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Abstract: In this work, Ag2CO3 was prepared via a solution-based method and was further charac-
terized by XRD, Raman spectroscopy, SEM/EDS analysis, and UV-VIS spectroscopy. SEM results
revealed the formation of micro-sized particles with a rectangular shape. The photocatalytic activity
of the catalyst was evaluated in the degradation of 4-tert-butylphenol (4-t-BP) under simulated
solar light irradiation. The effects of 4-t-BP initial concentration (2.5–10 ppm), catalyst dosage
(100–300 mg/L), different types of lamp sources, and water matrix were investigated. Complete
4-t-BP (5 ppm) degradation was achieved after 60 min by Ag2CO3 (200 mg/L). The effect of anions
such as CO3

2−, HCO3
−, NO3

−, and Cl- in the concentration range of 100–300 mg/L was also studied.
CO3

2− promoted the photocatalytic degradation process, while HCO3
− and NO3

− exhibited an
inhibition effect, which was marked with increasing HCO3

− and NO3
− concentrations. The presence

of Cl− at the concentration of 100 mg/L increased 4-t-BP degradation, but higher concentrations
inhibited the photocatalytic reaction. Cyclic experiments showed that the catalyst practically retained
its catalytic activity toward 4-t-BP degradation after three successive experimental runs.

Keywords: 4-tert-butylphenol; degradation; heterogeneous photocatalysis; solar light

1. Introduction

4-tert-butylphenol (4-t-BP) is an important organic chemical that is extensively used as
an intermediate in the production of curing agents [1], phenolic, polycarbonate, and epoxy
resins, etc., but is also an endocrine disrupting compound (EDC) [2]. Recently, 4-t-BP has
been detected in water bodies from ng/L to µg/L, representing an environmental threat to
aquatic life and human health [3–8]. Therefore, it is of great importance to seek an effective
process to degrade 4-t-BP in water.

Several treatment technologies such as photochemical [9–11], physical [12], and bi-
ological [13] techniques have been investigated for the efficient elimination of 4-t-BP in
contaminated water. Among these, advanced oxidation processes (AOPs) are considered
promising to achieve a high degree of 4-t-BP degradation in an environmentally friendly
manner [14,15]. Table 1 lists several works regarding AOPs previously used to degrade
4-t-BP. Particularly, heterogeneous photocatalysis, based on the activation of a solid semi-
conductor with solar light [16–18], has received increasing attention and is considered as
an economically and environmentally viable method, since it applies an inexhaustible and
sustainable energy source. The sunlight provides abundant irradiation energy; most of
it is in the visible light range and only ~4% is ultraviolet light [19,20]. Thus, it is highly
desirable to develop a solar-light responsive catalyst.
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Table 1. Application of different AOPs for 4-t-BP degradation in recent years.

Processes
Initial Pollutant
Concentration

(mg/L)

Catalyst
Dosage (g/L)

Degradation
Time (min)

Degradation
Efficiency (%) Reference

1 Visible light/Bi4O5I2
nanoflakes 60 1 90 99.8 [11]

2

Visible
light/Bi12O17Cl2/β-Bi2O3

heterojunction
(Bi:Cl ratio 1:8)

60 1 90 97 [21]

3 UV(254 nm)/Fe-TiO2 30 1 60 92 [22]
4 Solar light/Ti2O3/TiO2 5 0.2 150 89.8 [23]
5 UV (365 nm)/Cu-Mo-TiO2 15 0.1 60 100 [24]

To date, many new solar light active catalysts have emerged to degrade EDCs in water, such
as metal and bimetal doped metal oxides [24], and binary and ternary composites [25–30].
Ag-based semiconductor materials like Ag2O [31,32], AgX (where X = Cl, Br, I) [33], etc.
have spawned great interest in photocatalysis because of their non-toxicity [34] and useful
photo-absorption ability, particularly in the visible light spectrum [35]. Among the Ag-
based photocatalytic materials, Ag2CO3 has a relatively narrow band gap of 2.3 eV [36],
while the bottom of its conduction band (CB) consists of hybridized Ag s-Ag s states
responsible for high dispersity, which in turn effectively hinders the recombination of
electrons and holes [37]. Several researchers have previously reported the photocatalytic
activity of Ag2CO3 prepared via different methods. Dai et al. used highly visible-light
responsive micro-sized Ag2CO3 for the degradation of rhodamine B (RhB) [36]. Porous
Ag2CO3 nanorods prepared using a one-pot aqueous solution method were also applied for
the degradation of RhB under visible light irradiation by Guo et al. [38]. In 2017, Lončarević
et al. [39] and Zhou et al. [40] reported the photodegradation of methylene blue by means
of Ag2CO3 nano-rods and nanoparticles. Recently, Petala et al. found that Ag2CO3 could
completely degrade ethyl paraben with possible carcinogenic activity at the concentration
of 0.5 mg/L after 120 min under solar light irradiation [37]. However, most of these studies
focused on the degradation of organic dyes, while the photocatalytic activity of Ag2CO3
toward the degradation of high estrogenic organic compounds is still under-researched. To
the best of our knowledge, there is no study published on the photocatalytic degradation
of 4-t-BP, which is a toxic and estrogenic compound, using Ag2CO3.

In this study, Ag2CO3 microparticles were prepared and employed for 4-t-BP degrada-
tion under solar light irradiation. The crystal phase and morphology were investigated
using X-ray diffraction analysis (XRD), Raman spectroscopy and Scanning electron mi-
croscopy (SEM). The influence of pollutant concentration, catalyst dosage, various light
sources and the presence of anions (Cl−, HCO3

− and CO3
2−) was investigated. Radi-

cal trapping experiments were performed to study the mechanism of the photocatalytic
degradation of 4-t-BP in Ag2CO3/solar light system.

2. Results and Discussion
2.1. Characterization

The phase purity and crystallographic structure of Ag2CO3 was investigated through
XRD analysis as displayed in Figure 1. The results reveal that Ag2CO3 was in the monoclinic
phase without impurities, corresponding to the JCPDS card No. 12-766 [37]. The character-
istic diffraction peaks at 18.55◦, 20.5◦, 32.56◦, 33.64◦, 37.04◦, 39.56◦, 41.73◦, and 44.32◦ were
attributed to the (020), (110), (−101), (−130), (200), (031), (220), and (131) planes, which
is in accordance with the standard XRD pattern of Ag2CO3 [41,42]. Raman spectroscopy
was applied in order to support the structural information obtained via XRD analysis. As
shown in Figure 2, two peaks at around 701 cm−1 and 1073 cm−1 were observed, which
corresponded to the characteristic Raman spectra of Ag2CO3 [43,44].
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Figure 2. Raman spectrum of Ag2CO3.

In order to study the morphology of Ag2CO3, SEM analysis was conducted. The
SEM image (Figure 3A) revealed that Ag2CO3 particles are micro-sized with a smooth
rectangular structure. The EDS spectrum of Ag2CO3 (Figure 3B) showed that Ag, C, and O
had an elemental distribution of 73.13 wt%, 6.74 wt%, and 20.13 wt%, respectively. At the
same time, the elemental mapping showed a homogeneous distribution of Ag, C, and O
elements (Figure 3C–F), confirming the purity of the Ag2CO3 phase. These findings are in
agreement with XRD and Raman measurements.
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Figure 3. (A) SEM image, (B) EDS spectrum, and (C–F) Elemental mapping of Ag2CO3.

The optical absorption properties of Ag2CO3 were examined using UV-VIS spec-
troscopy. Figure 4 shows that the catalyst had sufficient absorbance of light below 350 nm,
and in the ranges of 350–450 nm and 450–800 nm, suggesting that Ag2CO3 could be photo-
catalytically active under both UV and visible light as a result of the intrinsic absorption
band of Ag2CO3 [45]. The band gap estimated through Tauc plot of Ag2CO3 was found to
be 2.3 eV. These findings are in agreement with previous studies [46,47].
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2.2. Photocatalytic Activity of Ag2CO3
2.2.1. Effect of 4-t-BP Initial Concentration and Catalyst Dosage

4-t-BP was used as the target degradation compound to examine the solar photocat-
alytic activity of Ag2CO3. Figure 5A shows the effect of initial 4-t-BP concentration on
4-t-BP degradation. The degradation efficiency increased with the increase in pollutant
initial concentration from 2.5 ppm to 5 ppm, while it was remarkably decreased after
60 min, with a further increase of pollutant initial concentration to 7.5 and 10 ppm. Such
an observation implies a negative correlation between pollutant concentration and degra-
dation efficiency, and can be associated with the fact that more molecules of 4-t-BP would
compete to occupy limited reactive sites on the catalyst surface [48–50].
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Figure 5. (A) Effect of initial 4-t-BP concentration (catalyst dosage = 200 mg/L) and (B) Effect of
catalyst dosage ([4-t-BP]0 = 5 ppm) on the degradation of 4-t-BP under solar light.

To study the effect of Ag2CO3 on the degradation of 4-t-BP, different Ag2CO3 dosages
(100, 200, and 300 mg /L) were used. As shown in Figure 5B, only 6.3% of 4-t-BP was
degraded after 60 min in the absence of catalyst, indicating that 4-t-BP could not be
effectively degraded by solar light only. As expected, 4-t-BP degradation was enhanced
when the catalyst was added to the solution. The increase in catalyst dosage from 100 mg/L
to 300 mg/L led to the increase of the final degradation efficiency from 41.6% to 100%. This
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can be attributed to the existence of a higher amount of active sites, leading to significant
increase in the 4-t-BP degradation [51–53]. On the other hand, the degradation performance
of the catalyst was almost the same at the dosages of 200 mg/L and 300 mg/L after 60 min.
This could be explained by the reduction of light penetration because of the agglomeration
of catalyst microparticles [54,55]. Therefore, the dosage of 200 mg/L was used in the next
experimental runs.

The results obtained in this work are compared to selected previous works on the
use of Ag2CO3-based catalysts in the photodegradation of organic pollutants, in Table 2.
Most of the recent studies focused on the preparation of composites, including ternary
and quaternary, and their application under visible/solar light irradiation. Depending on
the pollutant, its initial concentration, catalyst dosage, and light source, the degradation
efficiency varies.

Table 2. The recent application of Ag2CO3-based catalysts for the degradation of organic compounds
in water, under light irradiation.

Catalyst Pollutant Light Source Degradation
Time (min)

Degradation
Efficiency (%) Reference

1 CaMg(CO3)2@Ag2CO3/Ag2S/NCQD phenol Simulated solar 100 96.5 [56]
2 Ag2O/Ag2CO3/MWNTs ciprofloxacin visible light 60 76 [41]
3 In2O3/Ag2CO3 S-scheme heterojunction levofloxacin visible light 90 86.1 [57]
4 Ag2CO3@Fe2O3/TiO2-NT phenol solar 240 96.2 [58]
5 g-C3N4/Ag2CO3/graphene oxide tetracycline visible 60 81.6 [59]
6 ZnO/Ag2CO3/Ag2O ibuprofen visible 480 99.3 [60]

7 Ag2CO3
microparticles 4-tert-butylphenol Simulated solar 60 100 this work

2.2.2. Effect of Lamp Type

Photocatalytic degradation of 4-t-BP by Ag2CO3 using a Mercury lamp (365 nm,
500 W) and a Xenon lamp (Xe, 300–600 nm, 500 W) was also conducted to compare results
with the solar light simulating Xenon lamp (100 W). As displayed in Figure 6, after 10 min,
the degradation efficiency of Ag2CO3 using the Xe lamp (300–600 nm) was higher than
for the solar light simulating lamp and Mercury lamp (365 nm), achieving 63.6% of 4-t-BP
degradation. The application of the Xe lamp (300–600 nm) led to an almost similar degra-
dation efficiency as that of the Mercury lamp (365 nm), though complete degradation of
4-t-BP was achieved only under the solar light simulating Xenon lamp (solar) after 60 min.
Such behavior could be associated with the wide range of light absorption of Ag2CO3,
showing concordance with the UV-VIS spectroscopy results of this study.

The energy cost of the photocatalytic process for the degradation of organic pollutants
is one of the most important aspects influencing the implementation of these technologies
at a larger scale. The energy consumption can be identified through the electrical energy
per order (EEo), and calculated according to the Equation (1):

EEo =
P × t× 1000

V× 60× log
(

Ci
C f

) (1)

where P is the power of the lamp (W); t is the photocatalytic reaction time (min); V is
the volume of the reactor (L); and Ci and Cf are the initial and final concentrations of
4-t-BP, respectively.

The calculated EEo value (Table 3) for the degradation of 4-t-BP, applying the Xe lamp
(solar) is 0.98 kWh m−3 order−1, which is significantly lower than the Hg lamp (365 nm)
and Xe lamp (300–600 nm), for which values 8–9 times higher are estimated.
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Table 3. EEO estimated for different type of lamps.

Light Source EEO (kW m−3 order−1)

Hg lamp (365 nm) 9.12
Xe lamp (300–600 nm) 8.29
Xe lamp (solar light) 0.98

2.2.3. Effect of Water Matrix

Natural water matrices consist of a great number of organic and inorganic substances
that can interfere with the target pollutant, either promoting or suppressing the efficiency of
the process [61,62]. Bottled water is a typical representative of water matrices and therefore
the photocatalytic efficiency of the Ag2CO3/solar system was also studied in commercially
available bottled water (BW). The properties of BW are presented in Table 4. As can be seen
from Figure 7, the degradation of 4-t-BP decreased during the first 40 min for BW, which
could be attributed to the water matrix complexity [61]. Therefore, additional experiments
were conducted to thoroughly investigate the hampering role of BW by adding anions like
CO2−

3 , HCO−3 , NO−3 , and Cl− in the range of of 100–300 mg/L.

Table 4. The properties of bottled water.

Properties Value

Conductivity 158.8 µS/cm
pH 7.2

Total organic carbon (TOC) 1.02 mg/L
Total inorganic carbon 16.72 mg/L

Na+ 1–15 mg/L
K+ 0–5 mg/L

Ca2+ 10–45 mg/L
Mg2+ 5–25 mg/L
HCO−3 50–200 mg/L

Cl− 3–35 mg/L
SO2−

4 1–30 mg/L
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As shown in Figure 8A, the presence of CO2−
3 enhanced the 4-t-BP degradation.

Increasing the concentration of CO2−
3 from 100 mg/L to 300 mg/L led to the improvement

of catalyst performance. Such behavior could be attributed to the generation of more
active species (CO•−3 ) in the reaction system (Equation (2)). Although CO•−3 has a lower
redox potential than that of OH• , it exhibits higher selectivity and longer survival time in
solution, resulting in fast 4-t-BP photocatalytic degradation in the reaction system [63,64].

OH• +CO2−
3 → CO•−3 + OH− (2)

As for HCO−3 and NO−3 (Figure 8B,C), the significant inhibition effect on the perfor-
mance of Ag2CO3 stems from the formation of less reactive radicals [65,66] (Equation (3))
and the consumption of photons, OH• and h+ by NO−3 [67] (Equations (4)–(6)). The most
pronounced inhibition effect of HCO•3 and NO•3 was observed with an increase of HCO−3
and NO−3 concentrations to 300 mg/L. The degradation efficiency of 4-t-BP decreased to
55.1% and 50.6% in the presence of HCO−3 and NO−3 , respectively.

HCO−3 +OH• → CO•−3 +H2O (3)

NO−3 +hν→ NO−2 O (4)

NO−2 +OH• → OH−+NO2 (5)

NO−3 +h+→ NO•3 (6)

The addition of 100 mg/L of Cl− had a positive effect on the degradation process
ascribed to the selectivity of chloride radicals [68], while a further increase in Cl− con-
centration inhibited the photocatalytic degradation of 4-t-BP (Figure 8D). This can be
associated with the generation of less oxidative species via the following reactions [69,70]
(Equations (7)–(14)):

Cl− +OH• → Cl•+OH− (7)

Cl− +OH• → ClOH•− (8)

ClOH•−+H+→ Cl•+H2O (9)

Cl•+Cl−→ Cl•−2 (10)

Cl•−2 +Cl•−2 → Cl2 +2Cl− (11)

Cl• + Cl•→ Cl2 (12)
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Cl2+H2O→ HOCl + HCl (13)

HOCl → H++ClO− (14)

To investigate the photocatalytic mechanism of Ag2CO3, radical quenching experi-
ments were performed using several scavengers, namely KI, IPA, and p-BQ to identify
the major active species (h+, OH•, and O•−2 ) responsible for the degradation of 4-t-BP.
The degradation efficiency was enhanced in all three cases (Figure 9), suggesting that the
presence of KI, IPA, and p-BQ was beneficial for the Ag2CO3/solar light system in terms of
4-t-BP degradation. The introduction of KI into the reaction contributed to the production
of more OH• radicals through the scavenging of photo-generated h+ [63,71], while the
addition of IPA decreased the recombination of electron-holes [72], hence increasing the
photocatalytic activity.
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As previously reported [36], the visible light irradiation of Ag2CO3 catalyst results in
the formation of electrons/holes in Ag2CO3 (Equation (15)), resulting in electron transfer.
Positive holes react with water generating OH• (Equation (16)), while electrons may
induce both oxidation (Equation (17)) and reduction reactions (Equation (18)) leading to
the formation of H2O2 and CO2−

3 radicals.

Ag2CO3 + hν → Ag2CO3 (h++e−) (15)
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H2O + h+ → OH• +H+ (16)

O2 +2H++2e− → H2O2 (17)

Ag2CO3 + 2e− → 2Ag+CO2−
3 (18)

It has also been reported that in some cases, radical scavenging tests had no remarkable
impact on the degradation of persistent organic pollutant, suggesting the presence of
surface-bound reactive species and electron transfer in the reaction solution between the
oxidant and the molecule of the target organic compound [63]. In such cases, H2O2 formed
under the absorption of visible light by Ag2CO3 (Equation (17)) can serve as an oxidant in
the degradation process, while the generated CO2−

3 radical (Equation (18)) promotes the
degradation of 4-t-BP, as discussed earlier.

Catalysts 2022, 12, 1523 10 of 16 
 

 

Cl−
 + OH•  → Cl• + OH−  (7) 

Cl−
 + OH•  → ClOH•−  (8) 

ClOH•−  + H+ → Cl•
 + H2O (9) 

Cl• + Cl− → Cl2
•− (10) 

Cl2
•− + Cl2

•− → Cl2 + 2Cl− (11) 

Cl• + Cl• → Cl2 (12) 

Cl2 + H2O → HOCl + HCl (13) 

HOCl → H+ + ClO− (14) 

To investigate the photocatalytic mechanism of Ag2CO3, radical quenching experi-

ments were performed using several scavengers, namely KI, IPA, and p-BQ to identify the 

major active species (h+
, OH•, and O2

•−) responsible for the degradation of 4-t-BP. The deg-

radation efficiency was enhanced in all three cases (Figure 9), suggesting that the presence 

of KI, IPA, and p-BQ was beneficial for the Ag2CO3/solar light system in terms of 4-t-BP 

degradation. The introduction of KI into the reaction contributed to the production of 

more OH•  radicals through the scavenging of photo-generated h+ [63,71], while the ad-

dition of IPA decreased the recombination of electron-holes [72], hence increasing the pho-

tocatalytic activity. 

 

Figure 9. Effect of KI, IPA, and p-BQ on the degradation of 4-t-BP. Experimental conditions: [4-t-

BP]0 = 5 ppm, catalyst dosage = 200 mg/L. 

As previously reported [36], the visible light irradiation of Ag2CO3 catalyst results in 

the formation of electrons/holes in Ag2CO3 (Equation (15)), resulting in electron transfer. 

Positive holes react with water generating OH•  (Equation (16)), while electrons may in-

duce both oxidation (Equation (17)) and reduction reactions (Equation (18)) leading to the 

formation of H2O2 and CO3
2− radicals. 

Ag2CO3 +  hν → Ag2CO3 (h+ + e−) (15) 

H2O +  h+ →  OH• + H+ (16) 

O2 +  2H+ + 2e− →  H2O2 (17) 

Ag2CO3 +  2e− → 2Ag + CO3
2− (18) 

It has also been reported that in some cases, radical scavenging tests had no remark-

able impact on the degradation of persistent organic pollutant, suggesting the presence of 

Figure 9. Effect of KI, IPA, and p-BQ on the degradation of 4-t-BP. Experimental conditions:
[4-t-BP]0 = 5 ppm, catalyst dosage = 200 mg/L.

2.2.4. Reusability and Stability of Ag2CO3

Cyclic experiments were carried out to investigate the stability and reusability of the
Ag2CO3 catalyst. Figure 10 illustrates the performance of the Ag2CO3 catalyst for three
successive experiments. After each run, the catalyst was filtered, washed with UPW for
several times, and dried. It is obvious that the loss in catalytic activity of Ag2CO3 was
insignificant, thus indicating the good stability of the catalyst.
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3. Materials and Methods
3.1. Materials

Silver nitrate (AgNO3, 99.0%), 4-tert-butylphenol (HO-C6H4-C-(CH3)3, 99.0%), sodium
carbonate (Na2CO3, 99.5%), sodium bicarbonate (NaHCO3, 99.7%), sodium nitrate (NaNO3,
99.0%), sodium chloride (NaCl, 99.8%), methanol (CH3OH, 99.9%) were obtained from
Sigma-Aldrich (Saint Louis, MO, USA), while potassium iodide (KI, 99.0%), isopropanol
(C3H8O, 99.5%) p-benzoquinone (C6H4O2, 98.0%) were obtained from Merck KGaA (Darm-
stadt, Germany) and used without further purification. UPW (18.25 MΩ*cm) was applied
for preparing required solutions.

3.2. Preparation of Ag2CO3

A simple solution-based method was used to synthesize Ag2CO3 [73]. Under continu-
ous stirring, two solutions were prepared: (1) 0.5 g of NaHCO3 was mixed in 60 mL of UPW
and (2) 2.04 g of AgNO3 was mixed in 60 mL UPW. Then, the obtained AgNO3 mixture was
added dropwise to NaHCO3 mixture and kept under a stirring condition for 240 min at
room temperature. Finally, the formed precipitate was collected by centrifugation, washed
with UPW, and dried at 60 ◦C for 12 h.

3.3. Characterization of the Prepared Catalyst

The XRD pattern of prepared Ag2CO3 was recorded on the Rigaku Smartlab system
(Rigaku, Tokyo, Japan) in a 2θ range of 10–80◦, while the Raman spectra was obtained using
Raman spectrometer (Horiba, LabRam HR evolution, Kyoto, Japan). SEM imaging and
EDS elemental mapping of Ag2CO3 analysis was performed using a SEM/EDS (Crossbeam
540, Carl Zeiss, Oberkochen, Germany) instrument. UV-VIS spectroscopy was used to
investigate the optical properties of the catalyst by Thermo Scientific Genesys 150 UV–
Visible spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

3.4. Photocatalytic Degradation of 4-t-BP

Photocatalytic experiments were conducted in a 50 mL batch reactor under continuous
stirring. A solar simulator (100 W Xe lamp, AM1.5G filter, LCS-100, Newport) was used as
an irradiation source. The initial concentration of 4-t-BP ranged from 2.5–10 ppm (mg/L),
while the catalyst dosage amounted in the range of 0–300 mg/L. A 30-min magnetic stirring
was applied before the start of irradiation to allow for adsorption-desorption equilibrium.
Samples were periodically withdrawn from the reactor, filtered by means of 0.22 µm
Millipore filters, and sent for high-performance liquid chromatography (HPLC, Agilent
1290 Infinity II, Santa Clara, CA, USA) analysis. A mixture of CH3OH and UPW (50%:50%
by volume) was used as a mobile phase.

The following equation was used to estimate the 4-t-BP degradation:

Degradation (%) =
C0 − Ct

Ct
× 100%

where Ct is the concentration of 4-t-BP after regular intervals of time (t), and C0 is the initial
concentration of 4-t-BP.

For comparison, the 4-t-BP solution in the presence of Ag2CO3 was also exposed using
a Mercury lamp (365 nm, 500 W) and a Xenon lamp (300–600 nm, 500 W) source under the
same conditions using photocatalytic reactors (Lanphan industry, Zhengzhou City, Henan
Province, China).

The active species in the Ag2CO3/solar light system were investigated with the ad-
dition of potassium iodide (KI), isopropanol (IPA), and p-benzoquinone (p-BQ) into the
reaction system to identify holes (h+), hydroxyl radicals (OH•), and superoxide radicals
(O•−2 ), respectively. Prior to irradiation, 1 mL of each scavenger solution, with a concentra-
tion of 2 mmol/L was added to the mixture of 4-t-BP solution and Ag2CO3.
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4. Conclusions

Ag2CO3 was synthesized by a simple solution-based method and was applied toward
4-t-BP degradation under simulated solar light irradiation. The crystal structure, purity,
morphology, and optical properties of the catalyst were studied using XRD, Raman Spec-
troscopy, SEM, and UV-VIS spectroscopy. The effect of different factors, including the
initial concentration of 4-t-BP, catalyst dosage, types of light source, and water matrix on
4-t-BP degradation were further investigated. Complete degradation of 4-t-BP (5 ppm)
was achieved within 60 min using 200 mg/L of Ag2CO3. The presence of CO2−

3 had only
a positive effect on the performance of Ag2CO3/solar light system and enhanced 4-t-BP
degradation. Low amounts of Cl− (100 mg/L) in the reaction system enhanced 4-t-BP
degradation; however, a further increase of Cl− concentration to 300 mg/L inhibited the
degradation process. Through three successive experimental runs, the catalyst exhibited
excellent stability and reusability properties.
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