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Abstract: Composite photocatalysts are crucial for photocatalytic hydrogen evolution. In this work,
ZrO2/CdSe-diethylenetriamine (ZrO2/CdSe-DETA) heterojunction nanocomposites are synthesized,
and efficiently and stably catalyzed hydrogen evolution under visible light. X-ray photoelectron spec-
troscopy (XPS) and high resolution transmission electron microscope (HRTEM) confirm the formation
of heterojunctions between ZrO2 (ZO) and CdSe-DETA (CS). Ultraviolet–visible spectroscopy diffuse
reflectance spectra (UV-vis DRS), Mott–Schottky, and theoretical calculations confirm that the mecha-
nism at the heterojunction of the ZrO2/CdSe-DETA (ZO/CS) nanocomposites is Type-I. Among the
ZO/CS nanocomposites (ZO/CS-0.4, ZO/CS-0.6, and ZO/CS-0.8; in the nanocomposites, the mass
ratio of ZO to CS is 0.1:0.0765, 0.1:0.1148, and 0.1:0.1531, respectively). ZO/CS-0.6 nanocomposite has
the best photocatalytic hydrogen evolution activity (4.27 mmol g−1 h−1), which is significantly higher
than ZO (trace) and CS (1.75 mmol g−1 h−1). Within four cycles, the ZO/CS-0.6 nanocomposite
maintains an efficient catalytic hydrogen evolution rate. Due to the existence of the heterojunction of
the composites, the photogenerated electron-hole pairs can be effectively separated, which accelerates
the photocatalytic hydrogen evolution reaction and reduces the progress of photocorrosion. This
work reveals the feasibility of ZO/CS nanocomposite photocatalysts for hydrogen evolution.

Keywords: photocatalysts; stably; nanocomposites; photogenerated electron-hole pairs; hydrogen

1. Introduction

The increasing consumption of nonrenewable energy has caused many environmental
problems, and the exploration of clean energy is gradually increasing [1–4]. Hydrogen
energy is considered as one of the ideal green energy sources because of its high heat,
it only leaves water behind after combustion, it is completely pollution-free, and it is
recyclable [5–9]. Photocatalytic technology can effectively solve the hydrogen acquisition
problem by utilizing the continuous production of hydrogen from a wide range of solar
energy photocatalytic semiconductor material sources [10–14]. As a classical semiconductor
material, cadmium selenide (CdSe) has been widely used in photocatalytic hydrogen evolu-
tion experiments due to its suitable band gap, visible light absorption, and better hydrogen
evolution activity [15–18]. However, the inherent drawbacks of a single photocatalyst still
limit the development of CdSe. Therefore, research is needed to explore ways to effectively
solve the above problems.

The traditional way to change the photocatalytic properties of a single semiconductor
is to modify its morphology and thus improve its intrinsic properties. Therefore, we synthe-
sized CdSe-diethylenetriamine (CdSe-DETA) with a large Brunauer–Emmett–Teller (BET)
surface area by the method of hybridizing diethylenetriamine with CdSe, obtaining better
photocatalytic hydrogen evolution activity and stability, which alleviated the inherent
drawbacks of CdSe [11]. Yet, there were still no substantial changes in the band structure,
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light absorption characteristics, or the charge mobility of a single photocatalyst. In recent
years, more and more researchers have found that the mutual recombination between semi-
conductor materials can effectively solve the shortcomings of a single photocatalyst [19–26].
For example, Ma et al. combined CdSe with WO3(H2O)0.333 to significantly enhance the
photocatalytic hydrogen evolution activity of single materials [24]. Wang et al. combined
CoOx with Pt to effectively enhance the hydrogen evolution activity and stability of single
materials [25]. These studies are based on the combination of photocatalysts that have a
broad forbidden band width, good stability, and are non-toxic and inexpensive. Among
numerous semiconductor photocatalysts, ZrO2 (ZO) perfectly meets the above conditions.
However, the study of the composite of (ZO) and CdSe-DETA (CS) in the photocatalytic
system has not been reported. Therefore, we combined ZO with CS to address the inherent
drawbacks of a single semiconductor photocatalyst.

After the successful composite of ZO and CS, the nanocomposites showed excellent
photocatalytic hydrogen evolution activity and good stability. This is attributed to the
fact that the composites can effectively separate the photogenerated electrons and holes,
resulting in continuous photocatalytic hydrogen evolution. We confirmed the existence
of the composites by HRTEM, XPS, and photocatalytic hydrogen evolution activity exper-
iments [27–35]. The accuracy of the mechanism at the heterojunctions derived from the
experiments is confirmed by theoretical calculations and Mott–Schottky analysis deriving
the band gap and conduction band positions of the single materials, respectively. The rea-
sons for the excellent photocatalytic hydrogen evolution activity and stability of the ZO/CS
nanocomposites are explored in detail by combining theory and experiment. This work
provides a feasible way to explore the way in which composite semiconductor materials
can effectively solve the inherent defects of a single semiconductor material.

2. Results
2.1. Flow Chart of Materials Synthesis

The synthesis process of ZO/CS nanocomposites is plotted by constructing a model,
as shown in Scheme 1. First, ZO is added to the reactor as a substrate material. After that,
Cd2+ (derived from CdCl2·2.5H2O), Se2− (derived from selenium powder), DETA, and
N2H4·H2O are added to the reaction solution and stirred for 1 h at room temperature. Then,
the above solution is transferred to the reaction kettle and heated in the oven (100 ◦C for
2 h). Finally, ZO/CS nanocomposites are obtained by repeated centrifugation (five times)
and freeze-drying (≥18 h, ≤-45 ◦C).
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2.2. Phase and Microscopic Morphology Analysis

Figure 1 shows the X-ray diffraction (XRD) patterns of ZO, CS, and ZO/CS nanocom-
posites. ZO has a good crystallinity, and its XRD pattern is consistent with ZrO2 of a
monoclinic phase (JCPDS No. 65-1025) [23]. The main peaks at 24.05◦, 28.18◦, 31.47◦, 34.16◦,
35.31◦, 40.73◦, 49.26◦, 50.11◦, 54.10◦, 55.28◦, 60.05◦ and 62.84◦ can be indexed to the (011),
(-111), (111), (002), (200), (-211), (022), (220), (202), (221), (-302), and (311) crystal planes.
The crystallinity of CS is low, which is due to its special synthesis conditions. When the
reaction time of CS is prolonged, it will crystallize completely (shown in Figure 1b). In
this work, the XRD of CS is in agreement with CdSe of the hexagonal phase (JCPDS No.
77-2307), which has been demonstrated in previous work [27]. The main peaks at 23.88◦,
25.39◦, 27.10◦, 42.00◦, 45.81◦, and 49.72◦ can be indexed to the (100), (002), (101), (110),
(103), and (112) crystal planes. Here, the crystallite sizes of ZO and CS are calculated from
Scherrer’s formula [21] to be 28.04 and 20.04 nm, respectively. XRD patterns of ZO/CS
nanocomposites contain peaks of ZO and CS, and peaks of CS are gradually highlighted
with increasing CS content in ZO/CS (as shown by dashed boxes in Figure 1a). This
indicates that ZO and CS are contained in the ZO/CS nanocomposites. In addition, there
are no other miscellaneous peaks in the synthesized samples, which indicates the purity of
the synthesized samples.
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Figure 1. XRD patterns of (a) ZO, ZO/CS nanocomposites, and CS; (b) CdSe-DETA in 100 ◦C for
12 h.

Scanning electron microscope (SEM) and transmission electron microscope (TEM)
were used in order to better observe the micro morphology and element composition of the
synthesized samples, as shown in Figure 2. It can be easily observed from the SEM images
in Figure 2a–c that CS (Figure 2a) has the morphology of a flower bud, with a diameter of
about 20 nm; ZO (Figure 2b) shows a nanospherical appearance, and its size is in the range
of 20–100 nm; ZO/CS-0.6 (Figure 2c) nanocomposite shows the morphology of mutual
wrapping of CS and ZO. Figure 2d–f is the EDS spectrum of the characterized samples,
showing the elemental composition of the photographed samples. Among them, Figure 2d
shows the elemental composition of CS. The results showed that only Cd, Se, C, and N
elements are contained in CS, and there are no impurity peaks [11,27]. The atomic contents
of Se, Cd, N, and C are 32.23%, 12.41%, 16.48%, and 38.88%, respectively. Figure 2e shows
the elemental composition of ZO. ZO contained only O and Zr elements with no impurity
peaks [31]. The atomic contents of O and Zr are 59.53% and 40.47%, respectively. Figure 2f
shows the elemental composition of ZO/CS-0.6 nanocomposite. ZO/CS-0.6 nanocomposite
contains all the pure material elements and has no impurity peaks. The atomic contents of
Se, Cd, N, C, O, and Zr are 4.87%, 0.34%, 10.75%, 28.34%, 11.67%, and 6.62%, respectively.
Here, the C element comes from DETA or conducting resin. The N element comes from
DETA or N2H4. The difference in the content of each element is due to the fact that different
elements have different energy, and the stacking of samples leads to the deviation of the
test results. The results show that the tested samples contain all the constituent elements
and there are no impurity peaks, which indicates the purity of the synthesized samples, in
agreement with the result in Figure 1.



Catalysts 2022, 12, 1385 4 of 11

Catalysts 2022, 12, x FOR PEER REVIEW 4 of 11 
 

 

to the deviation of the test results. The results show that the tested samples contain all the 
constituent elements and there are no impurity peaks, which indicates the purity of the 
synthesized samples, in agreement with the result in Figure 1. 

Figure 2g–i is the clearer TEM images of CS, ZO, and ZO/CS−0.6, which is consistent 
with the morphology of Figure 2a–c. Among them, the illustration in Figure 2i is the 
high−resolution TEM (HRTEM) image of the ZO/CS−0.6 nanocomposite. The lattice 
fringes of ZrO2 (110) and CdSe (101) can be clearly seen from this figure, while the appear-
ance of a fuzzy interface for lattice fringes between them confirms the existence of hetero-
junctions. The presence of heterojunctions confirms the successful preparation of the 
ZO/CS−0.6 nanocomposite. Furthermore, Figure S1 presents the high angle annular dark 
field (HAADF) and elemental mapping images of ZO/CS−0.6 nanocomposite. As can be 
seen in Figure S1, the elements consisted of ZO/CS−0.6 nanocomposite are well distrib-
uted, indicating the homogeneous texture of the synthesized samples. 

 
Figure 2. SEM images of (a) CS, (b) ZO, and (c) ZO/CS−0.6; EDS spectra of (d) CS, (e) ZO, and (f) 
ZO/CS−0.6. TEM images of (g) CS, (h) ZO, and (i) ZO/CS−0.6 (inset shows the HRTEM images of 
the ZO/CS−0.6). 

2.3. X−ray Photoelectron Spectroscopy (XPS) and Elemental Analysis 
Figure 3 shows the XPS spectra of ZO, CS, and ZO/CS−0.6 nanocomposite. In Figure 

3a, ZO/CS−0.6 nanocomposite contains all the elements in ZO (O, C, and Zr) and CS (Cd, 
N, and Se). Except for the elements of the respective samples themselves, the N element 
is from DETA or N2H4·H2O, and the C element is from DETA or surface adsorbed carbon 
dioxide. Figure 3b–f shows the high−resolution XPS spectra of some core elements of ZO, 
CS, and ZO/CS−0.6 nanocomposite. In Figure 3b, the two peaks (Zr 3d3/2 and Zr 3d5/2) of 
Zr 3d of ZO are located at 184.28 and 181.92 eV, respectively. The two peaks (Zr 3d3/2 and 
Zr 3d5/2) of Zr 3d of ZO/CS−0.6 nanocomposite are located at 183.50 and 181.14 eV, respec-
tively [30]. In Figure 3c, O 1s of ZO is divided into lattice oxygen and surface−adsorbed 
oxygen, and the positions are located at 531.45 and 529.74 eV, respectively [30]. Similarly, 
the two peaks of the O 1s of ZO/CS−0.6 nanocomposite are located at 530.51 and 528.95 
eV, respectively. In Figure 3d, the Cd 3d3/2 and Cd 3d5/2 peaks of the Cd 3d of CS are located 
at 410.90 and 404.14 eV, respectively [11]. Similarly, the two peaks of the Cd 3d of 
ZO/CS−0.6 nanocomposite are located at 410.93 and 404.17 eV, respectively. In Figure 3e, 

Figure 2. SEM images of (a) CS, (b) ZO, and (c) ZO/CS-0.6; EDS spectra of (d) CS, (e) ZO, and
(f) ZO/CS-0.6. TEM images of (g) CS, (h) ZO, and (i) ZO/CS-0.6 (inset shows the HRTEM images of
the ZO/CS-0.6).

Figure 2g–i is the clearer TEM images of CS, ZO, and ZO/CS-0.6, which is consis-
tent with the morphology of Figure 2a–c. Among them, the illustration in Figure 2i is
the high-resolution TEM (HRTEM) image of the ZO/CS-0.6 nanocomposite. The lattice
fringes of ZrO2 (110) and CdSe (101) can be clearly seen from this figure, while the ap-
pearance of a fuzzy interface for lattice fringes between them confirms the existence of
heterojunctions. The presence of heterojunctions confirms the successful preparation of the
ZO/CS-0.6 nanocomposite. Furthermore, Figure S1 presents the high angle annular dark
field (HAADF) and elemental mapping images of ZO/CS-0.6 nanocomposite. As can be
seen in Figure S1, the elements consisted of ZO/CS-0.6 nanocomposite are well distributed,
indicating the homogeneous texture of the synthesized samples.

2.3. X-ray Photoelectron Spectroscopy (XPS) and Elemental Analysis

Figure 3 shows the XPS spectra of ZO, CS, and ZO/CS-0.6 nanocomposite. In Figure 3a,
ZO/CS-0.6 nanocomposite contains all the elements in ZO (O, C, and Zr) and CS (Cd, N,
and Se). Except for the elements of the respective samples themselves, the N element is
from DETA or N2H4·H2O, and the C element is from DETA or surface adsorbed carbon
dioxide. Figure 3b–f shows the high-resolution XPS spectra of some core elements of ZO,
CS, and ZO/CS-0.6 nanocomposite. In Figure 3b, the two peaks (Zr 3d3/2 and Zr 3d5/2)
of Zr 3d of ZO are located at 184.28 and 181.92 eV, respectively. The two peaks (Zr 3d3/2
and Zr 3d5/2) of Zr 3d of ZO/CS-0.6 nanocomposite are located at 183.50 and 181.14 eV,
respectively [30]. In Figure 3c, O 1s of ZO is divided into lattice oxygen and surface-
adsorbed oxygen, and the positions are located at 531.45 and 529.74 eV, respectively [30].
Similarly, the two peaks of the O 1s of ZO/CS-0.6 nanocomposite are located at 530.51
and 528.95 eV, respectively. In Figure 3d, the Cd 3d3/2 and Cd 3d5/2 peaks of the Cd 3d
of CS are located at 410.90 and 404.14 eV, respectively [11]. Similarly, the two peaks of the
Cd 3d of ZO/CS-0.6 nanocomposite are located at 410.93 and 404.17 eV, respectively. In
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Figure 3e, the Se 3d of CS can be divided into two peaks: Se 3d3/2 and Se 3d5/2, which are
located at 53.60 and 52.74 eV, respectively [11]. The two peaks of the Se 3d of ZO/CS-0.6
nanocomposite are located at 52.64 and 52.78 eV, respectively. In Figure 3f, the N 1s peak of
CS is located at 398.76 eV [11], which is shifted to the right by 0.11 eV relative to ZO/CS-0.6
nanocomposites. The above results show that the peak positions of each element of ZO/CS-
0.6 nanocomposite are shifted relative to ZO or CS, which confirms the heterojunctions
between ZO and CS. This result is consistent with that of Figure 2i.
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2.4. Optical Property and Band Gap Analysis

In order to explore the optical absorption properties and band gap of materials, ZO,
CS, and ZO/CS nanocomposites are characterized by ultraviolet–visible spectroscopy
diffuse reflectance spectra (UV-vis DRS), as shown in Figure 4. In Figure 4a, CS behaves
as a visible light absorbing material with excellent visible light absorption ability, which
tends to represent its smaller band gap. In contrast, ZO shows strong UV light absorption
ability and is not excited in the visible range, while usually represents a large band gap. In
the ZO/CS nanocomposites, the light absorption range of the nanocomposites increased
gradually with increasing CS content. Furthermore, the color of each sample was uniform
and without variegation, which illustrated the purity of the samples. After that, according
to Figure 4a, the linear transformation plots of CS and ZO absorption curves are drawn
(Figure 4b). As can be seen from the figure, the band gap of CS is 2.36 eV. The band gap of
ZO is 5.17 eV, which is significantly larger than that of CS. In addition, the theoretical band
gaps of ZO and CS are obtained by theoretical calculation (Figure S2). The results show
that the band gap of ZO is significantly larger than that of CS, confirming the accuracy of
the above results.

2.5. Fourier Transform Infrared Spectoscopy (FT-IR) Analysis

FT-IR is used to explore the functional groups of each sample in order to further
explore its elemental composition. As shown in Figure 5, CS contains strong vibration
bands of N-H (about 3090–3500 and 1000–1320 cm−1), -CH2- (approximately 2750–3000
cm−1), C-N (around 1468 cm−1) and C-H (roughly 550–850 and 1590 cm−1) [24]. Wherein,
C-H, C-N, and -CH2- are from DETA. N-H comes from DETA or N2H4·H2O. ZO does not
contain the above functional groups. Nevertheless, the ZO/CS nanocomposites formed
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by the composite of ZO and CS contain the vibration bands mentioned above, and the
frequency is strong. This indicates that both CS and ZO/CS nanocomposites contain DETA.
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2.6. BET Surface Area

Figure 6 shows the specific surface analysis of ZO, CS, and ZO/CS nanocomposites.
In Figure 6a, all samples show Type IV isotherms and H3 hysteresis loops [35]. As can
be seen from the illustrations in Figure 6a, all the samples characterized are mesoporous
materials. Among them, most of the pore sizes of the tested materials are distributed in the
range of 2–50 nm, conforming to the characteristics of mesoporous materials. Figure 6b
shows the BET surface areas of the characterized materials. In Table S1, the BET surface
areas of ZO, CS, ZO/CS-0.4, ZO/CS-0.6, and ZO/CS-0.8 are 16.41, 14.87, 13.73, 18.64, and
14.97 m2 g−1, respectively. The results show that the BET surface areas of CS and ZO are
smaller, and the ZO/CS nanocomposites also exhibit smaller BET surface areas. However,
ZO/CS-0.6 nanocomposite exhibits the optimal BET surface area. A larger BET surface
area will provide more active sites for the reaction, which is helpful to the photocatalytic
hydrogen evolution reaction. In addition, the details of the average pore size and total pore
volume of the tested samples are shown in Table S1.
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2.7. Photocatalytic H2 Evolution Performance and Electrochemical Analysis

Figure 7 shows the photocatalytic hydrogen evolution rate of ZO, CS, and ZO/CS
nanocomposites, and the photocatalytic hydrogen evolution stability of ZO/CS-0.6. In
Figure 7a, CS has a relatively excellent photocatalytic hydrogen evolution rate (1.75 mmol
g−1 h−1). Yet, ZO has no photocatalytic hydrogen evolution activity, which is represented
here by trace. When the two pure materials are compounded, ZO/CS nanocomposites
show excellent photocatalytic hydrogen evolution rates, which are much higher than that
of CS and ZO alone. Among them, ZO/CS-0.6 shows the best photocatalytic hydrogen
evolution rate, reaching 4.27 mmol g−1 h−1. Moreover, the present work still possesses
excellent photocatalytic hydrogen evolution activity compared with the photocatalysts in
other literatures (Table S2). Figure 7b shows the photocatalytic hydrogen evolution stability
test of ZO/CS-0.6 nanocomposite. The results showed that ZO/CS-0.6 nanocomposite
showes excellent photocatalytic activity for hydrogen evolution in four cycles. In Figure
S3a, ZO/CS-0.6 nanocomposite is recrystallized after cycling, showing a slightly sharp XRD
peak, while the other peaks remained almost unchanged. In Figure S3b,c, the recrystallized
ZO/CS-0.6 nanocomposites are recrystallized after cycling, but the overall morphology
did not change obviously, which verified the results of Figure S3a. This fully shows the
excellent stability of ZO/CS-0.6 nanocomposite.
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The photocurrent response can effectively explore the photoexcitation ability of photo-
catalysts. Figure 8 shows the photocurrent density-time curves of ZO, CS, and ZO/CS-0.6
nanocomposite. It can be seen from the figure that ZO shows a very weak photocurrent
response curve, which is approximately a straight line. However, CS shows a higher
photocurrent response curve, which is obviously better than that of ZO. After forming
the ZO/CS-0.6 nanocomposite with the composite of ZO and CS, it exhibits an excellent
photocurrent response curve, which is much higher than that of ZO and CS alone. This
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shows that the composite of ZO and CS can effectively improve the light excitation ability
of the materials and contribute to the photocatalytic hydrogen evolution reaction. This is
consistent with the results of Figure 7.
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2.8. Photocatalytic Mechanism

The photocatalytic hydrogen evolution mechanism at the heterojunction of ZO/CS
nanocomposites is shown in Figure 9, which is the classical Type-I model [36–38]. According
to the formula (S1)–(S3) (Supporting information) [11] and the results of Figure 4, the
conduction band of ZO is at -1.17 eV and the valence band is at 4 eV. Similarly, the
conduction band of CS is at -0.63 eV and the valence band is at 1.73 eV. According to
the valence band position, the heterojunction mechanism of ZO/CS nanocomposites is
the classical Type-I model. In addition, ZO and CS are characterized by Mott–Schottky
analysis in electrochemical methods (Figure 9a,b). The results show that the mechanism
of the heterojunction formation between ZO and CS is the classical Type-I model, which
verifies the experimental results.
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As shown in Figure 9, ZO and CS produce photogenerated electron-hole pairs under
visible light irradiation. After that, the photogenerated electron-hole pairs are separated
rapidly, the photogenerated electrons gather in the conduction band of the semiconductor
material, and the photogenerated holes gather in the valence band. At this time, many
electrons on the surface of the ZO conduction band are transferred to the position of the
CS conduction band. A large number of electrons on the surface of the ZO valence band
are transferred to the CS valence band location. Abundant photogenerated electrons are
gathered on the surface of the CS conduction band, which are continuously transferred to
the surface of the co-catalyst Pt and combine with H+ to produce hydrogen [39–41]. On
the other hand, there are a large number of photogenerated holes on the surface of the CS
valence band, which are consumed by the sacrificial agent [28]. In this way, the photogen-
erated electrons and holes in ZO/CS nanocomposites are continuously separated, which
accelerates the photocatalytic hydrogen evolution reaction and alleviates the occurrence of
photocorrosion. Therefore, ZO/CS nanocomposites show excellent photocatalytic activity
and stability for hydrogen evolution.

3. Conclusions

In summary, we have successfully prepared ZO/CS nanocomposites, which effec-
tively overcome the inherent defects of the single materials and elevate the photocatalytic
hydrogen evolution activity and stability of the single materials. Among the ZO/CS
nanocomposites, ZO/CS-0.6 nanocomposite showed the best photocatalytic hydrogen evo-
lution activity (4.27 mmol g−1 h−1), which is much higher than those of CS (1.75 mmol g−1

h−1) and ZO (trace) individually. In addition, ZO/CS-0.6 nanocomposite showed excellent
corrosion resistance and maintained excellent photocatalytic hydrogen evolution activity in
four cycles. This is due to the Type-I mechanism at the heterojunction of ZO/CS nanocom-
posites, which effectively separates the photogenerated electron hole pairs, thus enabling
efficient and stable photocatalytic hydrogen evolution. This work provides a way to change
the inherent characteristics of a single material, which may be helpful for the development
of high performance and stable photocatalysts.
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Calculated energy band structures for the (c) ZrO2 and (d) CdSe; Figure S3: (a) XRD patterns of
ZO/CS-0.6 nanocomposite before and after cycling test. (b) TEM image ZO/CS-0.6 nanocomposite
before cycling test. (c) TEM image ZO/CS-0.6 nanocomposite after cycling test; Table S1: The amounts
of precursors in preparing CdSe-DETA, ZrO2 and ZO/CS nanocomposites and the BET surface area,
average pore size and total pore volume of above materials; Table S2: Comparison of photocatalytic
H2 production rate of the catalysts in references and this work.
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