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Abstract: Rational design and construction of cost–effective electrocatalysts for efficient hydrogen
production has attracted extensive research attention worldwide. Herein, we report the construction
of a transition metal selenide/carbon composite catalyst featuring uniform NiSe nanoparticles
anchored to single Ni atom doped porous carbon structure (NiSe/Ni–N–C) via a facile one–pot
pyrolysis of low–cost solid mixtures. NiSe/Ni–N–C exhibits remarkable catalytic performance
towards hydrogen evolution reaction (HER) in 1.0 M KOH, requiring a low overpotential of 146 mV
to reach a current density of 10 mA cm−2. The unique carbon layer encapsulation derived from the
enwrapping of fluid catalytic cracking slurry further renders NiSe/Ni–N–C excellent for long–term
durability in electrolyte corrosion and nanostructure aggregation. This work paves the way for the
design and synthesis of highly efficient composite HER electrocatalysts.

Keywords: NiSe nanoparticle; single atom catalyst; interfacial electronic engineering; hydrogen
evolution reaction

1. Introduction

The exploitation and combustion of conventional fossil energy sources has brought
about the overwhelming global warming and energy crisis [1,2]. Therefore, it is of urgent
demand to develop clean and sustainable alternatives. Among them, hydrogen is widely
regarded as the “ultimate power” due to its high energy density, large reserves on Earth,
and complete cleanness due to the only combustion product being water [3–5]. At the
current stage, the industrial mass production of hydrogen is still dominated by steam
reforming, leading to inevitable carbon emission and deteriorated purity [6]. In comparison,
hydrogen evolution from electrocatalytic water splitting emerges as a promising strategy to
produce high–purity hydrogen in an environmental–friendly manner [7–10]. Until now, the
benchmark electrocatalysts for the two half reactions, namely hydrogen evolution reaction
(HER) and oxygen evolution reaction (OER), have been platinum group materials and
ruthenium/iridium oxides [11–13]. However, high cost and limited supply dramatically
hinders the widespread application of these noble metal electrocatalysts.

Transition metal selenides (TMSes) have been widely researched as promising HER
electrocatalyst alternatives to Pt group materials [14–16]. Specifically, compared to other
natural and abundant transition–metal–based catalysts, the more metal–like selenium
atoms endow TMSes with good electrical conductivity [17]. Moreover, TMSes also have
the advantages of simple preparation, superior catalytic activity, and excellent stability.
However, two major drawbacks dramatically hinder the practical application of TMSes:
(1) TMSes are usually located on the right side of the volcano plot, with too weak interaction
with H* (Gibbs free energy of hydrogen adsorption ∆GH* > 0) [18], indicating inferior
catalytic activity for intrinsic bulk TMSes. (2) The catalytic performance of TMSes degrades
rapidly during long–time electrocatalysis due to severe electrochemical corrosion [19].

To address these issues, various strategies have been developed. The construction
of nanostructured TMSes was reported to not only significantly improve the exposure
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of active sites, but also effectively tune the electronic structures compared to the bulk
counterpart [19,20]. In addition, due to the quantum confinement effects, the bandgap
of TMSes gradually transforms from indirect to direct, leading to higher conductivity
of nanosized materials [14]. For instance, uniform sea urchin–like NiSe nanofiber was
synthesized with massive exposed electrochemical active surface area (ECSA), and the
constructed unique, loose, spiny structure further improved the HER activity with more
active catalytic surface structure [21]. Moreover, the highly porous NiSe2 nanosheets
prepared by selective etching and subsequent selenization of layered double hydroxide
exhibited superior HER activity in both acid and base, with abundant exposed surface area
and edge structures [22].

However, nanostructured TMSes tend to aggregate back to bulk phase to minimize
surface energy, leading to significant degradation of active sites and catalytic activity.
Therefore, to improve the long–term stability of TMSes during long–term electrocatalysis,
compositing with carbon backbone has been reported to be an effective strategy. On one
hand, the encapsulation of carbon layers mitigates the re–aggregation of nanostructures,
thus maintaining the morphology integrity [23,24]. On the other hand, the chemically inert
carbon isolates the active sites from the corrosion of the electrolytes [25,26]. Moreover,
the highly conductive carbon framework also acts as the electron collector for promoted
electron dissipation and transfer [20,27]. With deliberate heteroatom doping, the carbon
backbone demonstrates dramatically improved intrinsic catalytic activities [28,29]. For the
past few years, the single atom catalyst (SAC) has emerged as a new type of carbon–based
electrocatalyst in which each heteroatom is separated anchored in the carbon backbone
to reach the maximum exposure and utilization of catalytic sites [30,31]. Yang et al. re-
ported [32] a highly efficient Pt–C3 HER electrocatalyst by trapping single Pt atoms in the
constructed single vacancies of carbon backbones. Furthermore, the synthesis of SACs
also involves the pyrolysis of precursors with the pre–chelated metal centers. For instance,
Fan et al. synthesized [33] atomically isolated nickel anchored graphitic carbon through
the pyrolysis of a Ni–based metal–organic framework. The N coordination stabilized the
single atomic sites and effectively regulated the electronic structure of the catalyst to realize
the remarkable HER performance. Nevertheless, while several TMSe/SAC composites
have been reported to show good catalytic activity, the interaction and charge transfer
at the heterostructure interface, as well as the synergistic effect between active sites, are
barely elaborated.

Graphitic carbon nitride (g–C3N4) is a novel two–dimensional material composed of
triazine rings and tri–s–triazine (heptazine) rings as its basic unit. The appropriate band
gap of 2.7 eV makes it a promising candidate in photocatalysis [34], and it has been reported
that C3N4–based nanostructures showed high activity towards various electrocatalysis [35].
In addition, C3N4 with a large specific area can be employed as the self–sacrificing template
for pore generation [36]. Meanwhile, C3N4 introduces abundant N heteroatoms into the
porous structure with the N–rich gas from self–decomposing [37].

Herein, we report the novel construction of a TMSe/SAC composite with single atomic
Ni doped carbon and the supported NiSe nanoparticle (NP) (NiSe/Ni–N–C) as efficient
HER electrocatalyst. The synthesis features facile one–pot pyrolysis of NiCl2·6H2O, 1,10–
phenanthroline, graphitic C3N4, selenium powder, and fluid catalytic cracking (FCC) slurry.
NiSe/Ni–N–C demonstrates good activity towards electrocatalytic HER in a 1.0 M KOH
electrolyte, with low overpotential of 146 mV to reach a current density of 10 mA cm−2. The
encapsulation of the carbon layer also ensures excellent long–term electrocatalytic stability.
Further investigation reveals the apparent charge transfer at the NiSe/Ni–N–C interface
to regulate the electronic structure of both active species, thus achieving the optimized H*
adsorption behavior. This work paves the way for the rational design and synthesis of
transition metal/carbon composite HER electrocatalyst for efficient hydrogen evolution.
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2. Results

The synthetic process of the catalyst is illustrated in Scheme 1. A facile one–pot con-
struction was developed to yield the targeting catalyst NiSe/Ni–N–C with the pyrolysis of
NiCl2, 1,10–phenanthroline, selenium powder, graphitic carbon nitride (C3N4), and FCC
slurry. The strong chelation of two adjacent N atoms of 1,10–phenaothroline formed stable
Ni–phenanthroline complex, generating Ni single atomic sites in the form of Ni–N4 after
pyrolysis [36,38]. The highly viscosity FCC slurry derived a thin carbon encapsulation
layer outside NiSe NPs, preventing electrolyte corrosion and particle agglomeration during
electrocatalysis. In addition, its aromatic–rich nature gives rise to a high degree of graphi-
tization after pyrolysis, which not only affords excellent protection of active species, but
also is reported to increase the loading of single atomic sites [39]. C3N4 served as both a
self–sacrificing template for pore generation and a N doping reagent with the decomposed
N–rich gases. Control samples NiSe/N–C, Ni–N–C, and NiSe were also synthesized with
similar conditions.
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Scheme 1. Graphical illustration of the one–pot synthetic procedure of NiSe/Ni–N–C.

The morphologies of materials were first characterized by scanning electron mi-
croscopy (SEM) and transmission electron microscopy (TEM). Typical wrinkled carbon thin
layers were observed for Ni–N–C without noticeable NPs after acid leaching (Figure 1a),
indicating homogeneous distribution of single atomic sites. As for NiSe/Ni–N–C and
NiSe/N–C, uniform NiSe NPs were located on the carbon matrix with even distribution
(Figures 1b and S1). High–resolution TEM images further revealed the average diameter
of ~100 nm of anchored NPs without aggregation (Figure 1c). In comparison, significant
aggregation and particle enlargement was observed at elevated pyrolysis temperatures
(Figure S2). In addition, a thin layer of carbon shell coated the outside of the NiSe with
a thickness of ~3 nm (Figure 1d), ascribable to the effective enwrapping of FCC slurry
during pyrolysis. Lattice fringe with d spacing of 0.277 nm matched the NiSe (101) crystal
plane well (Figure 1e). Energy dispersive X–ray spectroscopy (EDS) elemental mapping
demonstrated the even distribution of C and N signals in the carbon backbone, confirming
the successful doping of N heteroatoms (Figure 1f). Ni and Se signals corresponded to
the morphology of NiSe NPs. Moreover, additional Ni was also observed on the carbon
backbone, suggesting the construction of atomically distributed Ni sites.

The solid–state compositions of the materials were investigated by X–ray diffraction
(XRD). As shown in Figure 2a, Ni–N–C only demonstrated peaks corresponding to the
carbon backbone, confirming the atomic distribution of Ni instead of Ni NPs. In com-
parison, with the co–pyrolysis of Se powder, distinct reflexes emerged in the diffraction
pattern of NiSe/Ni–N–C, which matched standard NiSe (PDF#89–7160) very well. Raman
spectroscopy was applied to mainly gain insight into the carbon component (Figure 2b).
All synthesized materials showed the characteristic G band and D band, originating from
the ordered graphitic carbon backbone and disordered defect structures, respectively; thus,
the intensity ratio of D band over G band (ID/IG) is widely applied to evaluate the degree
of defect and edge in the carbon backbone [40]. Compared to that of NiSe/N–C (1.01),
ID/IG of Ni–N–C and NiSe/Ni–N–C increased to 1.06 and 1.04, respectively, indicating that
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the introduction of single atomic sites improved the defect level as well as the exposure
of active sites on the doped carbon framework. This result was also verified by the N2
uptake test. All three materials showed typical type–IV isotherms, indicating the existence
of hierarchical porous structures with microporosity and mesoporosity [41]. NiSe/Ni–N–C
and Ni–N–C demonstrated larger surface areas than that of NiSe/N–C (Figure S4). The hi-
erarchical porous structure with the existence of both micropores and mesopores facilitated
the ion diffusion and mass transfer. Pyrolytic temperatures indeed played an important role
in determining the properties of the materials. As shown in Figure S3, with the pyrolysis
temperature increased from 700 ◦C to 800 ◦C, the ID/IG value dropped significantly from
1.09 to 1.04. The large ID/IG of NiSe/Ni–N–C–700 implied a low degree of graphitization
with relatively high defect level and high impedance. The further increase of pyrolytic
temperature from 800 ◦C to 900 ◦C did not yield a significant decrease of the ID/IG value
(1.04 to 1.03), indicating complete graphitization at a pyrolysis temperature of 800 ◦C.
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To further study the chemical composition, X–ray photoelectron spectroscopy (XPS)
was carried out to investigate the electronic interaction as well as the charge transfer
between active species. As shown in Figure S5, C, N, O, Ni, Se signals were observed in
the spectrum of NiSe/Ni–N–C (Table S1). The deconvolution of C 1s profiles revealed the
nature of N–doped carbon backbones (Figure 2c). The N 1s peak also demonstrated the
characteristic corresponding peaks of graphitic N, pyrrolic N, and pyridinic N (Figure 2d).
More importantly, an additional peak was found at 398.9 eV, which could be assigned
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to the Ni–N configuration, confirming the construction of Ni–N–C single atomic sites in
carbon backbones [42]. The Ni 2p profile was deconvoluted into 4 peaks, corresponding
to the Ni 2p3/2, satellite peak of Ni 2p3/2, Ni 2p1/2, and the satellite peak of Ni 2p1/2 with
increasing binding energy (Figure 2e). Compared to the spectrum of the control sample
NiSe/N–C, all peaks of Ni shifted towards lower binding energy in NiSe/Ni–N–C. A
similar trend was also found for the Se 3d profiles (Figure 2f). These results suggested the
weakened Ni–Se bond strength resulted from the strong interactions between NiSe NPs
and a single atomic Ni [20,43,44]. We attributed this to the electron transfer from NiSe NPs
to the Ni–N–C backbone, leading to the balanced electron density between active sites and
thus dramatically improved catalytic activity.

The HER performance of the obtained NiSe/Ni–N–C electrocatalyst was thoroughly
evaluated with a standard three–electrode setup in 1.0 M KOH electrolyte. In comparison,
NiSe/N–C, Ni–N–C, and commercially available 10% Pt/C were also tested under the
same condition as the control samples. As shown in the linear sweep voltammetry (LSV)
curve (Figure 3a), NiSe/Ni–N–C showed a lower overpotential of 146 mV than that of
NiSe/N–C (178 mV) and Ni–N–C (210 mV) to reach a current density of 10 mA cm−2 (η10),
demonstrating the superiority of the synergistic effect between NiSe NPs and Ni single atom
sites. The Tafel slope derived from the LSV curves also showed a similar trend, as illustrated
in Figure 3b,c, indicating that hydrogen generation increased more rapidly with increasing
bias for NiSe/Ni–N–C. The LSV curves and corresponding Tafel plots of the samples during
the synthesis optimization were also demonstrated in SI. In terms of pyrolytic temperatures
(Figure S6a,b), pyrolysis at a lower temperature of 700 ◦C resulted in inferior conductivity,
while NiSe nanoparticles tended to aggregate at the high pyrolytic temperature of 900 ◦C.
Therefore, the optimized pyrolyzing temperature was determined to be 800 ◦C in order
to realize the highest catalytic activity. The ratio of FCC slurry/Ni salt also played an
important role in determining electrocatalytic performance. A certain amount of FCC slurry
was able to stabilize the optimized quantity of NiSe NPs. Insufficient Ni salt of 1.0 mmol
led to scarce NPs with a very thick carbon shell, while an excessive amount of NiSe tended
to aggregate into large particles with limited slurry enwrapping (Figure S6c,d). Cyclic
voltammetry (CV) was further investigated at various scan rates to evaluate the double–
layer capacitance (Cdl) (Figure S7), which is in direct proportion to the ECSA [45–47].
NiSe/Ni–N–C exhibited the highest Cdl of 33.28 mF cm−2 among all the synthesized
materials (Figure 3d). The corresponding dramatically higher ECSA of NiSe/Ni–N–C was
ascribed to the synergy of both the high intrinsic catalytic activity and the large surface
area of the Ni–N–C porous carbon backbone. In addition, NiSe/Ni–N–C demonstrated a
small charge transfer resistance in electrochemical impedance spectroscopy (EIS) with the
compositing and enwrapping of graphitic carbon framework (Figure 3e), thus ensuring
fast electron transport and utilization. Long–term durability during electrocatalytic cycles
is also a critical merit to evaluate the electrocatalyst. As shown in Figure 3f, no significant
alteration was observed in the LSV curve of NiSe/Ni–N–C after 2000 CV cycles. Moreover,
over 96% of the initial current density was retained after 12 h of continuous electrocatalysis
in the chronoamperometry test. In addition, no obvious morphology change was observed
for NiSe/Ni–N–C after continuous electrocatalysis with no nanoparticle aggregation or
falling off. Thus, excellent stability was achieved in NiSe/Ni–N–C, ascribable to the
effective protection from the carbon layer enwrapping. Overall, highly efficient HER
activity was achieved for NiSe/Ni–N–C with excellent long–term stability. NiSe/Ni–N–C
showed comparable or superior HER electrocatalytic performance compared to the other
recently reported TMSes/carbon compositing materials, as summarized in Table S2.
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3. Experimental Section
3.1. Materials

FCC slurry (Jinzhou refinery China; element analysis: C, 89.45%; H, 9.1%; Ni, 1.45%; V,
1.14%), NiCl2·6H2O (J&K Scientific, Beijing, China), selenium powder (Se, J&K Scientific,
Beijing, China), 1, 10–phenanthroline (C12H8N2, Sigma–Aldrich, Shanghai, China), Urea
(CH4N2O, Macklin, Shanghai, China), potassium hydroxide (KOH, Macklin, Shanghai,
China), Nafion solution (Aladdin, Shanghai, China), and 10 wt % platinum on carbon
(Aladdin, Shanghai, China). All reagents were used as received.

3.2. Synthesis of NiSe/Ni–N–C

In a typical synthesis process, 20 g of urea was first put into the covered crucible
and then annealed in an air atmosphere at 550 ◦C in the muffle furnace for 4 h with a
2.3 ◦C min−1 ramp rate. After cooling to room temperature, the C3N4 template was ob-
tained after being pulverized. The composite of C3N4@FCC slurry was then synthesized via
the condition reported in the literature [36], with the thin layer of FCC slurry enwrapping
the C3N4 template. A mixture of C3N4@FCC slurry (0.600 g) and NiCl2·6H2O (0.119 g,
0.5 mmol) was dispersed in 100 mL of ethanol and sonicated for 30 min to achieve a homo-
geneous suspension A1. Another mixture of 1, 10–phenanthroline (0.360 g, 2 mmol) and
NiCl2·6H2O (0.238 g, 1.0 mmol) was dissolved in 100 mL ethanol/H2O mixed solvent (9:1)
to achieve an orange solution A2. Subsequently, A1 and A2 were combined and stirred for
6 h, before the solvent was removed by rotary evaporation. The solid was pulverized and
mixed with Se powder (0.130 g, 1.65 mmol). Then the mixture was heated up to 800 ◦C
with 5 ◦C min−1 and maintained for 2 h with an Ar flow rate of 100 mL min−1 to achieve
NiSe/Ni–N–C. The excessive Se evaporated out with the gas flow. A comprehensive syn-
thesis optimization was also conducted. NiSe/Ni–N–C@700 and NiSe/Ni–N–C@900 were
synthesized at different pyrolysis temperatures of 700 and 900 ◦C, respectively. Materi-
als with different amounts of NiCl2·6H2O (0 mmol, 0.5 mmol, 1 mmol) in A1 were also
synthesized to achieve different ratios of NiSe to Ni single atom sites.

3.3. Synthesis of NiSe/N–C

The control material NiSe/N–C was synthesized with the same procedure by replacing
1, 10–phenanthroline with triphenylmethane (0.488 g, 2 mmol) in A2 to suppress the
formation of single atom sites.

3.4. Synthesis of Ni–N–C

A2 solution was prepared with the same procedure. The as–synthesized C3N4@FCC
was directly added into A2 and stirred for 6 h before the solvent was removed. The obtained
solid was heated up to 800 ◦C with 5 ◦C min−1 and maintained for 2 h with an Ar flow
rate of 100 mL min−1. Then, the powder was leached in 1.0 M H2SO4 for 6 h to completely
remove the Ni nanoparticles. Finally, it was dried in vacuo to yield Ni–N–C.

3.5. Materials Characterizations

The morphologies of samples were studied by scanning electron microscopy (SEM,
Quanta 200F, FEI company, Hillsboro, USA). Transmission electron microscopy (TEM) and
energy dispersive X–ray spectroscopy (EDS) were collected on Tecnai G2 F20 (FEI company,
Hillsboro, USA). The X–ray diffraction (XRD) patterns were characterized on Bruker D8
Advance with Cu Kα radiation. Raman spectra were collected by a Raman microscope
(532 nm, XploRA, Horiba–Jobin Yvon, Paris, France). X–ray photoelectron spectroscopy
(XPS, K-Alpha, Thermo Fisher Scientific, Waltham, USA) was characterized with Kα

radiation. The N2 adsorption isotherms were collected on Micromeritics ASAP 2020.

3.6. Electrochemical Measurements

The HER performance was evaluated with a standard three–electrode system on an
electrochemical workstation (CHI 760E). Working electrode: A mixture of 10 mg powder
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samples, 200 µL water, 360 µL ethanol, and 40 µL Nafion was ultrasonicated for 1 h, then
30 µL of dispersion was dropped on a piece of carbon cloth (1 cm × 0.5 cm) and dried at
60 ◦C for 1 h; Counter electrode: graphite rod; Reference electrode: Hg/HgO; Electrolyte:
1.0 M KOH.

Linear sweep voltammetry (LSV) of HER was measured from 0.3 V to −0.5 V vs.
reversible hydrogen electrode (RHE). Cyclic voltammogram (CV) was collected between
0.425 V and 0.625 V vs. RHE, and the scan rates varied from 50 mV s−1 to 500 mV s−1.
Electrochemical impedance spectroscopy (EIS) was tested at a constant bias of −0.15 V vs.
RHE within the range of 10−1 Hz to 105 Hz. The stabilities of the prepared catalysts were
evaluated by the chronopotentiometry tests at the corresponding potentials to drive an
initial current density of 10 mA cm−2.

4. Conclusions

A composite electrocatalyst NiSe/Ni–N–C was successfully designed and synthesized
via a facile one–pot pyrolysis of cost–effective precursors. The structure featured the single
Ni atom doped carbon and the enwrapped NiSe NPs. The detailed characterizations re-
vealed the apparent charge transfer at the NiSe and Ni–N–C interface, which balanced the
charge density on both active sites and enhanced the electrocatalytic hydrogen production.
NiSe/Ni–N–C demonstrated superior HER activities, requiring small overpotentials of
146 mV to drive a current density of 10 mA cm−2 in 1.0 M KOH. Moreover, with the
deliberate interfacial engineering and carbon encapsulation, both high catalytic activity
and remarkable durability were achieved for NiSe/Ni–N–C during long–term HER electro-
catalysis. We envision this work provides an effective yet facile strategy to construct novel
TMSe–based electrocatalysts for hydrogen evolution.
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