytic mineralization process remains one of the most attractive
technologies for the degradation of recalcitrant contaminants contained in water sources
into harmless CO2 and H2O. Its efficiency is due to reactive oxygen species generated by
the photocatalyst during light exposure that degrade the hazardous compounds.

We report a versatile route to fabricate a novel Cu(LaTa2O7)2 layered architecture
through the modification of the RbLaTa2O7 host via protonation-amine intercalation steps.
One aim of this work was to explore the nature and role of copper species (interlayer and/or
surface) on the physico-chemical properties of the Cu(LaTa2O7)2 matrix. The ultimate goal
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was to study the photocatalytic degradation of phenol under simulated solar irradiation
over the new Cu(LaTa2O7)2 assemblies, depending on their thermal treatments.

2. Results and Discussion
2.1. Crystal Structure and Morphology

The XRD patterns for the pristine layered perovskite (RbLTO), proton-exchanged
form (HLTO), n-butylamine-derived perovskite (BuALTO), copper-intercalated perovskite
(CuLTO), copper-intercalated perovskite calcined at 500 ◦C (CuLTO-500C), and copper-
intercalated perovskite reduced at 800 ◦C (CuLTO-800R) were collected in Figure 1. The
lattice parameters and the phase composition of the synthesized materials are listed
in Table 1.
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Figure 1. XRD patterns of (a) RbLTO, (b) HLTO, (c) BuALTO, (d) CuLTO, (e) CuLTO-500C,
(f) CuLTO-800R. In brackets are given the Miller indices of the RbLaTa2O7 phase.

Table 1. Lattice parameters, d-spacing, gallery height, and phase composition for the RbLTO host
and its guest-intercalated products.

Sample
Lattice Parameters

d-Spacing for l(001), (Å) Gallery Height (Å) Phase Composition
a (Å) c (Å)

RbLTO 3.881 11.121 11.185 3.69 RbLaTa2O7
HLTO 3.883 10.924 10.951 3.45 HLaTa2O7

BuALTO 3.889 11.113 11.113 3.61 (C4H11N)LaTa2O7
CuLTO 3.888 11.023 11.228 3.73 Cu(LaTa2O7)2

CuLTO-500C 3.880 10.718 10.719 3.22 Cu(LaTa2O7)2, Cu2O,
CuO, Ta2O5

CuLTO-800R 3.884 10.676 10.676 3.18 Cu(LaTa2O7)2, Cu2O,
CuO, Ta2O5
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The XRD pattern of the RbLTO solid shows the RbLaTa2O7 structure with tetragonal
symmetry (P4/mmm, cell parameters a = 3.881 and c = 11.121
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, PDF card no. 01-089-0389).
Acid treatment of pristine produced the HLaTa2O7 phase (PDF card no. 01-081-1194), in
accordance with previously reported data for proton-exchanged compounds. The protonation
step left the a parameter unchanged, while the (001) diffraction line was shifted towards higher
2Θ angles (8.06◦). This fact indicates a smaller c parameter for the HLTO solid. Subsequent
treatment of the proton-exchanged perovskite with n-butylamine (n-C4H9-NH2) leads to
a shift of the (001) reflection at a lower 2Θ angle (7.93◦) in BuALTO solid. This shift is a
consequence of the amine’s intercalation into the protonated perovskite’s interlayer spaces.
Onward, the intercalation of the Cu2+ spacer into the BuALTO solid resulted in a further
shift of the (001) line to lower angles (2Θ = 7.84◦). This observation indicates that copper
was introduced in between the [LaTa2O7]− layers. The benefit of using the n-butylamine
as an intercalation precursor is that of forming a complex with the metallic ion. From this
standpoint, [Cu(NH2-C4H9)4(H2O)2]2+ can be considered as a vector to incorporate copper
into perovskite layers.

The XRD patterns of both CuLTO-500C and CuLTO-800R reveal the preservation of the
stratified structure but also the presence of distinctive lines attributed to Cu2O (PDF card
no. 01-078-2076), CuO (PDF card no. 01-089-5895), and Ta2O5 (PDF card no. 00-018-1304)
crystalline phases. Figure 2B shows that either the calcination or reducing treatments of
CuLTO solid resulted in the dramatic shortening of the d-distance. Thus, values of 10.719
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Figure 2. Evolution of the (A) 2-theta and (B) d-spacing of the RbLTO host and its guest-intercalated
spacers. The layered perovskite structure of RbLaTa2O7 is schematically given in (C).

The nature of the spacer influences the overall structure of the newly assembled
compound as it can distort the perovskite from its ideal structure through the tilting of the
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oxygen octahedra, the shifting of the layers, or Jahn-Teller distortions [26]. The shortening
of the c-axis of the CuLa2Ti3O10 compound was observed by Hyeon et al. after the solid
was heated up to 700 ◦C [27]. The authors attributed this contraction to the flattening of
the CuO4 unit toward quasi-square planar coordination. Ogawa and Kuroda [28] reported
that the alkyl-ammonium ions intercalated layered silicates are aligned parallel to the
silicate sheets. Similarly, Sasaki et al. [29] indicated two modes of accommodation of
the alkyl chain into the titanate layered structure. For a chain length up to the carbon
number of three (C3), a nearly parallel arrangement has been suggested, while for C5 or
more, the interlayer distance expanded linearly with an increase in the chain length. These
authors claimed that in the case of butylamine, both types of arrangement coexisted (flat
or perpendicular). In another study regarding layered titanate-intercalated pyridine, two
values of the d-spacing were reported: (i) a value of 3 Å when pyridine was inserted flat
into the interlayer space and (ii) 5.8 Å when pyridine was intercalated perpendicular to the
surface [30]. The chain length of the butylamine has a value of 7.6 Å, and its alkyl chain
usually tilts or overlaps [31].

Collectively, our results appear to be consistent with the literature review. We suppose
that n-butylamine was inserted in between the layers of the BuALTO solid in such a way,
probably in a flat orientation, that it does not significantly expand the d001 spacing.

Figure 2A displays the variation of the d-spacing and 2-theta angle for the (001)
line diffraction over the synthesized materials attributed to the RbLaTa2O7 host structure
(Figure 2B).

The gallery height was calculated by the difference between the d values derived from
the (001) reflection peaks of all the solids and the perovskite layer thickness (~7.5 Å) [16].
Table 1 gives the interlayer heights of the RbLTO host and its guest-intercalated spacers.
The results underline that the gallery height of the solids is spacer-related.

The chemical reactions that take place after each synthesis step are described in
Equations (1)–(4):

Rb2CO3 + La2O3 + 2Ta2O5 → 2RbLaTa2O7 + CO2↑ (Layered host synthesis) (1)

RbLaTa2O7 + HNO3 → HLaTa2O7 + RbNO3 (Step I: Protonation) (2)

HLaTa2O7 + C4H9-NH2 → (C4H9-NH3)LaTa2O7 + 1/22 H2O (Step II: n-Butylamine insertion) (3)

4[(C4H9-NH3)(LaTa2O7)] + 2Cu(NO3)2→ [Cu(NH2-C4H9)4(H2O)2](LaTa2O7)2 + Cu(LaTa2O7)2 + 2NO2 + 2H2O
(Step III: Copper intercalation)

(4)

The methodology of replacing Rb+ with Cu2+ in the RbLaTa2O7 interlayer host pro-
ceeds in three steps (Scheme 1). The first step involves the exchange of the interlayer
rubidium cation with H+ via protonation (step I, Equation (2)). The next stage consists of
the expansion of the galleries of proton-exchanged layered perovskite by introducing a
spacer such as n-butylamine (step II, Equation (3)). The role of the alkylamine is not only to
increase the interlayer distance but also to form a [Cu-amine] complex, thus favoring the
intercalation of Cu into the perovskite host (step III, Equation (4)).

Thermogravimetric (TG) analyses additionally confirm the various spacers inserted
into the RbLaTa2O7 host. The TG curves of the HLTO, BuALTO, CuLTO, CuLTO-500C, and
CuLTO-800R materials showed several stages of mass losses as a function of temperature.
The obtained results are listed in Table S1 from supporting information. For comparison, the
TG curve of RbLTO pristine is also given in Figure 3A, while its description was presented
elsewhere [32]. The first peak centered at 134 ◦C is due to the elimination of adsorbed
water, while the second peak at 305 ◦C corresponds to a partial dehydration of lanthanum
oxide. After 600 ◦C, take place the elimination of CO2.
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Figure 3. Thermogravimetric curves (TG, DTG, DTA) of (B) HLTO, (C) BuALTO, (D) CuLTO,
(E) CuLTO-500C, and (F) CuLTO-800R, measured in an air atmosphere with a heating rate of
10 ◦C·min−1. The TG curve of the RbLTO host is given for comparison in (A) [32].
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For the HLTO sample, (Figure 3B) water elimination from 25 to 380 ◦C in four steps
is associated with the removal of the adsorbed water. The experimental value of the
measured weight loss (2.00%) was close to the theoretical value of 2.93%. The calculated
value corresponds to 1 mole H2O per [LaTa2O7]− unit formula of protonated perovskite.
The mass loss of 1.37% (peak at 533 ◦C) is due to the loss of the interlayer proton as water,
according to Equation (5). The last step on the TG curve (650–1000 ◦C) indicates negligible
mass loss (0.32%), showing that the deprotonation process is completed up to 650 ◦C.

HLaTa2O7 → LaTa2O6.5 + 1/2 H2O (5)

The theoretical weight loss should be 1.48% if all Rb+ cations replaced by protons are
located in the interlayer space. According to these data, a protonation degree of 93% has
been achieved in the HLTO solid. The successful protonation step was also confirmed by
ion chromatography showing that 99.2% Rb+ cations were replaced by H+ during the acid
treatment of the RbLaTa2O7 host with nitric acid. This result is consistent with reports in
the literature for other related protonated layered perovskites.

Thermal analysis attests that n-butylamine was intercalated and helps to quantify the
amount of the inserted amine. The first mass loss (25–124 ◦C) of the BuALTO (Figure 3C) is
attributed to the elimination of adsorbed water. In the temperature range of 124–1000 ◦C,
the total weight loss of 6.36% is assigned to the elimination of amine, which takes place in
multiple steps. In the study of Geselbracht et al. [33], the total mass loss of the hexylamine-
intercalated HCa2Nb3−xTaxO10 has been calculated in the domain of 25–900 ◦C. In the
research work on octylamine-intercalated layered vanadium oxide, the authors ascribed
the weight loss at low-temperature to the release of free amine molecules, while the higher-
temperature one was attributed to the combustion of interlayer amine [34]. For this study,
the complete decomposition of the inserted n-butylamine takes place in multiple steps. The
peak at 521 ◦C observed on the TG curve of the BuALTO solid certifies that the butylamine
is located in the interlayer position. Its experimental mass loss was determined to be 3.61%.
The calculated weight loss for the amine total decomposition should be 10.64%, while a
lower experimental value was found. It implies that only 33.92% of the butylamine was
located in between the [LaTa2O7]− layers.

After the insertion of the Cu2+ spacer (Figure 3D), the metal-ligand complex [Cu(NH2-
C4H9)4(H2O)2] is formed. The large mass loss of 43.39% observed for CuLTO is indicative
of [Cu-amine] complex decomposition with the elimination of gaseous NO2, CO2, and NH3
compounds, Equation (6).
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The TG curves of the CuLTO-500C and CuLTO-800R samples (Figure 3E,F) show 
different behavior compared to the HLTO, BuALTO, and CuLTO layered perovskites. 
Various exothermic effects observed on the DTA curves of both thermally treated mate-
rials could signify a possible phase transition. Indeed, the presence of copper phases on 
CuLTO-500C and CuLTO-800R was subsequently probed by XRD analysis (Figure 1). 

SEM images of RbLTO, HLTO, BuALTO, and Cu-modified layered perovskites are 
shown in Figure 4A–E. The well-preserved lamellar structure of the starting material is 
observed for all studied architectures. The synthesized Rb- and H- forms do not show 
significant particle size differences. On the other hand, the particles of BuA- and 
Cu-intercalated products tend to form lamellar agglomerates with a smaller size as 
compared to RbLTO’s original layered perovskite. The transmission electron microscopy 
(TEM) images further confirm that both n-butylamine- and Cu-based layered perovskites 
(Figure 5A–F) retain their stratified structures. 

2+

Temp.
CuO + 2NO2  + 4CO2  + 4NH3   +2H2O

The TG curves of the CuLTO-500C and CuLTO-800R samples (Figure 3E,F) show
different behavior compared to the HLTO, BuALTO, and CuLTO layered perovskites.
Various exothermic effects observed on the DTA curves of both thermally treated materials
could signify a possible phase transition. Indeed, the presence of copper phases on CuLTO-
500C and CuLTO-800R was subsequently probed by XRD analysis (Figure 1).

SEM images of RbLTO, HLTO, BuALTO, and Cu-modified layered perovskites are
shown in Figure 4A–E. The well-preserved lamellar structure of the starting material is
observed for all studied architectures. The synthesized Rb- and H- forms do not show
significant particle size differences. On the other hand, the particles of BuA- and Cu-
intercalated products tend to form lamellar agglomerates with a smaller size as compared to
RbLTO’s original layered perovskite. The transmission electron microscopy (TEM) images
further confirm that both n-butylamine- and Cu-based layered perovskites (Figure 5A–F)
retain their stratified structures.
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(F) CuLTO-800R materials.

The elemental mapping images (Figure 6) show that in the BuALTO and CuLTO
compounds, La, Ta, and O are homogeneously distributed within each sample. No presence
of rubidium was observed. This observation demonstrated that the cation exchange
took place. The presence of a copper peak in the CuLTO novel architecture (Figure 6B)
demonstrates the successful Cu intercalation process.

Table 2 reports the surface chemical composition of RbLTO, CuLTO, CuLTO-500C,
and CuLTO-800R perovskites as determined by XPS analysis. The results illustrate that the
surface composition of the solids changes, depending on the applied thermal treatment
(as fresh, calcination, and reduction). Notably, the bulk of the Cu-modified perovskites is
constantly preserved as a Cu(LaTa2O7)2 crystalline phase. This observation is confirmed
by the XRD patterns (Figure 1).
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Figure 6. SEM-EDS elemental mapping images of (A) BuALTO and (B) CuLTO lamellar structures
for O, La, Ta, and Cu elements.

Table 2. Surface chemical composition and atomic ratio determined by XPS analysis for RbLTO host
and its guest-intercalated products.

Sample
Chemical Analysis of the Products (at. %) Atomic Ratio

Rb (%) C (%) O (%) La (%) Ta (%) Cu (%) Cu/(La + Ta)

RbLTO 10.0 39.6 36.5 5.4 8.5 0.0 0.00
CuLTO 0.0 67.0 32.9 0.0 0.0 0.1 0.00

CuLTO-500C 0.0 33.3 58.4 1.5 5.6 1.3 0.18
CuLTO-800R 0.0 39.3 45.1 3.1 8.9 3.5 0.29

The Cu/(La + Ta) surface atomic ratio of Cu-intercalated layered perovskites is slightly
decreased compared to the theoretical value of the RbLaTa2O7 host [i.e., Rb/(La + Ta) = 0.33].
Note that there is a coverage of the CuLTO surface by the organic component.

2.2. Optical Absorption of Samples by UV–Vis Spectroscopy

The optical properties of the RbLTO host and its modified compounds (HLTO, BuALTO,
CuLTO, CuLTO-500C, and CuLTO-800R) were studied by UV–Vis spectroscopy (Figure 7A).
Moreover, this is a helpful tool to understand the coordination environment of Cu2+ ions
contained in the lamellar space of the perovskite host.
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Figure 7. (A) UV–Vis absorption spectra and (B) Tauc plot of the (a) RbLTO, (b) HLTO, (c) BuALTO,
(d) CuLTO, (e) CuLTO-500C, and (f) CuLTO-800R.

RbLTO displays an absorption edge at 268 nm with a small shoulder at about 331 nm,
corresponding to the electron excitation of the O 2p valence band to the Ta 5d conduction
band. The intercalation of various spacers into the perovskite host layers induces an in-
crease in light absorption. An absorption edge at about 252 nm is observed for the H+-,
n-butylamine-, and Cu2+-intercalated perovskites. Notably, copper insertion determines
significant changes in UV–Vis spectra in the visible absorption domain (inset of Figure 7A).
The CuLTO shows an absorption hump between 520 and 950 nm assigned to the d-d elec-
tronic transition of Cu2+ ions [35]. After calcination at 500 ◦C, three absorption edges at 573,
686, and 849 nm were perceived. This observation indicates that the copper environment
has changed for CuLTO-500C. A reduction at 800 ◦C leads to a broader and less intense
band between 400 and 580 nm in the visible domain.

Different authors claimed that if Cu2+ ions are in perfect octahedral coordination,
the d–d transition band will appear between 750–800 nm. If Cu2+ cations are in a dis-
torted octahedral (nearly square planar) configuration, this band will have a blue shift to
600–750 nm. Researchers assigned the broadband between 400 and 450 nm to the charge
transfer band for either single- or double-O-bridged copper pairs [36,37].

In line with previous literature studies, it appears that for the CuLTO solid, the Cu2+

ion is in perfect octahedral coordination, confidently attributed to the complexion of copper
ions with the butyl-amino ligands [38]. After calcination at 500 ◦C (CuLTO-500C sample),
the presence of two Cu2+ species could be observed: (i) copper surrounded by amino-ligand
and (ii) copper surrounded by oxygen due to surface CuOx species. A reduction at 800 ◦C
(i.e., CuLTO-800R sample) leads to considerable increases in light absorption compared
to the CuLTO and CuLTO-500C solids, which may be due to the charge transfer band for

either the Cu-O-Cu or
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The optical band gap energies (Eg) of all photocatalysts are presented in Figure 7B.
The Eg was estimated by Tauc curves corresponding to indirect band transitions. The Eg
values of all layered perovskites follow the sequence: CuLTO-800R (2.91 eV) < CuLTO-500C
(3.26 eV) < CuLTO (3.70 eV) < HLTO (3.78 eV) < RbLTO (3.80 eV) < BuALTO (4.00 eV).
Overall, the RbLaTa2O7 host can accommodate various molecules in between layers, en-
hancing light absorption. The significant decrease in CuLTO-500C and CuLTO-800R band
gaps impacts the photocatalytic reaction and the selectivity, as will be seen later.

2.3. Tauc Plot Derived from Photocurrent Spectroscopy (PCS)

A similar method to UV–Vis spectroscopy to estimate the optical band gap of semicon-
ductors is photocurrent spectroscopy. For this purpose, a Tauc plot of (Jph/Φ × hυ)n versus
wavelength was represented, where Jph is the photocurrent, Φ is the photon flux, and
n is 1

2 due to indirect transition [39]. A straight line was fitted at the lower energy region to
determine the optical band gap of the layered materials. Figure 8A illustrates the allowed
indirect band gap Tauc plots of photoanodes using the normalized photocurrent response.
The estimated band gap energies of RbLTO, CuLTO, CuLTO-500C, and CuLTO-800R are
3.51, 3.44, 3.06, and 2.88, respectively. These values imply that the insertion of the copper
spacer into the RbLaTa2O7 host leads to band-gap shrinking.

Catalysts 2022, 12, x  14 of 30 
 

 

  
(A) (B) 

Figure 8. (A) Allowed indirect band gap Tauc plots of RbLTO, CuLTO, CuLTO-500C, and CuL-

TO-800R photoanodes and (B) LSV plots under chopped AM 1.5 simulated solar light. 

The linear sweep voltammetry (LSV) plots under chopped AM 1.5 simulated solar 

irradiation over RbLTO, CuLTO, CuLTO-500C, and CuLTO-800R photoanodes are 

compared in Figure 8B. The unmodified RbLTO exhibits the lowest photocurrent density. 

The LSV response increases for the Cu-modified layered perovskites, while the highest 

on/off photocurrent response appears on CuLTO-800R. All subjected materials showed a 

clear characteristic of n-type semiconductors. 

2.4. FTIR Absorption Spectra of the Layered Perovskites 

The functional groups in RbLaTa2O7 original layered perovskite and its spac-

er-modified compounds were studied by FTIR spectroscopy (Figure 9). In the RbLTO 

host, the band corresponding to Ta-O-Ta was identified at 550 cm−1. The strong peaks at 

613 and 651 cm−1 are due to Ta-O asymmetric stretching vibrations (υas Ta-O), while the 

band at 903 cm−1 represents the Ta-O symmetric stretching vibration (υs Ta-O) of TaO6 

octahedra [40]. Rb+/H+ exchange determines one broad band at around 3379 cm−1 and a 

second one at 1638 cm−1 corresponding to the asymmetric stretching (υasO-H) and bend-

[(
J

p
h
/j

) 
´
 h

u
]1

/2

 RbLTO

[(
J

p
h
/j

) 
´
 h

u
]1

/2

3.51 eV

 CuLTO

3.44 eV

Photon energy (eV)

[(
J

p
h
/j

) 
´

 h
u

]1
/2

[(
J

p
h
/j

) 
´
 h

u
]1

/2

 CuLTO-500C

3.06 eV

2.5 3.0 3.5 4.0

 CuLTO-800R

2.88 eV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 RbLTO

J
/m

A
 ´

 c
m

-2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 CuLTO

J
/m

A
 ´

 c
m

-2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 CuLTO-500C

J
/m

A
 ´

 c
m

-2

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 CuLTO-800R

J
/m

A
 ´

 c
m

-2

E vs. Ag/AgCl / V

Figure 8. (A) Allowed indirect band gap Tauc plots of RbLTO, CuLTO, CuLTO-500C, and CuLTO-800R
photoanodes and (B) LSV plots under chopped AM 1.5 simulated solar light.



Catalysts 2022, 12, 1529 13 of 28

The linear sweep voltammetry (LSV) plots under chopped AM 1.5 simulated solar
irradiation over RbLTO, CuLTO, CuLTO-500C, and CuLTO-800R photoanodes are com-
pared in Figure 8B. The unmodified RbLTO exhibits the lowest photocurrent density. The
LSV response increases for the Cu-modified layered perovskites, while the highest on/off
photocurrent response appears on CuLTO-800R. All subjected materials showed a clear
characteristic of n-type semiconductors.

2.4. FTIR Absorption Spectra of the Layered Perovskites

The functional groups in RbLaTa2O7 original layered perovskite and its spacer-modified
compounds were studied by FTIR spectroscopy (Figure 9). In the RbLTO host, the band
corresponding to Ta-O-Ta was identified at 550 cm−1. The strong peaks at 613 and 651 cm−1

are due to Ta-O asymmetric stretching vibrations (υas Ta-O), while the band at 903 cm−1

represents the Ta-O symmetric stretching vibration (υs Ta-O) of TaO6 octahedra [40]. Rb+/H+

exchange determines one broad band at around 3379 cm−1 and a second one at 1638 cm−1

corresponding to the asymmetric stretching (υasO-H) and bending mode (δsO-H) of hy-
droxyl groups. The band at 934 cm−1 is related to hydroxyl groups of protonated materials.
The protonation step induces a shift to the lower wavenumber of all vibrations related
to Ta-O. The introduction of the n-butylamine spacer induces important changes in the
FTIR spectra of the BuALTO solid. Thus, this sample displays new vibrations allocated
to the CH2 asymmetric stretching band (2964 cm−1), the CH2 symmetric stretching band
(2853 cm−1), and the bending vibrations of the CH2 groups (1443–1416 cm−1). These bands
are abbreviated as υasCH2, υsCH2, and δCH2, respectively. Additionally, signals of the N-H
stretching vibration (3026–3171 cm−1) and the C-N bond (1149–1205 cm−1) are observed [41]
confirming the insertion of amine in between the [LaTa2O7]− layers. Absorbance below
1000 cm−1 reveals two broad bands at 903 and 804 cm−1 associated with N-H out-of-plane
vibration, specific to primary amines [42]. Notably, the band at 903 cm−1 overlaps over the
symmetric vibration of Ta-O.
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Figure 9. FTIR spectra at the (A) high-wavenumber and (B) low-wavenumber regions for (a) RbLTO,
(b) HLTO, (c) BuALTO, (d) CuLTO, (e) CuLTO-500C, and (f) CuLTO-800C.

After Cu2+ insertion (CuLTO sample), the signal related to the C-N stretching vibration
(1149–1205 cm−1) increases significantly. Alternatively, a new small band develops around
973 cm−1 attributed to N-Cu-N stretching vibration [43]. As a matter of fact, the positively
charged Cu2+ ions act as a Lewis acid while the (n-C4H9-NH3

+) ligand with one pair of
electrons acts as a Lewis base, and consequently, it has a great tendency to form [Cu(NH2-
C4H9)4(H2O)2]2+ complex. Undeniably, the TG analysis of CuLTO confirms the presence of
the [copper-amine] complex. Moreover, the UV–Vis spectra certify the existence of Cu2+ in
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a perfect octahedron configuration due to the interlayer [Cu-amine] complex. The insertion
of spacers determines a redshift of the asymmetric TaO6 octahedra with 26 cm−1 for HLTO,
14 cm−1 for BuALTO, and 19 cm−1 for CuLTO, respectively, as compared to the RbLTO
host. In order to verify the occurrence of interactions between the layered materials and
the amine, the FTIR spectrum of neat butylamine is given in the supporting information,
Figure S1. It is noticed that the band at 1079–1133 cm−1 for both the BuALTO and CuLTO
solids is shifted towards higher frequencies compared to neat C4-amine.

After the different thermal treatments (i.e., calcination/reduction) were applied to a
CuLTO fresh sample, all IR bands disappeared in the wavenumbers domain higher than
1000 cm−1. A close view of the FTIR fingerprint domain (Figure 9B) shows the occurrence
of new bands at 851 cm−1 for CuLTO-500C and 774 cm−1 for CuLTO-, compared to the
BuALTO and CuLTO samples. It implies that the copper environment has changed in the
thermally treated solids. Additionally, the lattice vibration peaks referred to the asymmetric
stretching mode of Ta-O converged to one band at 602 cm−1 for CuLTO-500C and 585 cm−1

for CuLTO-800R. This fact could be attributed to a rearrangement of the interlayer species
accompanied by the disordering of the [LaTa2O7]− sheets.

The literature data covering Cu-based materials showed that the bands positioned at
578 cm−1 and 435 cm−1 are due to υ(Cu-O) [44]. Gopalakrishnan et al. [45] indicate that
the Cu-O vibration of Cu2O nanoparticles appears at about 618 cm−1. Morioka et al. [46]
observed small peaks at 428, 503, and 609 cm−1 but it has been unclear whether these
bands corresponded to CuO and/or Cu2O. In our preparation, two small bands appear
(i) at 495 cm−1 for CuLTO, CuLTO-500C, and CuLTO-800R and (ii) at about 516 cm−1 for
the CuLTO and CuLTO-800R solids. Therefore, this observation witnessed the successful
copper spacer insertion into the perovskite structure into the above-stated materials.

2.5. Temperature-Programmed Reduction (TPR) Measurements

To further confirm the successful insertion of a Cu2+ spacer into the perovskite galleries,
the optical properties were corroborated with those of the H2-TPR and XPS studies. We
focused in particular on the copper chemical state in the assembled Cu-based layered per-
ovskites. The H2-TPR profiles for CuLTO, CuLTO-500C, and CuLTO-800C catalysts are shown
in Figure 10A. The reduction of CuOx takes place via sequences (Equations (7) and (8)):

2CuO + H2 → Cu2O +H2O (7)

Cu2O + H2 → 2Cu + H2O (8)

All Cu-modified photocatalysts show two distinct regions in the temperature ranges of
50–450 ◦C and 450–800 ◦C, respectively. The CuLTO solid displays three separate reduction
peaks, with the maxima occurring at 220, 313, and 536 ◦C, respectively. The first two low-
temperature peaks represent the reduction of Cu2+ to Cu+ and Cu+ to Cu0 species situated
on the catalyst surface [47]. The third large and intense peak is ascribed to the reduction of
copper species, (i.e., Cu2+ to Cu0) located between the perovskite layers [48–50]. Similar
results were found by Nestroinaia et al. [51] for Ni-intercalated layered double hydroxide,
where the peak between 400–550 ◦C was attributed to the reduction in Ni3+ existing inside
brucite-like layers. Hence, the TPR peak at 536 ◦C of the CuLTO catalyst confidently attests
that copper intercalated between the [LaTa2O7]− layers. The calcination treatment over
the Cu-fresh solid shifts the reduction peaks towards higher temperature values. Thus,
in the TPR profile of the CuLTO-500C, a low-temperature broadened peak is observed
along with a high-temperature distinctive one. The broad peak deconvoluted into two
peaks was attributed to Cu2+/Cu+ (280 ◦C) and Cu+/Cu0 (448 ◦C) surface species. The
shoulder positioned at 545 ◦C corresponded to a one-step reduction of Cu2+/Cu0 interlayer
species. The CuLTO-800R material shows a broad peak over the studied temperature
range, deconvoluted in four peaks. The low-temperature region (peaks at 194 and 371 ◦C)
indicates the two-step reducibility of surface Cu2+. The third peak, centered at 532 ◦C,
is assigned to interlayer copper while the peak at about 650 ◦C is ascribed to a partial
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reduction of some tantalum species in this sample. Previous reports indicated that the
reduction of Ta2O5 requires temperatures of around 700 ◦C [52,53]. This means that the
existence of metallic copper in CuLTO-800R solid could promote the reduction of tantalum
species at lower temperatures. Generally, the surface Cu+/Cu0 redox couple is beneficial
for photocatalytic applications relevant to the degradation of organic molecules [54].
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The corresponding H2 consumption values of Cu-intercalated layered perovskites,
expressed in µmoles·g−1, are reported in Table 3. For the CuLTO solid, the H2 consumption
by copper localized on the surface of the catalyst is quite small, confirming that the highest
amount of copper is located in the interlayer. This observation is in line with the XPS data
of CuLTO, which suggests that Cu2+ is present as bulk species rather than surface ones, as
copper has a weak XPS signal (discussed later in the manuscript). In the case of the CuLTO-
500C sample, a higher H2 consumption value was observed for the copper localized on the
surface, accompanied by a slight decrease in the H2 uptake owing to the interlayer species.
For the CuLTO-800R solid, only 66.58 µmoles·g−1 of H2 consumption was calculated for the
copper localized into perovskite-like layers. This observation indicates that the reduction
process enhanced the migration of interlayer copper particles into highly dispersed surface
Cu+/Cu0. The Cu+/Cu0 redox couple facilitates the separation of photogenerated carriers,
thus improving the photocatalytic reaction [55].
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Table 3. H2 consumptions in H2-TPR experiments.

Catalyst

H2 Consumption (µmoles·g−1)
Total H2 Consumption

(µmoles·g−1)
Cu from Surface Cu from Interlayer

Cu2+/Cu+ Cu+/Cu0 Cu2+/Cu0

CuLTO 11.64 44.25 662.16 718.05
CuLTO-500C 149.92 140.88 466.61 757.41
CuLTO-800R 91.37 88.54 66.58 246.49

Figure S2 shows the schematic copper species distribution on the surface and into
the interlayer of the modified catalysts. Doubtless, in the CuLTO photocatalyst, most of
the copper is localized between the galleries, and only a small amount of Cu remains on
the catalyst surface. This observation is associated with TG analysis (Figure 3D), which
shows that an interlayered [Cu-amine] complex formed in the above-stated sample. When
CuLTO was air-calcined at 500 ◦C, copper species were located both on the surface and
interlayer galleries. Indeed, the XRD pattern (Figure 1) validates the appearance of sup-
plementary CuOx reflexions in CuLTO-500C. For the CuLTO-800R sample, the H2-TPR
study certifies that most of the copper species are emplaced on the catalyst surface, and
only a small amount of copper remained in the perovskite layers. Based on these results, a
few conclusions are necessary. Between the perovskite galleries, the metal-amine complex
bridges the oxygen from the [TaO6] octahedra. It may be possible that between the layers,
there is also Cu2+ that comes from the Cu(LaTa2O7)2 crystalline phase. After the calcination
process, the decomposition of Cu(LaTa2O7)2 to CuOx occurs, which migrates onto the
catalyst surface. During this process, the decomposition of the [Cu-amine] complex from
the interlayer also takes place. When the material is thermally treated at 800 ◦C in slightly
reducing conditions, a higher migration of copper on the catalyst surface occurs.

2.6. XPS Measurements

X-ray photoelectron spectroscopy (XPS) analysis was carried out to further investi-
gate the oxidation state and chemical composition of the newly assembled architectures.
Figure 11A shows the XPS spectra of the Cu 2p3/2 emission line for the CuLTO, CuLTO-
500C, and CuLTO-800R solids. The C 1 s, O 1 s, La 3 d, and Ta 4 f emission lines of the Cu-
modified layered perovskites are given in the supporting information, Figures S3 and S4.

The photoelectron profile of the Cu 2p3/2 region for the CuLTO fresh solid was very
weak. In fact, the H2-TPR results confirmed that most of the Cu entities are located in the
interlayer position for this sample, while the penetration depth for XPS detection is only
several nanometers. Notice that the butylamine covered the surface of the above-mentioned
sample. This is the reason no detectable copper peak can be observed on its XPS spectra. In
CuLTO-500C material, there is a peak at a binding energy of 933.6 eV and a weak shake-up
satellite at 943.6 eV. According to literature reports, the binding energy (BE) of Cu 2p3/2

related to Cu2+ ions ranges between 932.8–933.6 eV (with shake-up satellite features at
940–945 eV) [56,57]. The obtained spectra agree with the literature data, confirming the
presence of Cu2+ as a major species in the CuLTO-500C solid. After the treatment of
CuLTO at 800 ◦C in a reductive atmosphere, the peak for Cu2+ disappeared, and one single
peak at 932.8 eV was detected. The results reveal that in the CuLTO-800R solid, copper
predominantly existed as Cu+ and Cu0 species. In line with TPR studies, the reducing
conditions lead to a migration of Cu2+ from the interlayer space towards the surface of the
catalyst in the form of Cu+ and metallic copper.
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Figure 11. (A) XPS spectra for the Cu2p3/2 emission line of (a) CuLTO, (b) CuLTO-500C, and
(c) CuLTO-800R materials, and (B) valence band of unmodified RbLTO and Cu-modified perovskites.

The valence band (VB) spectra of the RbLTO, CuLTO, CuLTO-500C, and CuLTO-800R
layered materials were also investigated by the XPS technique (Figure 11B). The VB values
of the four samples were obtained by the linear extrapolation of the leading edge to the
extended baseline of the VB spectra. Undeniably, copper insertion into the perovskite
layered structures leads to the narrowing of the valence band compared to unmodified
RbLTO material.

The band gap energy values derived from the UV–Vis, XPS, and photocurrent spec-
troscopies were compared in Figure 12. The Eg calculated by the three experimental tech-
niques undoubtedly proves that copper intercalation into perovskite layers induces a red
band-gap shift.
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3. Evaluation of Photocatalytic Activity

The physical features of the synthesized layered perovskites are expected to show
different photocatalytic behavior. With this aim, the photodegradation of phenol (Ph) under
simulated solar irradiation over the RbLTO, HLTO, CuLTO, CuLTO-500C, and CuLTO-800R
photocatalysts was investigated as a model reaction. Table 4 gives the conversion of phenol
after 4 h of reaction and the specific surface area over the studied photocatalysts.

Table 4. Photocatalytic results of the tested photocatalysts.

Photocatalyst Phenol Conversion (%) 1 SSA (m2·g−1)

RbLTO 7.6 1.5
HLTO 8.5 2.6
CuLTO 13.0 4.1

CuLTO-500C 14.9 4.9
CuLTO-800R 16.6 3.4

1 Phenol conversion after 4 h of reaction time (experimental conditions: 110 mL of 50 mg·L−1 phenol aqueous
solution, 0.05 g catalyst, T = 18 ◦C, light source AM 1.5).

The conversion of phenol over an unmodified RbLTO photocatalyst was about 7.6%
after 4 h of light irradiation. After Rb+ replacement by H+, the catalytic performance
increased, reaching 8.5% of phenol conversion for the HLTO photocatalyst. The insertion
of Cu2+ ions in between the [LaTa2O7]− slabs influenced the phenol conversion and its
selectivity. The CuLTO photocatalyst improves its activity up to 13.0% phenol conversion
after 4 h of reaction time. Additionally, the copper spacer has a beneficial role in the layered
perovskite structure by (a) increasing its specific surface area from 1.5 m2·g−1 for the RbLTO
host up to 4.1 m2·g−1 for CuLTO and (b) enhancing the photocatalytic performance for
phenol photodegradation. The different thermal treatments applied to the CuLTO fresh
solid determine distinct behavior for the photodegradation of phenol. Accordingly, the
air-calcination of the CuLTO-500C catalyst led to an increase in phenol conversion by up
to 14.9%. On the other hand, the reduced CuLTO-800R catalyst determines the highest
conversion of phenol (16.6%) among all studied photocatalysts.

The photocatalytic reaction follows pseudo-first-order kinetics according to the equa-
tion ln (C/C0) = −kt, where C and C0 designate the phenol concentration at time 0 and
time t, and k is the apparent rate constant. Figure 13A shows the plot of ln (C0/C) versus
the irradiation time for the photocatalytic degradation of phenol over the subjected cat-
alysts. The order of the apparent rate constant k values after 1 h of reaction (Figure 13B)
follows the sequence: RbLTO (0.032 min−1) < HLTO (0.063 min−1) < CuLTO (0.091 min−1)
< CuLTO-500C (0.111 min−1) < CuLTO-800R (0.133 min−1). These results demonstrate that
the introduction of a copper spacer promotes an increase in the reaction rate. The enhanced
activity of CuLTO-800R compared to the RbLTO host was favored by its narrow band gap
(3.16 eV), as determined from UV–Vis, XPS, and photocurrent spectroscopies. Additionally,
the H2-TPR and XPS measurements confirmed the presence of a Cu+/Cu0 redox couple
localized on the CuLTO-800R catalyst surface, which is responsible for its higher activity.

Very interesting results were perceived for the distribution of the reaction products
shown in Figure 13C. Therefore, hydroquinone (HQ) and 1,2-dihydroxybenzene (1,2-
DHBZ) were identified as major intermediate products over the RbLTO, HLTO, and CuLTO
photocatalysts. Contrarily, both CuLTO-500C and CuLTO-800R photocatalysts lead to the
formation of benzoquinone (BQ) as a product intermediate. These results imply that the
reaction mechanism is distinct in the Cu-intercalated layered perovskites. Figure 13D shows
the catalytic efficiency of phenol mineralization over the RbLTO, HLTO, CuLTO, CuLTO-
500C, and CuLTO-800R studied catalysts. The enhanced Cu-modified photocatalysts’
activity compared to the RbLTO host is attributed to a better charge separation at the
layer/modified interfaces and improved light harvesting ability due to band-gap shrinking.
Notice that the CuLTO-800R solid was the most effective photocatalyst regarding the
efficiency of phenol mineralization, with 2.82 µmoles·h−1 of CO2 and 1.78 µmoles·h−1 of
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H2, respectively. The stability/reusability tests were performed with the catalyst displaying
the best performances for the degradation of phenol under identical reaction conditions.
The catalyst was recovered after centrifugation, dried, and used for the next run. After
three cycling processes (Figure 13E), the degradation efficiency of phenol over CuLTO-800R
remained satisfactory. In order to understand the morphological evolution of CuLTO-
800R after three photocatalytic runs, SEM and TEM analyses were carried out (Figure S5).
Morphological investigation revealed no significant change in the shape of the spent
CuLTO-800R catalyst after the reusability test. The good stability of the CuLTO-800R
material may be attributed to the more homogeneous dispersion of the Cu atoms within
the [LaTa2O7]− network. These observations demonstrate the long-term stability of the
CuLTO-800R material.
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Figure 13. Graphical representation of the (A) pseudo-first-order kinetic plot on photodegrada-
tion of phenol, (B) apparent rate constant k (in min−1), (C) the product selectivity at the end
of the reaction, (D) the catalytic efficiency of phenol mineralization, and (E) the stability of the
CuLTO-800R photocatalyst.
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The benefit of copper ion insertion was relevant for the Cu-modified photocatalysts,
where the specific surface area (SSA) of CuLTO was 4.1 m2·g−1 (Table 4). This value is
about three times larger than that of the RbLaTa2O7 host (1.5 m2·g−1). Both thermally
treated photocatalysts displayed higher SSA against the perovskite host with values of
4.9 m2·g−1 for CuLTO-500C and 3.4 m2·g−1 for CuLTO-800R, respectively. Doubtless, the
insertion of various spacers into a layered compound provides original routes for tuning
the physicochemical properties of the newly obtained materials.

In order to understand the mechanism, reactive oxygen species (ROS) generation
under simulated solar irradiation was investigated according to the previously reported
procedure [58]. Figure 14 displays the photogeneration of (A) a hydroxyl radical and
(B) a superoxide anion over the CuLTO, CuLTO-500C, and CuLTO-800R photocatalysts.
The hydroxyl radical (•OH) occurrence was evaluated based on photoluminescence (PL)
emission peaking around 450 nm due to the umbelliferone formation, a coumarine deriva-
tive product obtained in the presence of photogenerated hydroxyl radicals. Figure 14A is
indicative of the lack of •OH in the investigated photocatalytic systems, with no significant
peaks being perceived around 450 nm. The superoxide anion (•O2

−) formation under
the simulated solar irradiation was evaluated from its interaction with XTT sodium salt,
resulting in formazan production, with a characteristic peak appearing in the UV–Vis
spectra. According to Figure 14B, only the CuLTO catalyst proves to generate •O2

−. For
the aforementioned sample, a broad band ranging from 420 to 550 nm arises after 20 min
of irradiation.
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Figure 14. Photogeneration of (A) hydroxyl radical (•OH) and (B) superoxide anion (•O2
−) over the

CuLTO, CuLTO-500C, and CuLTO-800R photocatalysts.
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Correlating ROS generation with photocatalytic activity, it is concluded that the re-
action mechanism involves the generation of photoinduced electron-hole pairs. For the
CuLTO catalysts, the superoxide anion (•O2

−) consumes the electrons (e−) generated by
irradiation, decreasing the photocatalytic activity. The reaction mechanism of the CuLTO-
500C and CuLTO-800R photocatalysts is also produced through e−/h+, but the absence
of •O2

− is beneficial for the reaction of mineralization. A possible reaction mechanism of
Cu-modified perovskites is advanced in Figure 15A.
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Figure 15. Schematic representation of (A) phenol photocatalytic pathways over Cu-intercalated
perovskites, and (B) possible electronic structures of unmodified RbLaTa2O7 and Cu(LaTa2O7)2-
modified perovskites.

The photocatalytic degradation of phenol under simulated solar irradiation is an
effective example of the degradation of persistent water contaminants [59]. Due to its
abundance and low cost, copper is an affordable alternative to expensive noble metals
(Au, Ag), widely used in various applications. The p-type CuOx possesses remarkable
properties such as catalytic and antibacterial activities, optoelectronic properties, and
high stability [60]. Further, perovskite with a layered structure, such as Bi2WO6, [61,62]
demonstrated excellent activity in the mineralization of pollutants under light irradiation
due to the transfer of electrons to the surface of the photocatalyst along the layered network.
The recombination of charge carriers in such perovskites was depressed by the electron
transfer to the layered host.

The advantages of the proposed Cu-modified layered perovskites can be envisaged
as a “nanoreactor” where the reactant is confined within a layered perovskite structure in
a restricted area, limiting the migration and recombination of photogenerated carriers.
From the perspective of the electronic structure of the RbLaTa2O7 perovskite, its valence
band (VB) is composed of O 2p orbitals, while the Ta 5d orbitals occupy the conduction
band (CB). The Rb and La cations do not directly contribute to a band formation and
solely build up the crystal structure of the perovskite. The symmetry of the metal-oxygen
octahedral/tetrahedral coordination and the VB and CB structures also play crucial roles
in determining the photocatalytic activity [63]. A successful approach to raise the valence
band and decrease the band-gap size of the mixed oxides is to combine the elements with
d10 (i.e., Cu+, Ag+) and d0 (i.e., Nb5+, Ta5+) electron configurations. In these compounds, the
band-gap excitations take place from a metal-to-metal charge transfer (MMCT) transition
between electron-donating d10 and electron-accepting d0 configurations [64]. As an example,
Cu5Ta11O30 and Cu3Ta7O19 perovskites displayed a narrower band gap compared to
unmodified layered oxides due to an MMCT between the Cu 3d and Ta 5d orbitals [65].
Zhang et al. [66] proposed a practical strategy to fine-tune the energy band structure of
new oxynitrides by forming solid solutions between two perovskite-type materials. These
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authors reported that the VB of the synthesized materials was formed by N 2p with minor
O 2p, while the CB was composed of Ti 3d in the majority and O 2p, La 5d, and N 2p in
the minority. Jiang and co-workers [67] found that the electronic structure of γ-Cu3V2O8
consisted of O 2p states while the bonding Cu 3d and V 3d states were observed to lie
deeper within the valence band. The CB was found to be dominated by unoccupied Cu 3d
orbitals, with V 3d states residing at higher energies.

When comparing our results with the findings in prior studies, a similar conclu-
sion was reached. Here, it is postulated that the insertion of a copper spacer modifies
the valence band of Cu-based photocatalysts. The narrow band gap of Cu-intercalated
perovskites could be attributed to their valence band consisting of a Cu 3d and O 2p
orbitals mixture. A possible electronic structure of the RbLaTa2O7 host and its modified
Cu(LaTa2O7)2 perovskite are proposed in Figure 15B. The current literature on the photocat-
alytic degradation of phenol admitted that during the reaction, hydroquinone, catechol, and
p-benzoquinone are identified as major intermediates. Other reaction intermediate prod-
ucts (chloro-hydroquinone, 4-chlorocatechol, and resorcinol) can eventually be converted
into acetylene, maleic acid, CO, and CO2. Different mechanisms have been proposed for the
photodegradation of organic pollutants, where the hydroxyl radical (•OH), the superoxide
radical (•O2

−), and the hole (h+) are reviewed as the main reactive species [68]. Trapping
experiments carried out on a phosphorus-doped carbon-supported Cu2O composite [69]
indicated that the •O2

− radical was the major active species, while the hydroxyl radical
played a minor role in the phenol photodegradation. Therefore, the intercalation of copper
between the interlayer spaces of perovskite will serve as a promoter for charge separation
between electrons and holes, leading to enhancements in the photocatalytic degradation of
pollutants. This study shows the great versatility of RbLaTa-based layered perovskite for
producing assembled materials with different properties by only controlling the spacer.

4. Materials and Methods
4.1. Synthesis of Catalytic Materials

Preparation of RbLaTa2O7 layered perovskite host. RbLaTa2O7 powder was synthesized
by the solid-state route as reported in a previous paper [70]. The stoichiometric amounts
of Rb2CO3, La2O3, and Ta2O5 with a 50% molar excess of Rb2CO3 were treated in an air
atmosphere at 1200 ◦C for 18 h with one intermediate grinding. The obtained white solid
was washed with water and air-dried at 110 ◦C overnight. This sample was designated
as RbLTO.

Preparation of HLaTa2O7 protonated perovskite. In a typical proton exchange reaction,
the starting layered perovskite (1 g) was dispersed in an aqueous solution of 3M HNO3
(100 mL) and stirred at room temperature for one week, with the daily renewal of the acid
solution according to ref. [71]. This solid was labeled as HLTO.

Amine-intercalated layered perovskite. In order to intercalate copper species in between
interlayers of the perovskite, the expansion of its interlamellar gallery is needed. Therefore,
the HLaTa2O7 protonated layered perovskite (0.5 g) was dispersed in a 30 mL n-butylamine
(BuA)-water mixture (1/1, v/v) and heated at 70 ◦C for 24 h. The white suspension was
filtered, washed with acetone and water, and then air-dried at 110 ◦C overnight. The
obtained solid was designated as BuALTO.

Assembling of Cu(LaTa2O7)2 novel architecture. For the copper intercalation procedure,
the amine-treated powder (0.2 g) was dispersed in an aqueous solution of Cu(NO3)2·4H2O
(100 mL, 0.057 M) and kept at 80 ◦C for 60 h. The resultant mixture was washed with water
and air-dried overnight at 110 ◦C. This solid was designated as CuLTO.

To further investigate the nature and localization of the copper spacer in the novel
layered architecture, the CuLTO fresh solid was subjected to different thermal treatments,
as follows: (i) calcination in an air atmosphere at 500 ◦C for 2 h (sample labeled as CuLTO-
500C) and (ii) reduction at 800 ◦C in a 5% H2/Ar atmosphere for 2 h (sample denoted as
CuLTO-800R).
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4.2. Characterization of Photocatalysts

The RbLaTa2O7 original layered perovskite and its corresponding intercalated-guest
spacers were characterized by various techniques. X-ray diffraction (XRD) patterns were
obtained on a Rigaku Corporation Ultima IV diffractometer, Tokyo, Japan (monochro-
matized Cu Kα (λ = 0.15418 nm). The average crystallite size was calculated using the
Debye-Scherrer equation. The X-ray photoelectron microscopy (XPS) experiments were
carried out on a SPECS spectrometer, Berlin, Germany with a PHOIBOS 150 analyzer,
using non-monochromatic Al Kα radiation (1486.7 eV). The charge compensation was
realized by a flood gun of Specs FG15/40 type. The acquisition was operated at a pass
energy of 20 eV for the individual spectral lines and 50 eV for the extended spectra. SEM
pictures were collected with a high-resolution microscope, an FEI Quanta3D FEG device,
Brno, Czech Republic, at an accelerating voltage of 5 kV, in high-vacuum mode with an
Everhart-Thornley secondary electron (SE) detector coupled with EDX (energy dispersive
X-ray) analysis. TEM micrographs were obtained ona JEM-1400 apparatus, (JEOL Ltd.,
Tokyo, Japan) operated at 100 kV. The Rb leaching during the protonation step was checked
by ion chromatography (Dionex ICS 900, Sunnyvale, CA, USA) through the dosing of Rb+

cations. Nitrogen BET-specific surface areas were measured at 77 K with a Micromeritics
ASAP 2020 instrument, Norcross, GA, USA. Thermo-differential analyses (TG/DTA/DTG)
were recorded with Mettler Toledo TGA/SDTA 851e apparatus (Greifensee, Switzerland)
in an air atmosphere using an alumina crucible between 25–1000 ◦C at a heating rate of
10 ◦C·min−1. Infrared spectra were obtained in transmission mode using a JASCO spec-
trophotometer, Tokyo, Japan. UV–Vis spectra were acquired on a Perkin Elmer Lambda
35 spectrophotometer, Shelton, CT, USA equipped with an integrating sphere. The re-
flectance was converted to absorption using the Kubelka-Munk function. The optical band
gap of the samples was calculated according to the formula, Eg (eV) = 1240/λ (wave-
length in nm). The temperature-programmed reduction measurements (H2-TPR) were
performed using a CHEMBET-3000 Quantachrome Instrument, Boynton Beach, FL, USA
equipped with a thermal conductivity detector (TCD). In a typical experiment, the fresh
sample (0.050 g) was heated up to 800 ◦C at the constant rate of 10 ◦C·min−1 of the 5 vol.%
H2/Ar reduction gas and a flow rate of 70 mL·min−1. The hydrogen consumption was
estimated from the area of the recorded peaks. The calibration of the TCD signal was
performed by injecting a known quantity of hydrogen (typically 50 µL) into the carrier
gas (Ar). The experimentally obtained peak surface (mV·s) was thus converted into mi-
cromoles of hydrogen. The photoelectrochemical measurements were carried out in an
electrochemical cell equipped with a quartz window using a three-electrode configuration.
All measurements were performed on a Zahner IM6 potentiostat, Zahner-Elektrik GmbH,
Kronach-Gundelsdorf, Germany. A deaerated solution of 0.1 M Na2SO4 was used as an
electrolyte. The counter electrode was a high-surface Pt wire, and the reference electrode
was Ag/AgCl. The working electrode (geometric area of ~3.5 cm2) was prepared by the
deposition of the interest powder (0.010 g) onto the transparent conductive (TCO) glass
(Solaronix, Aubonne, Switzerland). Linear sweep voltammetry (LSV) was carried out at a
10 mV/s rate under chopped AM 1.5 simulated solar light (Peccell-L01, Yokohama, Japan).

4.3. Photocatalytic Degradation of Phenol under Simulated Solar Irradiation

Photocatalytic test. The photocatalytic degradation experiments were performed in a
batch photoreactor thermostated at 18 ◦C (Scheme 2). The AM 1.5 light beam was provided
by a solar light simulator (Peccell-L01, Yokohama, Japan) equipped with a 150 W short-arc
Xe lamp (1000·W·m−2). The photocatalyst powder (0.05 g) was suspended in 110 mL of
50 mg·L−1 aqueous phenol solution. During tests, the Ar carrier gas (10 mL·min−1) was
continuously purged into the reaction solution and passed through a refrigerant cooled to
−5 ◦C. This cooler helped to remove the liquid vapors from entering the GC equipment.
The photoreactor was provided with a quartz window of 4.5 × 4.5 cm2 for light irradiation.
Prior to each experiment, the suspension was kept in dark conditions for 30 min under
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stirring to attain the adsorption-desorption equilibrium. Subsequently, the reaction vessel
was exposed to simulated solar light for 4 h of reaction time.
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Scheme 2. Schematic diagram of the experimental setup used for the photocatalytic degradation of
phenol under simulated solar light.

Analytical methods. Phenol and intermediate ring compounds (i.e., hydroquinone,
benzoquinone, 1,2-dihydroxibenzene) were identified and quantified by high-performance
liquid chromatography (HPLC) (Waters, Alliance e2659, Milford, MA, USA) equipped with
a UV–Vis detector (Waters, model 2489) (λ = 273 nm) and a Kromasil 100 5-C18 column.
Aliquots of 2 mL of the reaction mixture were collected at 30 min time intervals, filtered
through 0.22 µm Q-Max membrane filter, and analyzed by HPLC. The mobile phase was a
mixture of Milli-Q water and methanol (50/50, v/v) applied in the isocratic elution program.
The flow rate of the mobile phase was 1 mL·min−1, and the injection volume was set to
2 µL. The evolved gases were analyzed every 30 min using online gas chromatography
(Buck Scientific, Norwalk, CT, USA) equipped with a TCD detector. The H2 and O2 were
separated and quantified on Molecular Sieve 5 Å, whereas CO2 was on the Haysep column.

Reactive oxygen species (ROS) generation. For the hydroxyl radical (•OH) trapping,
an amount of 0.001 g catalyst was suspended in 10 mM coumarin (Merck, Darmstadt,
Germany) solution and exposed to simulated solar irradiation (Peccel-L01 Solar Simulator,
Yokohama, Japan). The formation of a fluorescent product from coumarin interaction with
the photogenerated hydroxyl radicals is investigated with a Carry Eclipse fluorescence
spectrometer (Agilent Technologies, Santa Clara, CA, USA) for λexc = 330 nm. Superoxide
anion (•O2

−) monitoring was performed by suspending 0.003 g of catalyst in a 3 mM
solution of 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT
sodium salt). The XTT formazan appears as a result of XTT interaction with the pho-
togenerated •O2

− and generates a broad peak around 470 nm depicted with a UV–Vis
spectrophotometer (Analytik Jena Specord 200 Plus, Jena, Germany).

5. Conclusions

A multi-step ion-exchange methodology has been exploited by exchanging Rb+ with
a much smaller Cu2+ spacer in the RbLaTa2O7 host to achieve photocatalysts capable of
wastewater depollution. The XRD patterns revealed that the interlayer distance of the
lamellar perovskites was spacer-related. The UV-Vis, XPS, and photocurrent spectroscopies
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demonstrated band-gap narrowing after copper intercalation. The H2-TPR results indicated
that the Cu species located on the surface were reduced at a lower temperature while those
from the interlayer occurred at higher temperature ranges. Cu-modified layered perovskites
exhibited enhanced photocatalytic activity compared to the RbLaTa2O7 host. Experiments
proved that the reaction mechanism over Cu-intercalated perovskites was produced via the
generation of photoinduced e−/h+ pairs. The superior photocatalytic activity of CuLTO-
800R was attributed to its narrow band gap and photogenerated-carriers separation. Cu-
based architectures are promising materials because of their stable perovskite-like slabs
and flexible interlayer galleries that facilitate modification.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12121529/s1. Figure S1: FTIR spectra of neat n-butylamine;
Figure S2: Copper species distribution in CuLTO, CuLTO-500C, and CuLTO-800R catalysts;
Figure S3: XPS spectra of (a) RbLTO, (b) CuLTO, (c) CuLTO-500C, and (d) CuLTO-800R lay-
ered architectures for C 1s and O 1s emission lines; Figure S4: XPS spectra of (a) RbLTO, (b) CuLTO,
(c) CuLTO-500C, and (d) CuLTO-800R layered architectures for La 3d and Ta 4f emission lines;
Figure S5: (A) SEM and (B) TEM images of CuLTO-800R photocatalyst after the stability/reusability
test; Table S1: Mass loss at different steps of TG curves of all layered perovskite materials. Refer-
ences [32,71,72] are cited in the supplementary materials.
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