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Abstract: The activation of carbon dioxide (CO2) molecules and separation/transfer of photoinduced
charge carriers are two crucial factors influencing the efficiency of CO2 photoreduction. Herein,
we report a p-type Bi2Te3/commercial TiO2 (pBT/P25) nanocomposite for enhanced CO2 photore-
duction. Upon light irradiation, a temperature gradient formed in pBT induces the Seebeck effect
to build a thermoelectric field, which promotes the charge carriers’ separation/transfer. Addition-
ally, pBT with a strong light absorption capacity generates the photothermal effect favoring the
activation of CO2 molecules. In addition, the excellent electric conductivity and large work function
render pBT an efficient cocatalyst for further improving the charge carriers’ separation/transfer.
Owing to the synergistic enhancement effect of pBT on the activation of CO2 molecules and promo-
tion of charge separation/transfer, we achieved the highest CO evolution rate over pBT(2)/P25 of
19.2 µmol·gcat

−1·h−1, which was approximately 5.5 times that of bare P25. This work suggests
that a thermoelectric material/semiconductor nanocomposite could be developed as an efficient
photo-thermo-electro-chemical conversion system for enhanced CO2 reduction via promoting the
charge carriers’ separation/transfer.

Keywords: TiO2; Bi2Te3; Seebeck effect; CO2 photoreduction; charge separation

1. Introduction

The utilization of fossil fuels leads to the emission of ~1.3 × 104 million tons of carbon
dioxide (CO2) in the atmosphere per year, which is one of the reasons for global warming
and the greenhouse effect [1,2]. Converting CO2 into high-value-added chemicals has be-
come the best choice for its commercial application. Nonetheless, CO2 conversion reactions
usually require a high energy input [3]. Thus, it is of great significance to develop a reliable
CO2 conversion path under the condition of low energy consumption. As an ideal green
technology for solar-to-chemical conversion, the photoreduction of CO2 into hydrocarbon
solar fuels with sunlight as the sole input energy source has been attracting a great deal
of research interest in recent years [4–9]. In those possible CO2 photoreduction products,
CO can be utilized as both a Fischer-Tropsch synthesis reaction feed gas and a reducing
agent in metal smelting [10,11]. In this context, the reduction of CO2 to toxic CO for various
industrial applications is a promising strategy for solving the two globally concerning
issues of the energy crisis and greenhouse effects. Among many photocatalysts, TiO2 has
been widely studied for water splitting [12], the degradation of organic pollutants [13], and
CO2 photoreduction [14] due to its low price, non-toxic property, and stability. However,
it is still a tough challenge to achieve a high photoconversion efficiency because of the
extremely thermodynamically stable non-polar CO2 molecules and the fast recombination
of photogenerated electron–hole pairs over the TiO2 surface [15–17].
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On one hand, to promote the adsorption/activation of CO2 molecules, the significant
role of the photothermal effect has been paid extensive attention, because the high pho-
tothermal temperature is believed to greatly favor the expansion of light absorbance and
more importantly the activation of the CO2 molecules, thereby leading to a significantly
enhanced CO2 photoreduction performance [18–21]. On the other hand, to suppress the
rapid recombination of photoexcited charge carriers, one effective solution is to introduce
co-catalysts, including noble metals [22–24], noble-metal-contained alloys, or core-shell
structured bimetals [25–29]. Additionally, our lab recently developed the alkalinized Ti3C2
as an excellent noble-metal-free cocatalyst for significantly enhancing the photocatalytic
CO2 reduction of commercial TiO2 (P25) [30,31]. In principle, the large work function and
excellent electrical conductivity of a cocatalyst favor the separation of photo-generated
electrons and holes and thus achieve a high activity of CO2 photoreduction [23,24].

In addition to using cocatalysts, previous studies have shown that electric/magnetic
fields could serve as the driving force for effectively promoting the separation/transfer
of photoexcited charge carriers and hence increasing the photocatalytic activities. For
instance, some researchers found that the oppositely charged ends of tourmaline could
drive electrons and holes to transfer in opposite directions to enhance the photocatalytic
activity of dye or isopropanol (IPA) degradation [32,33]. Moreover, the non-toxic Fe3O4
was selected as an appropriate supplier of a magnetic field in a TiO2-based photocatalyst
with enhanced charge separation, thus resulting in significantly increased photocatalytic
activities [34,35].

It is known that most thermoelectric materials possess a strong absorption capacity,
which can make full use of ultraviolet–visible–infrared (UV–Vis–IR) light to produce the
photothermal effect [36]. In addition to the photothermal effect, thermoelectric materials
are able to induce an electric field by a temperature gradient, which is generally known
as the Seebeck effect. Previously, the applications of various thermoelectric materials in
photocatalysis have been reported, either by the thermoelectric material alone [37–40]
or by combining the thermoelectric material with other wide bandgap semiconductors
to form the type-II heterostructure [41–43]. To the best of our knowledge, however, the
aforementioned Seebeck effect has never been used for enhancing photocatalytic activity.
As one of the common thermoelectric materials, the excellent optical, electrical, and ther-
moelectric properties of the black bismuth telluride (Bi2Te3) would render the formation
of the photothermal effect upon light irradiation. Meanwhile, if Bi2Te3 is combined with
a suitable semiconductor and the Bi2Te3/semiconductor composite is subjected to light
irradiation, a photothermal effect and a temperature gradient could be formed, inducing
a thermoelectric field in Bi2Te3 via the Seebeck effect [44]. Moreover, Bi2Te3 could also
serve as a cocatalyst for CO2 reduction owing to its excellent electrical conductivity and
high work function (~5.3 eV, close to the Fermi-level of Bi2Te3) [45]. In this context, Bi2Te3
is believed to play a critical role in activating the CO2 molecules and promoting the sep-
aration/transfer of photoinduced charge carriers, thus significantly enhancing the CO2
photoreduction performance.

Herein, we report a Bi2Te3/TiO2 nanocomposite, showing significantly enhanced CO2
photoreduction activity. With the intention of CO2 reduction, we purposely selected the
p-type Bi2Te3 (pBT), from which the thermoelectric field would be favorable for driving
the photogenerated electrons from TiO2 to the pBT surface to participate in the CO2
reduction reaction. On the one hand, a temperature gradient formed in pBT induces a
thermoelectric field via the Seebeck effect, favoring the separation/transfer of photoinduced
electrons and holes. On the other hand, the strong light absorption capacity of pBT offers an
efficient photo-thermal conversion to produce a high temperature on the pBT surface, which
facilitates the activation of CO2 molecules. Moreover, the interfacial electronic interaction
in pBT/P25 endows pBT as a cocatalyst with the electron-rich environment for increasing
CO2 photoreduction. Hence, the pBT/P25 nanocomposite exhibited a CO evolution rate of
19.2 µmol·gcat

−1·h−1, approximately 5.5 times that of bare P25. Our research demonstrates
that the thermoelectric effect could be incorporated into the strategy for developing an
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efficient photo-thermo-electro-chemical conversion system for CO2 reduction based on a
full-spectrum-responsive thermoelectric material/semiconductor nanocomposite.

2. Results and Discussion
2.1. Structural, Morphological, and Optical Characterizations

As shown in Figure 1a, the XRD pattern of pBT(2)/P25 could be indexed well by the
joint committee on powder diffraction standards (JCPDS) card of Bi2Te3 [15] and dual-
phased P25 [46]. Three main peaks at 25.3, 37.4, and 47.8 were typical for the (101), (004),
(200) planes of anatase TiO2 (JCPDS No. 21-1272), and the peaks at 27.4, 36.0, and 41.2 could
be assigned to (110), (111), and (220) planes of rutile TiO2 (JCPDS No. 21-1276). The peaks at
27.7◦, 37.8◦, and 44.7◦ corresponded to the (015), (1010), and (110) planes of Bi2Te3 (JCPDS
No. 15-0863). TEM images showed uniform spherical P25 nanoparticles with a diameter of
~25 nm, and pBT nanoparticles with a diameter of ~10 nm (Figure S1). The HRTEM image,
as shown in Figure 1b displayed that the distances of lattice fringes were 0.322, 0.352, and
0.249 nm, and in accordance with the (015) planar space of pBT, (101) planar spaces of
anatase, and rutile TiO2, respectively [46]. The high-angle annular dark-field (HAADF)
TEM image and corresponding EDS analysis results show the existence of Ti, O, Bi, and Te
elements in pBT(2)/P25 (Figure S2). The above results indicate that the pBT nanoparticles
were loaded on P25 with an excellent interfacial structure, which was beneficial for the
charge-carrier transfer, as will be discussed below.
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Figure 1. (a) XRD patterns of P25, pBT, and pBT(2)/P25; (b) HRTEM image of pBT(2)/P25.

The SEM images of P25 and pBT(2)/P25 showed that the diameter of P25 in pBT(2)/P25
was maintained at ~25 nm after hydrothermal treatment (Figure S3). Moreover, we studied
the Brunauer-Emmett-Teller (BET) surface area of P25 and pBT(2)/P25 using N2 sorption
analysis. As shown in Figure S4, the N2 sorption isotherm of pBT(2)/P25 did not exhibit
an apparent difference in comparison to that of P25. The specific surface area of P25 and
pBT(2)/P25 was 57.6 and 54.9 m2·g−1, respectively. Although the efficiency of surface
redox reactions could be dictated by the morphology of photocatalysts or the number of
surface reduction/oxidation reactive sites, such similar results of P25 and pBT(2)/P25
in the structure/morphology and specific surface area could not lead to the significantly
enhanced CO2 photoreduction activity of pBT(2)/P25 as shown below.

The XPS survey spectrum of pBT(2)/P25 showed the peaks of Ti 2p, O 1s, Bi 4f, and Te
3d (Figure S5). In the high-resolution XPS spectra, we observed that the two peaks of Ti
2p3/2 and Ti 2p1/2 in pBT(2)/P25 were shifted to higher energies (463.90 and 458.20 eV)
than those in pure P25 (463.75 and 458.15 eV, Figure S6a) while the peaks of O 1s were
almost unchanged (529.50 eV, Figure S6b). The peaks of Bi 4f7/2 and Bi 4f5/2 in pBT(2)/P25
were shifted to lower energies (159.00 and 164.30 eV) than those in pure pBT (159.20
and 164.60 eV, Figure S6c) [47]. Similarly, the peaks of Te 3d5/2 Te 3d5/2 in pBT(2)/P25
were shifted to lower energies (575.70 and 586.10 eV) than those in pure pBT (576.15 and
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586.40 eV), and besides, an oxide peak of Te 3d at ~580.30 eV was observed in pBT(2)/P25
(Figure S6d). The shift of binding energies strongly suggested the electronic coupling
of pBT and P25 [48,49], which might form an electron-rich environment in pBT favoring
CO2 reduction [31].

The UV–Vis–IR DRS spectra in Figure 2a showed that compared with pure P25 only
absorbing UV light due to the wide bandgap (~3.2 eV) [30], the absorbance of pBT(2)/P25
was appreciably enhanced, especially in the Vis–IR range because of the strong light absorp-
tion ability of loaded pBT nanoparticles. As expected, the strong light absorption ability
of pBT would result in quite high photothermal temperature in pBT(x)/P25 depending
on the loaded amount of pBT., The in situ monitored photothermal temperatures on the
surfaces of P25, pBT, and pBT(x)/P25 (x = 1, 2, 3, 4) upon a 300 W Xe lamp irradiation are
shown in Figure 2b. The photothermal temperatures for all the samples increased with the
increasing irradiation time and became gradually saturated after approximately 30 min.
The photothermal temperatures for P25 and pBT were 120 ◦C and 350 ◦C, respectively.
As for the pBT(x)/P25 (x = 1, 2, 3, 4) composites, the photothermal temperatures were
between 150 and 250 ◦C. The greater the mass percentage of pBT, the higher photothermal
temperature would be. The high photothermal temperature might be one of the important
reasons accounting for the enhanced CO2 photoreduction performance of pBT(2)/P25, as
discussed below.
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2.2. Temperature Gradient and Electric Potential Simulation

A temperature gradient was necessary for the Seebeck effect of pBT to induce a built-in
electric field. In practice, it was hard to measure the temperature gradient in pBT/P25.
Instead, the temperature gradient in pBT/P25 nanocomposite was theoretically simulated
by a commercial FEM solver in COMSOL Multiphysics according to Equation (1) [44,49].
Considering the fact that the thermal conductivities of TiO2 (~8.50 W m−1·K−1) and Bi2Te3
(~1.47 W·m−1·K−1) are different [50,51], and the heat-dissipating from Bi2Te3 of higher
temperature to TiO2 of lower temperature was faster than that to a CO2 atmosphere, a
temperature gradient could be formed between the exposed surface of Bi2Te3 and the
interface of Bi2Te3/TiO2. As shown in Figure 3a, the simulated temperature distribution
verified the formation of a temperature gradient in a Bi2Te3/TiO2 nanocomposite under
light irradiation. The temperature gradient over Bi2Te3 could be ~40 ◦C, meaning the
Seebeck effect could be excited in Bi2Te3/TiO2 via light illumination [44,52].

In principle, the Seebeck effect suggested that an electric field will be formed by the
majority carrier transfer from the high-temperature end to the low-temperature end in a
thermoelectric material [53]. For p-type Bi2Te3 (pBT), the majority carrier (holes) would
diffuse from the high-temperature end (exposed surface of pBT) to the low-temperature
end (interface of pBT/P25), inducing an electric field in the same direction as the directional
diffusion of holes. The COMSOL software displayed the electric potential over Bi2Te3
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according to the above-simulated temperature gradient. Figure 3b showed that the electric
potential was ~7.85 V. The direction of the thermoelectric field was from the high electric
potential surface (high-temperature surface of pBT) to the low electric potential surface
(interface of pBT/P25). Thus, we expected that the Seebeck effect would undoubtedly
influence the CO2 photoreduction process of pBT/P25 by accelerating the transfer of
photoinduced electrons.
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2.3. CO2 Photoreduction Performances

The GC spectra were obtained to determine the products of CO2 photoreduction over
pBT(2)/P25. As shown in Figure S7, we observed that the main reduction product was
CO with an evolution rate of 19.2 µmol·gcat

−1·h−1. In addition, CH4 and H2 were also
detected as the reduction products with much lower evolution rates of 0.4 µmol·gcat

−1·h−1

and 2.1 µmol·gcat
−1·h−1, respectively. O2 was detected as the oxidation product of H2O

with an evolution rate of 9.6 µmol·gcat
−1·h−1, indicating that the CO2 photoreduction over

pBT/P25 was a complete redox reaction. Considering the aforementioned results, we used
the CO evolution rate to evaluate the CO2 photoreduction activities of P25 and pBT(x)/P25
(x = 1, 2, 3, 4).

As displayed in Figure 4a, the pure pBT showed almost no activity, and the pure P25
only exhibited a very low CO evolution rate of 3.5 µmol·gcat

−1·h−1. Surprisingly, after
loading pBT on P25, the as-obtained pBT(x)/P25 nanocomposites exhibited significantly
increased activity compared with either pBT or P25. With an optimal pBT loading of 2 wt%,
the pBT(2)/P25 composite showed the highest CO evolution rate of 19.2 µmol·gcat

−1·h−1,
which was nearly 5.5 times that of P25. Further increasing the pBT loading amount
(e.g., pBT(3)/P25, and pBT(4)/P25) decreased the activity, probably due to the light-
blocking effect of pBT that had almost no activity for CO2 photoreduction. The O2 evolution
rates were shown in Figure 4b. Additionally, pBT(2)/P25 had the highest activity, which
was ~5.1 times higher than that of P25 (1.9 µmol·gcat

−1·h−1). As mentioned above, the
enhanced CO2 photoreduction performance of pBT/P25 could be partially attributed
to the high photothermal temperature over the pBT (e.g., ~193 ◦C for pBT(2)/P25) and
thermoelectric field in pBT upon light irradiation.
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To verify the important role of the photothermal effect and the Seebeck effect in
improving the activity of pBT(2)/P25 for CO2 photoreduction, we carried out several
experiments as follows. The thermocatalytic reaction over pBT(2)/P25 was conducted
in the dark using a flexible electric heating jacket to heat the reaction cell at ~193 ◦C.
The performance of thermal catalysis (0.2 µmol·gcat

−1·h−1) was much lower than that
of photocatalysis under irradiation (Figure S8). We also carried out a blank test of CO2
photoreduction on pBT(2)/Al2O3 under the same conditions as on pBT(2)/P25. The
photothermal temperature over pBT(2)/Al2O3 was very close to that over pBT(2)/P25
(Figure S9), but Al2O3 did not possess any photocatalytic activity. The CO evolution
rate over pBT(2)/Al2O3 (<0.1 µmol·gcat

−1·h−1, Figure S8) was negligible in comparison
with that over pBT(2)/P25. In addition, the CO2 photoreduction was carried out over
pBT(2)/P25 by using a Y44 cutoff filter to completely block UV light (denoted as Xe-Y44).
In this case, P25 would not be excited to show any photocatalytic activity judging from
the light spectrum of Xe-Y44 (Figure S10) and the absorption spectrum of P25 (Figure 2a).
Under the Xe-Y44 irradiation, the photothermal temperature over pBT(2)/P25 reached
~173 ◦C Figure S11). Surprisingly, only a very low CO evolution rate (~0.2 µmol·gcat

−1·h−1,
Figure S8) was obtained over pBT(2)/P25 under Xe-Y44 irradiation. The above results
indicated that without photoexcitation of P25, only heating the pBT(2)/P25 catalyst to a
high temperature could not improve the activity of pBT(2)/P25 for CO2 photoreduction.

In addition, to further confirm the role of the Seebeck effect in enhancing the CO2
photoreduction activity, we used commercial n-type Bi2Te3 (nBT) to prepare the nBT(2)/P25
nanocomposite as a comparison of pBT(2)/P25. It is worth pointing out that nBT and pBT
had the same light absorption capacity (Figure 5a), so the in situ monitored photothermal
temperature of nBT(2)/P25 (~192 ◦C) was almost the same as that of pBT(2)/P25 (~193 ◦C,
Figure 5b). Interestingly, the CO evolution rate over nBT(2)/P25 (11.1 µmol·gcat

−1·h−1,
Figure 5c) was much less than that over pBT(2)/P25 (19.2 µmol·gcat

−1·h−1). In contrast
to pBT with holes as the majority carrier, electrons are the majority carrier in nBT. Upon
light irradiation, the electrons would diffuse from the high-temperature end on the ex-
posed surface of nBT to the low-temperature end at the interface of nBT/P25. Obviously,
the thermoelectric field formed in nBT would inhibit the transfer of photoinduced elec-
trons from P25 to the nBT surface. Therefore, the CO evolution rate over nBT(2)/P25
was much less than that over pBT(2)/P25. The difference in CO evolution rates over
pBT(2)/P25 and nBT(2)/P25 clearly confirmed that the Seebeck effect enhanced CO2 pho-
toreduction via accelerating photoexcited charge-carrier separation. Actually, several
works have proved the promotion of Bi2Te3 on the charge transfer over TiO2 due to the
thermoelectric properties, indicating that it is feasible to enhance the photocatalytic activity
over the Bi2Te3/TiO2 nanocomposite by inducing a thermoelectric field in Bi2Te3 via the
Seebeck effect [54,55].
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On the other hand, we performed the CO2 photoreduction experiment by putting the
reaction cell in a basin containing cold water, just leaving the top window above the water
level for passing through incident light. Under this circumstance, the photothermal tem-
perature of pBT(2)/P25 (denoted pBT(2)/P25-Cool) under the full-arc Xe lamp irradiation
was significantly reduced to ~84 ◦C (Figure S12, Table S1). We found that, as shown in
Figure S13, the CO evolution rate over pBT(x)/P25-Cool was remarkably lower than that
over pBT(x)/P25, however, the activity of P25-Cool had only a slight decline. The above
results confirmed that the influence of the Seebeck effect on promoting charge transfer was
weakened by the low-temperature because of the slight temperature gradient. Moreover,
in consideration of the high photothermal temperature over the pBT surface, the above
results also proved the photothermal effect of pBT on the enhanced activity of pBT(2)/P25
for CO2 photoreduction, in the process of which the activation of CO2 molecules by the
high photothermal temperature played a crucial role. In fact, similar results were also
reported in Ni-, Rh-, or Au-loaded SiO2 and CeO2 catalysts, in the interface of which
the strong local electromagnetic field was formed to greatly favor the activation of CO2
molecules [19,20,56].

Three cycles of reaction for a total of 6 h showed that there was almost no decrease in
catalytic activity (Figure S14). The XRD patterns of pBT(2)/P25 before and after the reaction
also showed no change (Figure S15). Additionally, the XPS spectra of pBT(2)/P25 showed
that no new peak or obvious variation in the peak area ratio of four elements (Ti, O, Bi,
and Te) in pBT(2)/P25 was observed after reactions, confirming the stability of pBT(2)/P25
(Figure S16). To clarify whether CO originated from CO2 reduction, a series of blank
experiments—as reported in previous studies—were conducted [57,58]. The reaction in the
absence of pBT(2)/P25 catalyst (CO2 and H2O were added in the reaction cell) showed no
evolution of CO or other hydrocarbons. When CO2 and/or H2O were not added or were
replaced by Ar gas while keeping other conditions identical, no CO or other hydrocarbon
was detected. These results exclude the possibility that the high yield of CO was from the
adsorbed impurities containing carbon (if possible) on pBT(2)/P25.

2.4. Photoelectrochemical and Photoluminescence Properties

Previous results and discussion have proven the essential roles of the photothermal
effect and the subsequent Seebeck effect of pBT in the significantly enhanced activity
of pBT(2)/P25. Given the excellent electrical conductivity and large work function of
pBT [45], we expected that pBT might also serve as a suitable cocatalyst in promoting the
separation/transfer of photoexcited charge carriers. From this perspective, we carried out
the photoelectrochemical (PEC) measurements of P25 and pBT(x)/P25, in the process of
which the photothermal effect and Seebeck effect of pBT could be neglected since the surface
temperatures of P25 and pBT(x)/P25 photoanodes immersed in the 0.5 M K2SO4 aqueous
solution were in situ monitored to be only ~55.0 ◦C (Figure S17, Table S2). From Figure 6a,
we could see that pBT(2)/P25 showed the highest transient photocurrent (TPC) intensity
compared with P25 and other pBT(x)/P25 (x = 1, 3, 4) samples, corresponding to the
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optimal photocatalytic activity. The pBT(2)/P25 also clearly showed the lowest PL intensity
(Figure 6b), indicating a quenching effect of photoinduced electrons by pBT [59]. In no
doubt, the photoelectrochemical and photoluminescence properties verified the significant
role of pBT as an efficient cocatalyst in enhancing the CO2 photoreduction performance
of pBT(2)/P25. Additionally, we also utilized a UV lamp to completely exclude the Vis-
NIR light, comparing the photocatalytic performance of P25 and pBT(2)/P25 (Figure S18).
Under UV lamp illumination, the photothermal temperature over P25 and pBT(2)/P25
was enough low (~45 ◦C for P25-UV and 57 ◦C for pBT(2)/P25-UV, Figure S19) so that the
Seebeck effect and photothermal effect were negligible. Additionally, the results show that
the CO evolution rate over pBT(2)/P25 was still higher than that of P25, corresponding
to the PEC results and confirming the enhancement effect of pBT as a cocatalyst. In fact,
the work function of pBT (~5.3 eV) was similar to that of some noble metal cocatalysts
(Pt~5.65 eV, Au~5.1 eV) [60]. The enrichment effect of the noble metal cocatalysts with a
large work function on the photoexcited electrons from TiO2 will transfer electrons to the
cocatalysts and shift the Fermi energy level of the composites to a more negative point
(closer to the conduction band of TiO2), significantly improving the photocurrent intensity
and reduction ability of the photogenerated electrons [61,62]. In this context, pBT as a
cocatalyst not only promoted charge transfer efficiency but also enhanced the reduction
ability of photoexcited electrons over pBT/P25.
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Based on the above results and discussion, we could clarify that the thermoelectric
effect, photothermal effect, and co-catalyzing effect of pBT were incorporated into the
pBT/P25 nanocomposite with the promoted separation/transfer of photoinduced charge
carriers, thereby realizing enhanced CO2 photoreduction activity. Accordingly, we propose
in Figure 7 a mechanism elucidating the enhanced CO2 photoreduction over pBT/P25.
Upon light irradiation, a temperature gradient is formed in pBT due to the non-uniform heat
dissipation in pBT/P25. Then, the temperature gradient in pBT induces the Seebeck effect to
create a built-in thermoelectric field, which drives the electrons excited from P25 to the pBT
surface to participate in the CO2 reduction. Meanwhile, the high photothermal temperature
over the pBT surface benefits the thermodynamically endothermic CO2 photoreduction
by activating the CO2 molecules. In addition, the excellent electric conductivity and large
work function render pBT an efficient cocatalyst to improve the transfer and reduction
ability of the photoinduced electrons for CO2 reduction. Briefly, pBT plays an essential
role in the separation/transfer of photoinduced charge carriers and the activation of CO2
molecules, resulting in highly efficient CO2 photoreduction over pBT/P25.
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3. Materials and Methods
3.1. Chemicals and Synthesis

Commercial TiO2 (P25) (Sigma-Aldrich Co., Ltd., St. Louis, MO, USA), p-type Bi2Te3
(Iuding chemistry Co., Ltd., Hong Kong, China), n-type Bi2Te3 (Iuding chemistry Co., Ltd.),
and CO2 (99.99%, Tianjin Liufang Gas Co., Ltd., Tianjin, China) were used without
further treatment.

The p-type Bi2Te3/P25 (pBT/P25) was synthesized using a hydrothermal method
as follows: 500 mg of P25 and different amounts of p-type Bi2Te3 were mixed in 30 mL
of Deionized (DI) water. After stirring for 30 min, the mixture was transferred into a
50 mL Teflon-lined stainless-steel autoclave and heated at 170 ◦C for 24 h. The resulting
suspensions were completely washed with DI water and then dried in a vacuum oven at
60 ◦C for 12 h, obtaining pBT(x)/P25 (x = 1, 2, 3, 4 wt%; x is the weight ratio of pBT to P25)
nanocomposites. Following the same procedure as mentioned above, we also prepared
n-type Bi2Te3/P25 (nBT(2)/P25) for comparison.

Photoanode samples were fabricated by spin-coating the as-prepared catalysts on
fluorine-doped SnO2 (FTO) conductive glass. Typically, 10 mg of catalyst was dispersed
in 5 mL of ethanol under ultrasonication. The slurry solution was spin-coated on FTO
glass (10 × 10 mm2) for 60 cycles. After heating at 200 ◦C for 2 h, a photoanode sample
was obtained.

3.2. Materials Characterization

The crystal phase was determined by X-ray diffraction (XRD; D8 Advanced, Bruker,
Rheinstetten, Germany) using Cu-Kα radiation (λ = 0.154178 nm) at a scanning rate of
0.02◦·s−1. The morphology and microstructure of the samples were examined using
transmission electron microscopy (TEM; Technai G2 F20, FEI, Eindhoven, The Netherlands).
Ultraviolet-visible-infrared (UV-vis-IR) diffuse reflectance spectra (DRS) were recorded
at room temperature on a spectrophotometer (UV-3600, Shimadzu, Kyoto, Japan) using
BaSO4 as a reference and converted to absorption spectra via the Kubelka-Munk (K-M)
method. The chemical state was analyzed by X-ray photoelectron spectroscopy (XPS,
Escalab 250Xi, Thermo Scientific, Waltham, MA, USA) calibrated by the C 1s peak (284.6 eV)
of the surface adventitious carbon. Photoluminescence (PL) measurement was conducted
on a fluorescence spectrometer (Fluorolog-3, Horiba Scientific, Piscataway, NJ, USA) with
an excitation light wavelength of λ = 330 nm.

3.3. CO2 Photoreduction Evaluation

The CO2 photoreduction experiment was carried out in a reaction chamber with a
quartz lid that secured the adequate transmittance of incident light. The reaction chamber
with a total volume of 330 mL (OLPCRS-3, Shanghai Boyi Scientific Instrument Co. Ltd.,
Shanghai, China) was connected to a closed gas circulation system. Fifty milligrams of
catalyst was uniformly dispersed on a porous quartzose slice, which was fixed on the
stage inside the reactor. Three milliliters of DI water was injected into the cell as the



Catalysts 2022, 12, 1323 10 of 14

sacrificial agent and proton source for CO2 photoreduction. After the reactor was sealed
and evacuated, CO2 gas was injected until a pressure of 70 kPa. A 300 W full-arc xenon
lamp was employed as the light source, and the incident light intensity was measured to be
~1.3 W·cm−2 using an optical power meter (THORLABS, PM 100D, Bergkirchen, Germany).
The sample surface temperature was in situ monitored using an infrared thermometer
(UT3021, UNI-T Co., Ltd., Dongguan, China), which was pre-calibrated using a reflectance
coefficient of 0.36.

During the reaction, a gaseous sample (0.5 mL) was periodically taken from the re-
action vessel and analyzed on a gas chromatograph (GC-2014, Shimadzu, Kyoto, Japan)
equipped with a flame ionization detector (FID) for analysis of CO and CH4, and a meth-
anizer for an analysis of CO2 using N2 as the carrier gas. The evolved O2 and H2 were
analyzed on an online GC (GC-2014C, Shimadzu, Kyoto, Japan) equipped with a thermal
conductivity detector (TCD) using Ar as the carrier gas.

3.4. Photoelectrochemical Measurement

A photoelectrochemical (PEC) measurement was conducted on an electrochemical
workstation (CHI 660D, Chenhua Co., Ltd., Shanghai, China) in a three-electrode quartz
glass cell containing 0.5 M K2SO4 aqueous solution under a 300 W full-arc Xe lamp irradia-
tion. A piece of Pt wire, an Ag/AgCl electrode, and the photoanode were employed as the
counter electrode, reference electrode, and working electrode, respectively.

3.5. COMSOL Multiphysics Simulation

A commercial FEM solver in COMSOL Multiphysics was utilized to simulate the heat
distribution in pBT/P25. A two-dimensional (2D) geometry with rotation was built to form
a three-dimensional (3D) model, in which the dimensions of the pBT and P25 nanoparticles
were the same as the actual sizes obtained from SEM and TEM observations. For simplicity,
a single-wavelength infrared light of λ = 800 nm was selected as the incident light source
to solely excite pBT. The simulation was carried out in the atmosphere of CO2 and H2O.
The heat power volume density (Qd) is written as [63]:

Qd= 1/2ε0ω ln(ε r)|E|
2 (1)

where ε0 is the permittivity of the vacuum,ω is the angular frequency of the light, εr is the
relative permittivity of Bi2Te3, and E is the light energy absorbed by Bi2Te3, on which the
optical properties such as refractive index and absorption coefficient are dependent. All
the optical constants of Bi2Te3 were obtained from the material library of the software. The
results of in situ monitored photothermal temperatures showed that temperatures over
P25, pBT, and pBT(x)/P25 could be steady after 40 min. Thus, to provide the numerical
value for a temperature gradient, an initial temperature over Bi2Te3/TiO2 composites was
set to 100 ◦C according to the curves of in situ monitored photothermal temperatures at
20 min. Under this condition, the computational complexity of COMSOL software would
be reduced, and the results could be similar to the actual temperatures. According to the
simulated temperature gradient over Bi2Te3/TiO2 composite, we further calculated the
electric potential via COMSOL software. The Seebeck coefficient and electric conductivity
were obtained from the manufacturer of pBT (Iuding chemistry Co., Ltd.). During this sim-
ulation process, the electric potential at the bottom of the TiO2 nanoparticle was regarded
as zero electric potential.

4. Conclusions

In summary, we used a simple one-step hydrothermal method to successfully fabricate
the pBT/P25 nanocomposite exhibiting a remarkably improved activity of CO2 photoreduc-
tion. The highest CO evolution of pBT(2)/P25 (19.2 µmol·gcat

−1·h−1) was nearly 5.5 times
that of P25. The enhancement in the CO2 photoreduction could be attributed to the fol-
lowing reasons: (i) The Seebeck effect induced a thermoelectric field in pBT for promoting
the charge-carrier separation and transfer; (ii) The full-spectrum light absorption capacity
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endowed pBT with a photothermal effect to produce a high photothermal temperature for
the activation of CO2 molecules; (iii) The excellent electric conductivity and large work
function rendered pBT an efficient cocatalyst to further improve the charge carriers’ separa-
tion/transfer and reduction ability. Owing to the synergistic enhancement effect in pBT on
the activation of CO2 molecules and the promotion of charge separation/transfer, the CO2
photoreduction efficiency was significantly enhanced. Our research provides a feasible
strategy for the development of an efficient photo-thermo-electro-chemical conversion
system for CO2 reduction based on constructing a full-spectrum responsive thermoelectric
material/semiconductor nanocomposite.
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