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Abstract: Green (sustainable) chemistry provides a framework for chemists, pharmacists, medicinal
chemists and chemical engineers to design processes, protocols and synthetic methodologies to make
their contribution to the broad spectrum of global sustainability. Green synthetic conditions, especially
catalysis, are the pillar of green chemistry. Green chemistry principles help synthetic chemists
overcome the problems of conventional synthesis, such as slow reaction rates, unhealthy solvents and
catalysts and the long duration of reaction completion time, and envision solutions by developing
environmentally benign catalysts, green solvents, use of microwave and ultrasonic radiations, solvent-
free, grinding and chemo-mechanical approaches. 1,2,4-thiadiazole is a privileged structural motif
that belongs to the class of nitrogen–sulfur-containing heterocycles with diverse medicinal and
pharmaceutical applications. This comprehensive review systemizes types of green solvents, green
catalysts, ideal green organic synthesis characteristics and the green synthetic approaches, such as
microwave irradiation, ultrasound, ionic liquids, solvent-free, metal-free conditions, green solvents
and heterogeneous catalysis to construct different 1,2,4-thiadiazoles scaffolds.

Keywords: green chemistry; organic synthesis; green catalysis; 1,2-4-thiadiazolederivative; green
solvents; green approaches

1. Introduction

In 1991, the term “green chemistry” was first coined by Anatas, and the Environmental
Protection Agency defined green chemistry or sustainable chemistry as “the designed
chemical processes and products that eliminate or reduce the generation or use of haz-
ardous substance” [1–4]. In the 1990s, green chemistry came into existence due to the
prominent work of Warner, Trost, Anastas, Sheldon, Clarke and others [5–9]. Green chem-
istry is a new concept, introduced in the 20th century to develop new synthetic procedures,
methodologies and chemical processes in the field of chemistry and chemical technology to
accommodate the conventional existing procedures and strategies to make them environ-
mentally benign and economical. This can be achieved by utilizing various approaches and
strategies, such as ultrasound-assisted protocols, green solvents, solvent-free drugs synthe-
sis, ionic liquids, microwave-assisted approaches, green reduction procedures, oxidation
catalysts, solid acid–base catalysts and heterogeneous metal catalysis, etc. [10–12]. Anastas
and Warner introduced the key criteria for green chemistry in a set of 12 principals that
laid down the fundamentals of green chemistry [1–4,13], as illustrated in Figure 1 [14,15].
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protocols for the synthesis of heterocycles that has had a significant impact in many fields, 
such as the use of green solvents, solvent-free synthesis, sustainable catalytic materials, 
reduced energy consumption, improved atom economy, optimized reaction yields, the 
use of alternative energy sources, the introduction of multicomponent reactions (MCRs), 
ionic liquids and the design of high-efficiency and time-saving reactions that work at am-
bient temperatures [16–25]. Pollution and an increase in energy demands prompted the 
design of novel synthetic protocols to fulfill the requirements of green and sustainable 
chemistry to promote the synthesis of organic products in an ecofriendly environment 
[26,27]. The new green and sustainable synthetic approaches are listed below and have 
advantages over conventional synthetic approaches, as depicted in Figure 2 [28–35]: 
1. Solvent-free approach; 
2. Grinding approach; 
3. Ball milling approach; 
4. Solid–wet approach; 
5. Ultrasonic-assisted approach; 
6. Microwave-assisted approach; 
7. MOF green synthesis approach; 
8. Electrochemical green catalytic synthetic approach. 

In organic synthesis, avoiding the use of harmful and toxic solvents, as well as cata-
lysts, was quite a difficult and highly challenging objective achieved by modern synthetic 
chemists. In green and sustainable organic synthesis, the ideal synthesis consists in fol-
lowing rational design fetchers to comprehensively implement the green chemistry prin-
ciples, as displayed in Figure 3 [36–41]. 
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2. Green Approaches in Organic Synthesis

The concept of green chemistry introduced the environmentally benign synthetic
protocols for the synthesis of heterocycles that has had a significant impact in many fields,
such as the use of green solvents, solvent-free synthesis, sustainable catalytic materials,
reduced energy consumption, improved atom economy, optimized reaction yields, the use
of alternative energy sources, the introduction of multicomponent reactions (MCRs), ionic
liquids and the design of high-efficiency and time-saving reactions that work at ambient
temperatures [16–25]. Pollution and an increase in energy demands prompted the design
of novel synthetic protocols to fulfill the requirements of green and sustainable chemistry
to promote the synthesis of organic products in an ecofriendly environment [26,27]. The
new green and sustainable synthetic approaches are listed below and have advantages over
conventional synthetic approaches, as depicted in Figure 2 [28–35]:

1. Solvent-free approach;
2. Grinding approach;
3. Ball milling approach;
4. Solid–wet approach;
5. Ultrasonic-assisted approach;
6. Microwave-assisted approach;
7. MOF green synthesis approach;
8. Electrochemical green catalytic synthetic approach.
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The present study is a brief description of the role of catalysis in green synthetic trans-

formations and green synthesis of drugs, chemical reagents, polymeric materials, nano-
materials and others organic materials for a sustainable future. Environmentally benign 
synthetic strategies are mainly possible due to the vital role of catalysts in lowering the 
activation energy, due to which reactions are possible at low heat energy or at room tem-
perature and products are achieved in good-to-excellent yields by generating fever co-
products, by-products and other waste substances. Catalysis is the pillar of green chemis-
try, and catalysts used in the green organic synthesis must be safe, easy to handle, reusa-
ble, biodegradable and cost-effective, recyclable, recovered efficiently and display a high 
reaction rate to afford products in maximum yields with shorter time duration and differ-
ent types of green catalysts is depicted in Table 1 [42–46]. 

Table 1. Types of catalysts used in green organic synthesis. 

Green Catalyst Type Examples 

Lewis acids catalysts in water 

Scandium tris(heptadecafluorooctanesulfonate) (Sc(O3 SC8 F17)3) in supercritical 
carbon dioxide (scCO2), cationic surfactant, cetyltrimethylammonium bromide 
(CTAB), Sc(OTf)3–SDS and rare earth metal triflates can be used in carbon–carbon 
bond-forming reactions in aqueous media [47,48]. 

Zeolites as green catalysts 
H-, Cu- and Sc-zeolites as green Lewis catalysts for the carbonylation, glycosyla-
tion, aldolization, click reactions, multicomponent reactions, halogenation, cy-
cloadditions, coupling reactions and cyclization [49]. 

Enzyme catalysis 
Enzymatic redox catalyst, lipases, aldolases, transaminases, hydroxynitrile lyases 
and hydrolases [50]. 

Heteropoly acid-based (HPAs) catalysis 
HPAs can be designed in homogeneous and heterogeneous systems such as Am-
berlyst-15, PCPs–SO3H, BC–SO3H, CMK-3-SO3H, Zn–Ca–Fe, CsH2PW12O40, 
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In organic synthesis, avoiding the use of harmful and toxic solvents, as well as cata-
lysts, was quite a difficult and highly challenging objective achieved by modern synthetic
chemists. In green and sustainable organic synthesis, the ideal synthesis consists in follow-
ing rational design fetchers to comprehensively implement the green chemistry principles,
as displayed in Figure 3 [36–41].
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3. Green Catalysts in Organic Synthetic Approaches

The present study is a brief description of the role of catalysis in green synthetic
transformations and green synthesis of drugs, chemical reagents, polymeric materials,
nanomaterials and others organic materials for a sustainable future. Environmentally
benign synthetic strategies are mainly possible due to the vital role of catalysts in lowering
the activation energy, due to which reactions are possible at low heat energy or at room
temperature and products are achieved in good-to-excellent yields by generating fever
co-products, by-products and other waste substances. Catalysis is the pillar of green
chemistry, and catalysts used in the green organic synthesis must be safe, easy to handle,
reusable, biodegradable and cost-effective, recyclable, recovered efficiently and display a
high reaction rate to afford products in maximum yields with shorter time duration and
different types of green catalysts is depicted in Table 1 [42–46].

Table 1. Types of catalysts used in green organic synthesis.

Green Catalyst Type Examples

Lewis acids catalysts in water

Scandium tris(heptadecafluorooctanesulfonate) (Sc(O3 SC8 F17)3) in supercritical
carbon dioxide (scCO2), cationic surfactant, cetyltrimethylammonium bromide
(CTAB), Sc(OTf)3–SDS and rare earth metal triflates can be used in carbon–carbon
bond-forming reactions in aqueous media [47,48].

Zeolites as green catalysts
H-, Cu- and Sc-zeolites as green Lewis catalysts for the carbonylation,
glycosylation, aldolization, click reactions, multicomponent reactions,
halogenation, cycloadditions, coupling reactions and cyclization [49].

Enzyme catalysis Enzymatic redox catalyst, lipases, aldolases, transaminases, hydroxynitrile lyases
and hydrolases [50].

Heteropoly acid-based (HPAs) catalysis

HPAs can be designed in homogeneous and heterogeneous systems such as
Amberlyst-15, PCPs–SO3H, BC–SO3H, CMK-3-SO3H, Zn–Ca–Fe, CsH2PW12O40,
Ru/CMK-3, Fe3O4-SBA–SO3H, CaFe2O4, H3PW12O40, H5BW12O40, H5AlW12O40,
H5GaW12O40 and H6CoW12O40 [46–62].

Natural materials and foods as catalysts

Wood ash biocatalyst [63], alginic acid [64,65], boric acid [66], tartaric acid [67,68],
citric acid [69–71], pectin [72], oxalic acid [73–75], saccharin [46,76,77], wool and
keratin deriving from wool fibers [78–80], feathers [81–84], silk [85,86], plant
derivatives, lemon juice [87,88].
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Table 1. Cont.

Green Catalyst Type Examples

Nano particles (NPs)/materials as catalysts

Magnetic nano catalysts (magnetic Fe3O4, magnetic zinc ferrite ZnFe2O4,
CuFe2O4, CoFe2O4, NiFe2O4, NiFe2O4@Cu) and oxides; ferrites with a shell;
metallic with a shell [89–92], K10 clay, K10 montmorillonite and clayfen [93,94],
magnesium oxide NPs, cerium oxide NPs, gold NPs, silica titanium oxide NPs,
silica vanadium oxide NPs, iridium oxide NPs, molybdenum–bismuth bimetallic
chalcogenide NPs, platinum–antimony tin oxide NPs, calcium oxide NPs,
palladium NPs, tin oxide NPs [95–107]

Transition metals as green catalysts

Ru(CO)3(TPPMS)2 (TPPMS = (C6H5)2P(m-C6H4SO3Na)), RuH2(CO)(TPPMS)3,
[RuH(CO)(NCMe)(TPPMS)3][BF4], Rh/TPPTS complexes,
Ru/(R)-BINAP,Ru/(R)-13-[(S,S)-DPEN]Cl2, Ru/(S)-BINAP, Pd-DPPP, Pd(OAc)2,
CuI,MnBr(CO)5 [108–117]

Ionic liquids as catalysts

POM-based ILs (POM-ILs) such as (4-sulfonic acid) butyltributyl amine (TBABS)
such as cations and H5PMo10V2O40 (Mo10V2) such as anion (3-sulfonic acid)
propylpyridine (PyPS), (4-sulfonic acid) butylpyridine (PyBS), palladium
deposited oleic acid coated-Fe3O4 NPs (Fe3O4@OA–Pd) and (4-sulfonic acid)
butyltrimethyl amine (TMABS) [118–121]. Acidic ionic liquids such as
[HO3S-(CH2)3-mim] Cl-FeCl3 and Brønsted Lewis acidic ILs,
(1-butyl-3-methylimidazolium hydrogen sulfate or
1-(3-sulfopropyl)-3-methylimidazolium hydrogen sulfate) ILs [122,123]. Following
different ionic liquids also used as catalysts for the productions of biodiesel, which
are: SBA- IL-3, PIL-3, P(VB-VS)HSO4, MIL-101(Cr)@ MBIAILs, Fe3O4@HKUST-1,
AILs/HPW/UiO-66-2COOH and
CoFe2O4/MIL-88B(Fe)-NH2/(Py-Ps)PMo [124–131]. Ionic liquids are classified
into three groups: solid catalyst with ionic liquid layers (SCILL), porous ionic
liquids and supported ionic liquid phase catalyst (SILPC). Binary alkoxide ionic
liquids catalyzed organic reaction and examples of such ILs are
([Pyrr1,4][NTf2]x[OiPr] 1,3-butylmethylimidazolium hydroxide([BMIM][OH]) and
[C2DABCO][NTf2] [132–136].

Photocatalyst (PC)

Carbonylation approaches in organic synthesis were mediated by photocatalysts,
such as [Ir(4-Fppy)2(bpy)]+, Ru(bpy)32+, fac-Ir(ppy)3, 4-CzIPN, fluorescein,
Ir[(dF(CF3)(ppy)]2(dtbbpy)+, eosin and various MOFs composite-based
photocatalyst were afforded for their applications in different synthetic approaches
such as PCN-250-Fe3, Uio-68-TZDC, MIL-88A(Fe), ZIF-8, Ni-MOF and
Ru(bpy)3@NKMOF-7. Following, different heterogeneous photocatalysis have
been used in organic synthesis such as TiO2, TiO2 P25, dye-sensitized TiO2, metal
doped TiO2, bismuth (III) oxide-based PCs, cadmium sulfide and
cadmium-selenide-based PCs, lead halide perovskites and graphitic carbon
nitrides (g-CN) PCs, [137–141].

Phase transfer catalyst (PTC)

Tetrabutylammonium bromide (TBAB), triethylbenzylammonium chloride
(TEBAC) and tetrabutylammonium iodide (TBAI) are famous phase-transfer green
catalysts used in organic synthetic transformations. The types of PTC are the
following: onium salt phase-transfer catalysts, crown ether and polyether
phase-transfer catalyst and supported phase-transfer catalysts [142–146].

4. Green Solvents in Organic Synthetic Approaches

The major focus of green chemistry is the elimination of solvents from chemical
processes and organic synthesis or replacement of hazardous solvents with ecofriendly
solvents. The attention under the remit of green chemistry is ascribed to the large volume
of solvents used in the manufacture of drugs, paints, textiles, polymers, solvent extractions
and purification in final formulations and other industrial products that drastically damage
the environment and living organism and that must be reduced, replaced and eliminated
from processes and switched to greener processes and green solvents [147–154]. The green
solvents that are mostly used in organic synthesis are mentioned in Table 2.
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Table 2. Green solvents in organic synthesis.

Type of Green Solvent Examples

Aqueous and super critical carbon dioxide H2O, scCO2, scCO2 + H2O [121–125,155–159].

Fluorous solvents 1,1,1-trifluoroethanol,perfluoromethyl cyclohexane/toluene—[160,161].

Organic carbonates Butylene carbonate, propylene carbonate, diethyl
Carbonate and dimethyl carbonate (CH3OCOOCH3) [162–175].

Lactates and general solvents Lactic acid, ethyl lactate, lactate dehydrogenase, transaminase and
n-butanol [176–185].

Natural and biosolvents

Limonene and P-cymene as solvent, γ-valerolactone (GVL), sugar-derived
dimethylisosorbide (DMI), glycerol and glycerol derivatives as solvents such as
glycerol carbonate, glycerol-derived acetals and ketals, 2,3-propanediol,
1,3-propanediol, monoacylglycerol MAGs, diacylglycerols DAGs, triacylglycerols
TAGs, glycidyl monoalkyl ethers, glycidyl dialkyl ethers, glycidyl trialkyl ethers and
dihydrolevoglucosenone (cyrene), etc. [186–201]. Corn oil, glycerol, oxidoreductases,
transferases, hydrolases, lyases, isomerases, ligases, dehaloperoxidase (DHP), lemon
juice as solvent and eucalyptol used as solvent for the synthesis of N, O and S
heterocycles, cygnet a family of green solvents and dimethyl isosorbide (DMI)
solvent derived from cellulose [202–209].

Archetypal green solvents 2-methyl tetrahydrofuran (2-MeTHF) and cyclopentyl methyl ether (CPME),
etc. [210–216].

Ionic liquids as solvents

1-allyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride
([BMIM]Cl), sodium dicyanamide, sodium thiocyanate, silver nitrate, sodium nitrate,
chloroauric acid, 1-ethyl-3-methyl-(EMIM), 1-butyl-3-methyl-(BMIM), 1-octyl-3
methyl (OMIM), 1-decyl-3-methyl-(DMIM), 1-dodecyl-3-methyl- docecylMIM),
1-ethyl-3-methyl imidazolium salts, etc. [217–227].

Deep eutectic solvents (DESs)

The classification and general examples of DES are as follows: Class I Cat +
X-zMClx, M = Zn, Sn, Fe, Al, Ga. Class II Cat + X-zMClx• yH2O, M = Cr, Co, Cu, Ni,
Fe. Class III Cat + X-zRZ Z = CONH2, COOH, OH. Class IV MClx + RZ = MClx-1 +
·RZ + MClx+ -1 M = Al, Zn and Z = CONH2, OH. New type Class V RZ + RP Z =
CONH2, COOH, OH and P—-C6H4OH, CO, NH2. Hydrophobic deep eutectic
solvents (HDESs) play a role in green chemistry. The first HDESs (cecanoic acid
(DecA)) were synthesized by Osch et al. The following solvents (tetradecyl)
phosphonium tetrafluoroborate (P14,666Cl), trioctylphosphine oxide (TOPO) and
N-didodecylammonium chloride (DDDACl) have been developed as green
HDESs [228–231].

5. Green Synthetic Approaches for Synthesis of 1,2,4-Thiadiazoles

Green chemistry synthetic approaches are used to synthesize heterocyclic-pharmaco
phore-based bioactive therapeutic drugs, which have significant importance in medicinal
and pharmaceutical chemistry. The versatile heterocyclic thiadiazole rings with different
isomeric forms, such as 1,2,3-, 1,2,4-, 1,2,5- and 1,3,4-, display substantial therapeutic
efficacy against a wide variety of diseases. The 1,2,4-thiadazole scaffolds represent a five-
membered nitrogen–sulfur-containing significant class of core heterocyclic structures
of great interest, mainly because of the part of the structural unit of biologically active
molecules: a useful intermediate in medicinal chemistry and part of the clinical drugs,
which are given in Figure 4 [232–243].

1,2,4-thiadiazole is a privileged pharmacophore that exhibits a diverse and broad spec-
trum of biological activities, such as human leukemia cell, antibacterial, anti-inflammatory,
insecticidal, herbicidal and fungicidal agents, anticonvulsant, cardiovascular, cathepsin B
inhibitors, dual 5-lipoxygenase and cyclooxygenase inhibitors, antidiabetic, antiulcerative
and allosteric modulators [244–252]. Synthetic chemists and pharmacists are attracted to
the 1,2,4-thiadiazole moiety due to its versatile biological and pharmacological profile, and
R&D scientists are interested in developing new synthetic approaches and methodologies to
afford 1,2,4-thiadiazole scaffolds. This review article covers green and ecofriendly synthetic
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routes to produce 1,2,4-thiadiazole hybrids and their medicinal significance from 2000 to
2022. The plethora of research about green approaches and medicinal importance cited
in this review article will be helpful for researchers in future for drug discovery and the
development of novel bioactive 1,2,4-thiadiazole drug candidates.

The following are different ecofriendly green synthetic strategies to produce 1,2,4-
thiadiazole structural hybrids by utilizing various synthetic conditions to achieve products
in high yields within a short period of time.
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5.1. PIFA Catalyst for Formation of N–S Bond via Intramolecular Cyclization

Mariappan et al. developed a synthetic green and broad substrate scope protocol for
S-N bond formation via intramolecular cyclization to afford substituted 5-amino-based
1,2,4-thiadiazole derivatives in the presence of hypervalent iodine (III) as an inexpensive
catalyst (Scheme 1). The merit of this synthetic approach is that it is metal-free and has
a short reaction time and good-to-excellent yield of products at ambient temperature. A



Catalysts 2022, 12, 1329 7 of 24

mixture of N-(phenyl carbamothioyl) benzimidamide 2 was treated with phenyliodine (III)
bis(trifluoroacetate) (PIFA) in 1,2-dichloroethane (DCE) to achieve the corresponding 1,2,4-
thiadiazole derivatives 3, as depicted in Scheme 1. The plausible mechanism suggested
that the PIFA was reacted with midoyl thiourea to generate an intermediate in which the
NH nucleophilic group attacks the sulfur atom to afford the corresponding product with
the removal of trifluoro acetic acid and iodobenzene. The advantage of this synthetic
protocol is that the product yield is good: either substrate has electron-donating or electron-
withdrawing groups, or both [253].
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5.2. Molecular I2 Catalysis and Oxidative N–S Bond Formation

Wang et al. reported an efficient synthetic approach for the construction of 5-amino-
and 3,5-diamino-substituted 1,2,4-thiadiazoles via oxidative N–S Bond formation in scalable
fashion by utilizing molecular iodine as the sole oxidant as displayed in Scheme 2. This
transition, metal-free, short reaction time and mild reaction conditions strategy transformed
imidoyl and guanyl thiourea 4 into 1,2,4-thiadiazole 5 in the presence of K2CO3, acetonitrile
and molecular iodine as a catalyst at room temperature. The products of gram-scale
synthesis were afforded in excellent yields, 96–99%, as shown in Scheme 2. The diverse
electron-donating, such as methyl (Me), and electron-withdrawing, such as Cl, Br, NO2 and
CF3, substituents on the aryl group of aromatic thioamides were well-tolerated and afforded
maximum yields of the respective products. As the aromatic thioamides were weaker in
nucleophilicity, which resulted in relatively lower yields with strong electron-withdrawing
groups [254].
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5.3. Molecular I2 Catalysis for Regio-Specific and Expeditious Synthetic Approach

Mangarao et al. reported an expeditious approach to achieve the novel N-fused and
3,4-disubstituted 5-imino-1,2,4-thiadiazole hybrid structures (8,10) by treating substituted
isothiocyanate 7 with 2-aminopyridine/amidine (6,9), which underwent intramolecular
cyclization to form N-S bonds in the presence of an inexpensive I2 catalyst and acetonitrile
as a solvent at ambient temperature as shown in Scheme 3. The merits of this facile
and highly efficient regio-specific synthetic approach are insensitivity to moisture and air,
being metal-free, highly efficient in product yield, gram-scale synthesis and wide substrate
spectrum [255].
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5.4. Molecular I2 Catalysis for One-Pot Green Protocol and Intramolecular Oxidative Coupling

Chai et al. afforded 3,5-disubstituted 1,2,4-thiadiazole 13 in an efficient and simple one-
pot green protocol through the sequential intermolecular combination of alkyl substituted
nitriles 12 with aryl substituted thiamide 11, through intramolecular oxidative coupling
of N–H and S–H bonds in an aqueous medium and iodine as the sole oxidant catalyst as
depicted in Scheme 4 [256].
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5.5. Ultrasonic-Assisted Synthesis in Water

Chauhan et al. reported the conversion of thiobenzamide 11 with chloranil 14, under
ultrasound irradiation in an aqueous medium at ambient temperature, to the corresponding
1,2,4-thiadiazole 15 with a metal-free, catalyst-free, convenient and environmentally benign
one-pot protocol. The sequential intermolecular combination of thiomide 11 with chloranil
14 (oxidant) through intramolecular oxidative coupling of N-H and S-H bonds afforded 3,5-
disubstituted 1,2,4-thiadiazoles in good-to-excellent yields as displayed in Scheme 5 [257].
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5.6. HTACas PTC for Green Synthesis Using Molecular Oxygen as an Oxidant

Zhao et al. developed an efficient green methodology in which molecular oxygen
is used as a terminal oxidant to furnish 1,2,4-thiadizoles as depicted in Scheme 6. The
oxidative dimerization of alkyl and aryl thioamides 16 was achieved in the presence of I2
as a catalyst, hexadecyltrimethyl ammonium chloride (HTAC) as a phase transfer catalyst
(PTC) and con. H2SO4 as a regenerative agent. The substituted thiomide underwent
transformation into the substituted 1,2,4-thiadiazoles 17 in excellent yields via intramolec-
ular oxidative coupling of N-H and N-S bonds. The lowest 35% yield indicated that the
electron-withdrawing substituent on the benzene ring of benzothioamide failed to undergo
the dimerization reaction compared with the electrodonating substituents [258].
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5.7. Transition-Metal-Free Green Protocol Using Air as Oxidant

A novel and green approach was developed by Yang et al. with a broad substrate
scope, mild reaction conditions, good functional group tolerance and high regioselectivity to
construct the S-N bond of a 1,2,4-thiadiazole core via oxidative coupling. In this metal-free
and gram-scale synthetic strategy, substituted amidines 18 and substituted isothiocyanates
19 were treated for the construction of the S-N bond via I2 mediated oxidative coupling to
produce 5-amino-1,2,4-thiadiazole derivatives 20 in the presence of TMEDA (N,N,N′,N′-
tetramethyl ethylene diamine), air (oxidant) and acetonitrile as the solvent. In this synthetic
pathway, 1,2,4-thiadiazoles were afforded in moderate-to-excellent yields (Scheme 7) [259].
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5.8. Solid–Solid Oxidative Coupling

Hassan Zali Boeini reported a novel, rapid, simple and efficient protocol for the
conversion of the equimolar amount, pulverized thiobenzamide 21 and N-bezyl-DABCO-
tribromide in wet solid–solid conditions to produce 1,2,4-thiadiazoles 22 in excellent yields
compared with conventional methods (Scheme 8). In this green method, intramolecular ox-
idative coupling and efficient cyclization constructed the aryl-substituted 1,2,4-thiadiazoles.
This short-term, ambient temperature and high yield are the key features of this envi-
ronmentally benign approach compared with the conventional synthetic approach of
1,2,4-thiadiazoles [260].
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5.9. Green Synthesis in Wet-Paste Conditions

Hassan Zali Boeini developed another highly efficient and rapid synthetic method-
ology to produce diaryl substituted 1,2,4-thiadiazoles in wet-paste conditions. The N,N′-
dibromo phenytoin 24 was used for the rapid conversion of aryl-substituted thiobenza-
mides 23 to the corresponding 1,2,4-thiadiazole 25 in excellent yields (88–99%) through
efficient intramolecular cyclization as depicted in Scheme 9 [261].
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5.10. Oxidative Dimerization Using CC–DMSO in PEG-400

Khosropour and Noei developed an efficient, ecofriendly and inexpensive synthetic
protocol for the construction of the1,2,4-thiadiazole privileged structural motif. The struc-
turally diverse 3,5-diaryl-substituted 1,2,4-thiadiazole structural hybrids 27 were afforded
in excellent 88–96% yields due to intramolecular oxidative dimerization and cyclization
of substituted aryl thioamides 26 with chloranil 14 by utilizing a green medium of 4,6-
trichloro-1,3,5-triazine-DMSO (CC-DMSO) in PEG-400 (Scheme 10). The advantages of
this preparatory protocol are simplicity, very short reaction times, generality, recyclability
of solvent, environmentally benign, ambient temperature and elaboration of substituted
1,2,4-thiadiazoles with high-to-excellent yields [262].

Catalysts 2022, 12, x FOR PEER REVIEW 11 of 24 
 

 

S

NH2Ar (CH3)2SO PEG-400, 8-15 min, rt
N

SN

88-96% Yield

Ar Ar2
26 27

Chloranil

14

 
Aryl = Ph, 4-methoxyphenyl, 2-furyl, 4-chlorophenyl, 3-chlorophenyl, 20chlorophenyl, 2,4-dichlorophenyl,
4-bromophenyl, 3-bromophenyl, 4-flourophenyl

 
Scheme 10. Green synthesis of substituted diaryl-1,2,4-thiadiazoles 27. 

5.11. Basic Alumina Catalyst for Synthesis of Substituted 1,2,4-Thiadiazoles via Grinding Ap-
proach 

Xu et al. developed a solvent-free, environmentally benign synthetic approach to syn-
thesize 3,5-disubstituted-1,2,4-thiadiazole structural hybrids 30 in excellent yields (90–
99%) through the reaction of substituted thiomide 28 with NBS 29 in the presence of basic 
alumina and grinding this reaction mixture for 5–15 min at room temperature as shown 
in Scheme 11. This synthetic protocol displayed advantages over existing strategies to ac-
cess substituted 1,2,4-thiadiazoles in terms of efficiency, higher yields, short duration of 
reaction time and neat conditions. This facile and highly efficient methodology showed 
compatibility with variety of functional groups such as the trifluoromethyl, methyl, meth-
oxy, chloro, pyridyl and thienyl groups [263]. 

NH2

S

NBS

28 29

Grinding, rt, basic Al2O3, 1:1.05
R

N

S N

R

R

30
5-15 min

90-99% yield
 

R = -trifluoromethyl, -methyl, -methoxy, -chloro, -pyridyl, -thienyl
 

Scheme 11. Green synthesis of substituted diaryl-1,2,4-thiadiazoles 30 via grinding. 

5.12. Synthesis of 1,2,4-Thiadiazole-5-Carboxylates by Microwave-Assisted Approach 
Fordyce et al. generated the substituted ethyl 1,2,4-thiadiazole-5-carboxylate scaf-

folds 33 by the cycloaddition of 0.56 molar oxathiazolone 31 with 0.5 molar ethyl cyanofor-
mate (ECF) 32 in the presence of p-xylene solvent under microwave-assisted heating at 
160 °C for 10 min as represented in Scheme 12. The solvent and excessive ethyl cyanofor-
mate were removed under reduced pressure, and residue was subjected to purification 
and spectroscopic characterizations. The merits of microwave-assisted green synthetic 
methodology were the shorter reaction time and easy work-up to produce ethyl-1,2,4-thi-
adiazole-5-carboxylate products in moderate-to-good yields [264]. 

R N S NCCO2Et
MW, 10 min, p-Xylene, 160 oC N

S N

R

O

OEt

31 32
33 42-96%

 

R = Ph, p-ClC6H4, o-HOC6H4,  m-ClC6H4, 2-thienyl, Me, ClCH2, Cl2CH, ETO2Cl
 

Scheme 12. Microwave-assisted synthesis of substituted-1,2,4-thiadiazoles 33. 

Scheme 10. Green synthesis of substituted diaryl-1,2,4-thiadiazoles 27.

5.11. Basic Alumina Catalyst for Synthesis of Substituted 1,2,4-Thiadiazoles via
Grinding Approach

Xu et al. developed a solvent-free, environmentally benign synthetic approach to
synthesize 3,5-disubstituted-1,2,4-thiadiazole structural hybrids 30 in excellent yields
(90–99%) through the reaction of substituted thiomide 28 with NBS 29 in the presence
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of basic alumina and grinding this reaction mixture for 5–15 min at room temperature as
shown in Scheme 11. This synthetic protocol displayed advantages over existing strategies
to access substituted 1,2,4-thiadiazoles in terms of efficiency, higher yields, short dura-
tion of reaction time and neat conditions. This facile and highly efficient methodology
showed compatibility with variety of functional groups such as the trifluoromethyl, methyl,
methoxy, chloro, pyridyl and thienyl groups [263].
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5.12. Synthesis of 1,2,4-Thiadiazole-5-Carboxylates by Microwave-Assisted Approach

Fordyce et al. generated the substituted ethyl 1,2,4-thiadiazole-5-carboxylate scaffolds
33 by the cycloaddition of 0.56 molar oxathiazolone 31 with 0.5 molar ethyl cyanoformate
(ECF) 32 in the presence of p-xylene solvent under microwave-assisted heating at 160 ◦C for
10 min as represented in Scheme 12. The solvent and excessive ethyl cyanoformate were re-
moved under reduced pressure, and residue was subjected to purification and spectroscopic
characterizations. The merits of microwave-assisted green synthetic methodology were the
shorter reaction time and easy work-up to produce ethyl-1,2,4-thiadiazole-5-carboxylate
products in moderate-to-good yields [264].
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5.13. Green Synthesis of 1,2,4-Thiadiazole via Ionic Liquids

Zali-Boeini et al. reported the synthesis of a new facile and efficient environmentally
friendly methodology to afford 3,5-disubstituted-1,2,4-thiadiazole by using pentyl pyri-
dinium tribromide ionic liquids as the solvents, as well as reagent to carry out the oxidative
dimerization of aryl thiomide. An equimolar mixture of arythiomide and pentylpyridinium
tribromide ionic liquids was mixed together and stirred for 3–7 min at ambient temperature
to obtain substituted 1,2,4-thiadiazole structural motifs in excellent yields. The recyclable
pentylpyridinium tribromide compound, named room-temperature ionic liquids (RTILs),
can be used 4–5 times to carry out oxidative dimerization. This synthetic approach is
smooth, rapid, clean and environmentally benign and achieved products in 88–97% yield
(Scheme 13) [265].
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5.14. Copper Salts as Catalyst for Green One-Pot Synthetic Protocol for N–S Bond Formation

Kim et al. described a one-pot environmentally benign synthetic approach to obtain
3-substituted-1,2,4-thiadizole under different solvents (THF, DMF and CH3CN), catalysts
(CuI, CuCN, CuBr2, Cu(OAc)2·H2O, Cu(OTf)2, CuSO4) and Cs2CO3 as basic agents for
the facilitation of the reaction. The substituted amidines 18 reacted with substituted
isothiocyanates 35 or substituted thioureas 36 and directly underwent N–S Bond formation
via intramolecular cyclization in the presence of Cu(OTf)2 catalyst, basic agent CsCO3 and
solvents (THF and acetonitrile) to achieve substitute-1,2,4-thiadiazole structural hybrids 37
in moderate-to-good yields as shown in Scheme 14 [266].
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5.15. Oxidative Dimerization of Thioamides by Using Oxone as Safe Oxidant

Yoshimura et al. selected the ecofriendly, inexpensive, safe and readily available oxone
as an oxidative dimerization agent. They developed an efficient, novel synthetic protocol
to furnish 1,2,4-thiadiazole 17 structural motifs in good-to-excellent yields through the
treatment of substituted thioamide 16 with oxone as oxidant in the presence of DCM at
ambient temperature, as displayed in Scheme 15. In the present synthetic protocol, both
the EW and ED substituents furnished 1,2,4-thiadiazoles in good yields, which is the main
advantage of this green strategy [267].

5.16. Molecular I2 as Catalyst for Synthesis of 1,2,4-Thiadiazoles via Oxidative N–S
Bond Formation

Jatangi et al. reported a facile, efficient, environmentally benign and convenient
synthetic approach for the synthesis of 3-substituted 5-amino-1,2,4-thiadiazole scaffolds
in a scalable fashion. In this metal-free and high-substrate-tolerance methodology, the
reaction of substituted isothiocynates 29 and substituted amidoximes 38 was carried out
at 60 ◦C in the presence of I2, with potassium carbonate and water as green solvents, to
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afford substituted 1,2,4-thiadiazole derivatives 39 in good-to-high yields, as depicted in
Scheme 16 [268].
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5.17. Synthesis of N-Fused Imino-1,2,4-Thiadiazolo Isoquinoline via Montmorillonite
K10-Catalyst

Chacko and Shivashankar for the first time reported the green, recoverable, inexpen-
sive, nontoxic and efficient oxidizing montmorillonite K10-catalyst for the rapid construc-
tion of N–S Bond formation to afford 1,2,4-thiadiazolo isoquinoline structural hybrids in
good yields. In this simple synthetic protocol, 3-aminoisoquinolines 40 were coupled with
substituted isothiocyanates 35 to construct the N–S Bond of 1,2,4-thiadiazole core to achieve
N-fused imino-1,2,4-thiadiazolo isoquinoline scaffolds in excellent yields as displayed in
Scheme 17 [269].
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5.18. H2O2-Catalyzed Synthesis of 1,2,4-Thiadiazoles

Cao et al. reported the hydrogen-peroxide-mediated synthetic transformations of sub-
stituted thiourea 4 into 1,2,4-thiadiazoles 5 through the construction of the N–S Bond under
metal-free synthetic conditions with ethanol as the sole solvent at ambient temperature as
shown in Scheme 18. The advantages of this synthetic strategy are large-scale preparation,
operationally simple, ethanol as the green solvent and clean by-products. 1,2,4-thiadiazole
structural hybrids were obtained in good-to-excellent yields [270].
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6. Conclusions

Advances in green synthetic organic chemistry may result in a more ecofriendly future
with the help of green technologies, processes and synthetic reaction conditions, such as
green solvents, green catalysts, solvent-free and less energy-consuming strategies and
microwave- and ultrasonic-assisted approaches that transform reactants into products
with sustainability. The chemical industrial sector and academic research mostly rely on
hazardous catalysis and solvents. Therefore, alternative green solvents and green catalysis
are the future of our ecosystem in reducing or even eliminating these hazardous materials’
effects on the environment and can lead to the optimized yield of products in a shorter
period of time, in accordance with all 12 principles of green chemistry. In this plethora
of research, various green catalytic approaches have been applied to furnish different
1,2,4-thiadiazole structural hybrids in good-to-excellent yields by utilizing various green
solvents, solvent-free procedures, ionic liquid approaches, grinding and chemo-mechanical
protocols, microwave- and ultrasonic-assisted time reduction techniques. We think that the
next decade will be a major mark of applying green and sustainable catalysis methodologies
to promote organic transformations in academia and industry alike.
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Mechanochemical synthesis method for drugs used in the treatment of CNS diseases under PTC conditions. Catalysts 2022,
12, 464. [CrossRef]

147. Ghosh, A.D. Green solvents for sustainable organic synthesis. IJSR 2015, 6, 2154–2157. [CrossRef]
148. Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H. Green solvents in organic synthesis: An overview. Curr. Org. Chem. 2013, 17,

1179–1187. [CrossRef]
149. Breeden, S.W.; Clark, J.H.; Macquarrie, D.J.; Sherwood, J.; Zhang, W.; Cue, B.W., Jr. Green Solvents. Green Techniques for Organic

Synthesis and Medicinal Chemistry; Wiley: Chichester, UK, 2012; pp. 241–246.
150. Earle, M.J.; Seddon, K.R. Ionic liquids green solvents for the future. Pure Appl. Chem. 2000, 72, 1391–1398. [CrossRef]

http://doi.org/10.3390/molecules27134258
http://doi.org/10.1038/s41598-018-38051-y
http://www.ncbi.nlm.nih.gov/pubmed/30755650
http://doi.org/10.1016/j.renene.2018.10.029
http://doi.org/10.1016/j.fuel.2017.11.153
http://doi.org/10.1016/j.enconman.2017.10.018
http://doi.org/10.1016/j.colsurfa.2018.05.085
http://doi.org/10.1016/j.fuel.2018.02.014
http://doi.org/10.1016/j.cej.2019.02.016
http://doi.org/10.1016/j.jiec.2020.03.033
http://doi.org/10.3389/fchem.2022.999607
http://www.ncbi.nlm.nih.gov/pubmed/36186604
http://doi.org/10.1016/j.molliq.2018.12.063
http://doi.org/10.1038/s41557-020-0419-2
http://doi.org/10.3390/catal10111227
http://doi.org/10.3390/catal11030367
http://doi.org/10.1039/D0CY02274H
http://doi.org/10.1021/acs.joc.0c02205
http://www.ncbi.nlm.nih.gov/pubmed/33307684
http://doi.org/10.1002/adfm.202104231
http://doi.org/10.1002/cptc.202000014
http://doi.org/10.1002/ejoc.202200026
http://doi.org/10.1016/j.cogsc.2018.02.009
http://doi.org/10.1007/s10311-018-0733-8
http://doi.org/10.3390/catal12080889
http://doi.org/10.3390/molecules25245918
http://doi.org/10.26717/BJSTR.2022.45.007237
http://doi.org/10.3390/catal12050464
http://doi.org/10.21275/SR201122112420
http://doi.org/10.2174/1385272811317110005
http://doi.org/10.1351/pac200072071391


Catalysts 2022, 12, 1329 20 of 24
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