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Abstract: Sebacic acid (1,10-decanedioic acid) is an important chemical intermediate. Traditional
chemical oxidation methods for sebacic acid production do not conform with “green” manufacturing.
With the rapid development of enzymatic technologies, a biocatalytic cascade method based on the
Baeyer–Villiger monooxygenase was developed. The most attractive point of the method is the oleic
acid that can be utilized as raw material, which is abundant in nature. However, this bio-catalysis
process needs co-factor electron carriers, and the high cost of the co-factor limits its progress. In
this piece of work, a co-factor in situ regeneration system between ADH from Micrococcus luteus
WIUJH20 (MlADH) and BVMO is proposed. Since the co-factors of both enzymes are different,
switching the co-factor preference of native MlADH from NAD+ to NADP+ is necessary. Switching
research was carried out based on in silico simulation, and the sites of Tyr36, Asp 37, Ala38, and
Val39 were selected for mutation investigation. The experimental results demonstrated that mutants
of MlADH_D37G and MlADH_D37G/A38T/V39K would utilize NADP+ efficiently, and the mutant
of MlADH_D37G/A38T/V39K demonstrated the highest sebacic acid yield with the combination of
BVMO. The results indicated that the in situ co-factor generation system is successfully developed,
which would improve the efficiency of the biocatalytic cascade for sebacic acid production and is
helpful for simplifying product isolation, thus, reducing the cost of the enzymatic transformations
process.

Keywords: co-factor regeneration; alcohol dehydrogenase; sebacic acid; enzymatic cascade reaction;
in silico simulation

1. Introduction

Long-chain α,ω-dicarboxylic acids (α,ω-DCAs) are frequently and widely applied
to produce various chemicals and intermediates, such as nylon, preservatives, lubricants,
plasticizers, fragrances, and cosmetics [1]. Traditionally, α, ω-DCAs are produced from
petrochemical raw materials or special fatty acids (ricinoleic acid) through oxidative crack-
ing with harsh reaction conditions, involving high temperature, high pressure, strong acid
catalysts (e.g., H2SO4, HNO3), and toxic oxidants (e.g., ozone, peroxide) [2,3]. Due to
the uncontrolled reaction, the process always had low yields, high energy consumption,
and uncontrollable by-products, which were seriously harmful for the environment and
did not meet the modern topic of “green and sustainable development” [4]. By contrast,
enzymatic synthesis could be an alternative with advantages of having mild conditions;
being environmentally friendly; and having high regio-, stereo-, and enantioselectivity [5].
Therefore, exploring a novel biocatalytic synthesis of α,ω-DCAs is a subject of profound
significance.
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In recent years, there are more and more reports on cascade biocatalytic reactions. The
advantages of cascade reactions are as follows: (1) the multi-step reaction can be carried out
in a reactor and does not require the separation of intermediates; (2) less solvents and chem-
icals are needed; (3) intermediates are quickly consumed in continuous steps, which can
reduce waste emissions. Therefore, cascade biocatalytic reactions can shorten the reaction
time and cost [6,7]. Song et al. reported an enzymatic cascade process (Scheme 1, [8]) for
sebacic acid (1,10-decanedioic acid, Compound 9) production with oleic acid (Compound 1)
as raw material, which is a natural unsaturated fatty acid present in most kinds of vegetable
oils. In this cascade reaction, hydratase hydrates the unsaturated carbon–carbon double
bond of oleic acid firstly, and then the hydroxy group is further converted into carbonyl
through the dehydrogenation reaction catalyzed by a NAD-dependent alcohol dehydro-
genase (ADH). Subsequently, a Baeyer–Villiger (BV) oxidation reaction was introduced.
Two kinds of esters would form as the results of BV oxidations, and sebacic acid would be
obtained as the hydrolysis product of ester compound 5. Among the cascade process, the
regioselectivity of the Baeyer–Villiger monooxygenase (BVMO) is the key point. Only part
of natural BVMO tend to transfer oxygen atoms to less substituted carbon centers during
the catalytic process to generate esters with “abnormal” configurations (compound 5) [8,9].
BVMO from Pseudomonas aeruginosa (PaBVMO) [10] and Pseudomonas fluorescens DSM 50106
(Pf BVMO) [11] were the only two reported enzymes that have “abnormal” regioselectivity
fit for sebacic acid production.
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Scheme 1. Biotransformation pathway [8]. Oleic acid (1) is converted into either n-nonanoic acid
(6) and ω-hydroxynonanoic acid (7) or n-octanol (8) and 1,10-decanedioic acid (9) by multistep
enzyme-catalyzed reactions.
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Beside the regioselectivity of BVMO, there is another limitation for the process. For
the biocatalytic cascade of sebacic acid production, the co-factor specificity of two oxi-
doreductases is different, NAD+ was required for ADH, while NADP+ was required for
BVMO. Thus, it is necessary to introduce other reaction systems for the co-factor regener-
ation to reduce the cost of this in vitro cascade reactions [12–14]. For example, NADPH
regeneration systems, commonly used in BVMO, catalyzed oxidation reactions include
glucose-6-dehydrogenase (GDH) [15] and formate dehydrogenase (FDH) [16]. For NAD+

regeneration, NADH oxidase (NOX) was the most applied enzymatic regeneration sys-
tem [17,18]. However, the multiple enzymes operating under uniform reaction conditions
may not be optimal for one of the enzymes. The complicated enzymatic cascades require
optimization to facilitate the enzyme rate match for maximum catalytic efficiency, and,
consequently, the number of enzymes can continue to enhance the multi-enzyme catalysis
system. This will not only increase the complexity of the system to match each other but
also introduce other by-products, thus, increasing the difficulty of sebacic acid purifica-
tion. Therefore, construction of a co-factor regeneration system for the cascade reaction of
Scheme 1 without additional enzymes is necessary.

The modification of co-factor specificity through protein engineering provides a de-
sired solution for the above problems. Based on the technique of molecular simulation,
the mechanism of co-factor switching was investigated [19]. It could be noticed that the
structural difference in the phosphate group of the adenosine ribose ring moiety deter-
mined the co-factor specificity of oxidoreductases [20,21]. The key residues that influenced
the co-factor preference are mainly surrounding around these phosphate group binding
sites [22,23]. Rational or semi-rational design works based on the alteration of the size or
electrostatic state of the key residues with the help of molecular simulation were carried
out for the co-factor switching of virous oxidoreductases. Seo et al. switched the co-factor
specificity of secondary alcohol dehydrogenase (Micrococcus luteus, MlADH) from NAD+

to NADP+ through a reconstruction of the structure of NADP+ binding sites. Then, the
engineered enzyme was successfully coupled to a NADPH-dependent BVMO from Pseu-
domonas putida KT2440 for redox-neutral biotransformation of long chain unsaturated fatty
acid into medium chain length chemicals [24]. Bommareddy et al. successfully altered
the co-factor specificity of glyceraldehyde 3-phosphate dehydrogenase (Corynebacterium
glutamicum) from NAD+ to NADP+ dependent [25]. Beier et al. switched the preference
of cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 from NADPH to
NADH by using computational design [26]. Other successful examples included imine re-
ductase [27], secondary alcohol dehydrogenase [28], and dihydrodipicolinate reductase [29],
among others.

In this work, an in situ NADP+ regeneration system (Scheme 2) is proposed between
ADH from Micrococcus luteus WIUJH20 (MlADH) and PaBVMO by reconstruction of the
co-factor binding region of the native MlADH from NAD+ to NADP+ dependent. Thus, a
NADPH regeneration system would be built to improve the catalytic efficiency of the multi-
enzyme system and to reduce the production costs. The molecular simulation works were
carried out for the mutation design. The co-factor preference and its catalytic performance
of mutagenesis were also tested. The results of the work are promising to reduce the cost of
enzymatic transformations of sebacic acid and the simplified products isolation.



Catalysts 2022, 12, 1318 4 of 13Catalysts 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

 
Scheme 2. Construction of a NADPH regeneration system by altering the co-factor specificity of a 
native NAD+-dependent ADH to NADP+. 

2. Results and Discussion 

2.1. Probing the Targeted Residues that Determining the Co-Factor Specificity of MlADH 
The discrimination between NAD+- and NADP+-dependent enzymes is the conse-

quence of differences in the size and structure of the co-factor binding pocket, as well as 
the physicochemical properties of the surrounding amino acid residues [30]. Initially, a 
homology model of MlADH was built based on the template of a diketoreductase crystal 
structure (Protein Data Bank code: 4E12, and the sequence identity with MlADH is 
49.12%) through the SWISS-MODEL (https://swissmodel.expasy.org, accessed on 23 May 
2019). Then, two steps of molecular docking were performed, with the homology model 
of MlADH as the receptor and NAD+ and 10-hydroxyoctadecanoic acid as the ligand, re-
spectively. 

From the structure and catalytic mechanism analysis of diketoreductase (PDB 
code:4E12), three residues of His-Ser-Glu and the active hydrogen from NAD+ formed the 
catalytic triad of the enzyme [9]. From the comparison of docking results (Figure 1, Figure 
S2) with the structure of PDB 4E12, the possible active center of MlADH should be Ser 
126, His 147, and Glu 159. The 10-hydroxyoctadecanoic acid fits into the active site cleft 
and its 10-hydroxyl group lies between the imidazole ring of His147 and the nicotinamide 
of NAD+. Another side of the NAD+ molecule binds to the enzyme through hydrogen 
bonds and hydrophobic forces, with the 2’ active hydrogen of the nicotinamide moiety of 
NAD+ facing the cleft between the two binding domains, which formed a proton transfer 
channel between the solution and the active site. The essential difference between NADP+ 
and NAD+ is that the 2′-hydroxyl group of the adenosine ribose ring of NAD+ is replaced 
by a phosphate group. It could be noticed that the carboxylate group of Asp 37 forms a 
hydrogen bond with the 2′-hydroxyl of the adenosine ring of NAD+, which would stabilize 
the binding of NAD+ with the enzyme. However, when the co-factor switched to NADP+, 
the phosphate group on the adenosine ring may have electrostatic repulsion and steric 
hindrance with the Asp 37 residue [31]. Therefore, the substitution of Asp 37 by other 
positively charged and polarized residues may enable NADP+ to form hydrogen bonds 
and stabilize the co-factor binding with the enzyme [32]. In addition, it could be noticed 
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2. Results and Discussion
2.1. Probing the Targeted Residues that Determining the Co-Factor Specificity of MlADH

The discrimination between NAD+- and NADP+-dependent enzymes is the conse-
quence of differences in the size and structure of the co-factor binding pocket, as well as the
physicochemical properties of the surrounding amino acid residues [30]. Initially, a homol-
ogy model of MlADH was built based on the template of a diketoreductase crystal structure
(Protein Data Bank code: 4E12, and the sequence identity with MlADH is 49.12%) through
the SWISS-MODEL (https://swissmodel.expasy.org, accessed on 23 May 2019). Then, two
steps of molecular docking were performed, with the homology model of MlADH as the
receptor and NAD+ and 10-hydroxyoctadecanoic acid as the ligand, respectively.

From the structure and catalytic mechanism analysis of diketoreductase (PDB code:4E12),
three residues of His-Ser-Glu and the active hydrogen from NAD+ formed the catalytic
triad of the enzyme [9]. From the comparison of docking results (Figures 1 and S2) with the
structure of PDB 4E12, the possible active center of MlADH should be Ser 126, His 147, and
Glu 159. The 10-hydroxyoctadecanoic acid fits into the active site cleft and its 10-hydroxyl
group lies between the imidazole ring of His147 and the nicotinamide of NAD+. Another
side of the NAD+ molecule binds to the enzyme through hydrogen bonds and hydrophobic
forces, with the 2′ active hydrogen of the nicotinamide moiety of NAD+ facing the cleft
between the two binding domains, which formed a proton transfer channel between the
solution and the active site. The essential difference between NADP+ and NAD+ is that
the 2′-hydroxyl group of the adenosine ribose ring of NAD+ is replaced by a phosphate
group. It could be noticed that the carboxylate group of Asp 37 forms a hydrogen bond
with the 2′-hydroxyl of the adenosine ring of NAD+, which would stabilize the binding of
NAD+ with the enzyme. However, when the co-factor switched to NADP+, the phosphate
group on the adenosine ring may have electrostatic repulsion and steric hindrance with the
Asp 37 residue [31]. Therefore, the substitution of Asp 37 by other positively charged and
polarized residues may enable NADP+ to form hydrogen bonds and stabilize the co-factor
binding with the enzyme [32]. In addition, it could be noticed that three other residues
Tyr36, Ala38, and Val39 also influenced the interaction between NADP+ and peptide chain
of MlADH, which determined the stability of NADP+ in the co-factor binding pocket. Thus,

https://swissmodel.expasy.org
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except for Asp 37, these three residues were also considered as potential targets for further
mutation selection.
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(A) Enzyme conformation when binding NAD+ to substrate. (B) Binding force analysis of NAD+ and
enzyme.

Since the site of Asp 37 should be replaced by a small and uncharged residue, glycine
and alanine were promising candidates. For the sites of Tyr 36, Ala 38, and Val 39, the
residues of serine, threonine, glutamic acid, aspartic acid, lysine, and asparagine were
assessed in the investigation. The NADP+ docking effects of all the possible mutation
combinations were simulated. In terms of the docking results of co-factor position, the
electron transfer efficiency of co-factor with active site Ser 126 (the distance of active
hydrogen of NADP+ to the hydroxy of Ser 126 is less than 4.5 Å), and the lowest binding
energy of the co-factor with enzymes, 6 of the more reasonable candidates (M1: D37G, M2:
D37G-V39S, M3: D37G-A38T-V39K, M4: Y36S-D37G-A38D, M5: Y36S-D37G-A38G-V39K,
and M6: Y36S-D37G-A38D-V39K) were chosen from 432 possibilities (Figure 2) and were
examined in the further experimental characterization.
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Figure 2. Simulation results of reasonable mutation candidates. (A) The binding conformation of
NADP+ in the enzyme; (B) The whole conformation of the ADH with NADP+. Mutants of M1 to
M6 were D37G, D37G-V39S, D37G-A38T-V39K, Y36S-D37G-A38D, Y36S-D37G-A38G-V39K, and
Y36S-D37G-A38D-V39K, respectively.

2.2. Enzyme kinetics

Based on the simulation results, six mutational targets were performed through the
method of site-directed mutagenesis, and all the engineered protein was heterologously
expressed in E. coil BL21(DE3). The results of SDS-PAGE indicated that most of the MlADH
mutants could be successful expressed; only mutant M4 (Y36S-D37G-A38D) and M6 (Y36S-
D37G-A38D-V39K) had relatively low expression rate (Figure 3A,B).
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Figure 3. SDS-PAGE of the MlADH (35.8 kD with a 6×His tag) and its mutant expression in E. coli BL-
21(DE3). (A) Supernatant; (B) Pellet. Mutants of M1 to M6 was D37G, D37G-V39S, D37G-A38T-V39K,
Y36S-D37G-A38D, Y36S-D37G-A38G-V39K, and Y36S-D37G-A38D-V39K, respectively.

In order to investigate the enzymatic properties of each variant, the proteins were
purified through Ni-NTA affinity chromatograph. Then, the kinetics parameters were
assayed through the dehydrogenation of 10-hydroxyoctadecanoic acid with co-factor of
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NAD(P)+. Based on the characters that the reduced form of NAD(P)H absorbs at 340 nm,
which the aromatic oxidized form does not [33], the changes of the absorbance at 340 nm
(OD340) along with reaction times were detected. With the substate-loading variation, the
kinetic parameters of each variant were calculated based on the Michaelis–Menten equation
and the Hanes–Woolf method [34] (Figure S3).

As shown in Table 1, the wild type of MlADH has a good performance with the
co-factor of NAD+ but without detectable activity toward NADP+. The mutants of
M5 (Y36S/D37G/A38G/V39K) and M6 (Y36S/D37G/A38D/V39K) were more recep-
tive to NAD+ and unable to utilize NADP+. Four other mutants were enabled to utilize
NAD+/NADP+ at the same time with preference of NADP+. However, the catalytic ef-
ficiency (kcat/Km) and the maximum reaction rate (Vmax) of these mutants were reduced,
compared with the wild type. Notably, among these mutants, the single point mutation of
M1 (D37G) has the best performance with the co-factor switching to NADP+, followed by
the combinatorial mutation of M3 (D37G/A38T/V39K) and M2 (D37G/V39S). Since the
aim of this work is similar to that of Seo et al. [24], the results were compared with them. For
the results of Seo et al., the variant of D37S/A38R/V39S/T15I performed the best NADP+

utilization performance, which is different from ours, and the difference may come from
the mutation design method. Meanwhile, the enzyme activity of this investigation was
much lower than that of Seo et al. (even for the wild type of MlADH). The variation may
derive from the difference of strain culture, enzyme purification, and enzymatic reactions.
The results of this work could complement the work of Seo et al.

Table 1. Enzyme kinetic parameters of wild-type MlADH and its variants.

Enzymes Co-Factors IU
(U·mg−1)

Vmax
(mg·mL−1min−1)

Km
(mM)

kcat
(min−1)

kcat/Km
(mM−1·min−1)

Wildtype NAD+ 13.56 4.13 2.08 8.05 3.86
NADP+ *ND *ND *ND *ND *ND

M1 (D37G)
NAD+ 1.21 0.02 0.60 0.04 0.07

NADP+ 1.82 0.03 0.21 0.05 0.24

M2 (D37G-V39S)
NAD+ 0.46 0.14 1.56 0.15 0.10

NADP+ 0.49 0.15 1.35 0.16 0.12

M3 (D37G-A38T-V39K)
NAD+ 2.31 0.29 16.48 0.77 0.05

NADP+ 0.56 0.07 1.10 0.19 0.17

M4 (Y36S-D37G-A38D)
NAD+ 0.19 0.06 0.19 0.06 0.30

NADP+ 0.19 0.06 0.64 0.06 0.09

M5 (Y36S-D37G-A38G-V39K)
NAD+ 0.24 0.01 0.04 0.04 0.99

NADP+ *ND *ND *ND *ND *ND

M6 (Y36S-D37G-A38D-V39K)
NAD+ 0.30 0.01 0.01 0.05 4.22

NADP+ *ND *ND *ND *ND *ND

*ND: not detected. One unit (U) of enzyme activity was defined as the amount of enzyme required to reduce 1
µmol of NAD(P)+ in 1 min under the assay reaction conditions.

2.3. The Efficiency of In Situ NADP+ Regeneration System for Sebacic Acid Production

Firstly, the dehydrogenation conversion performance of the wild-type MlADH with
NAD+ or NADP+ as co-factors was verified. The conversion rate of 10-hydroxyoctadecanoic
acid (2) to 10-oxooctadecanoic acid (3) was over 98% when NAD+ was applied, whereas
the yields of 10-oxooctadecanoic acid was only 15% when the co-factor changed to NADP+.
The results indicated that the NADP+ is not a suitable co-factor for the wild-type MlADH.
Subsequently, the reactions with three kinds of MlADH mutants as catalysts were carried
out under the same conditions. When the NADP+ was utilized as the only source of co-
factors, the yields of 10-oxooctadecanoic acid with the mutants M3, M1, M2 as catalysts
was 56%, 36%, and 27%, respectively. The results of the dehydrogenation reaction of
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10-hydroxyoctadecanoic acid confirmed the switch of the co-factor preference of MlADH
mutants M3 and M1.

The aim of this investigation was to set up an in situ co-factor regeneration system,
which would benefit the biocatalytic cascade of sebacic acid production (Scheme 2). Ac-
cordingly, the feasibility of NADP+ regeneration system of MlADH mutants and PaBVMO
combination was also examined. The traditional multi-enzymatic co-factor regeneration
system was set as a controlled group, in which the NOX and the GDH was used for NAD+

and NADPH regeneration, respectively. As shown in Table 2, the final yield of sebacic
acid was 41.2% for the controlled group. The combined catalysis of wild-type MlADH and
PaBVMO still obtained a sebacic acid yield of 20.1% with a single addition of NADP+. This
may attribute to the weak NADP utilization ability of MlADH or from the trace amounts of
intracellular NAD+ in the lyophilized enzymes. Interestingly, the combination of MlADH
mutants (M1 and M3) and PaBVMO with NADP+ as a co-factor were improved to various
degrees, while the sebacic yield of mutant M3 group (49.3%) was higher than the traditional
multi-enzymatic co-factor regeneration system (41.2%). Even from the results of Table 1,
the kinetic parameters of our variants are not as good as the related work [24]; the usage
of these variants in the cascade enzymatic reactions for sebacic acid production (Table 2)
demonstrated the capability of these variants to create a cooperative NADP+ regeneration
system with BVMO. Thus, the cascade method, combining a proper BVMO with MlADH
variants preferring NADP+, might increase the sebacic acid productivity and reduce the
cost of the process.

Table 2. Yields of sebacic acid by multistep catalytic reactions through different combinations of
MlADH or its variants and PaBVMO.

Enzymes Co-Factors Yields of Sebacic Acid (%)

Wildtype MlADH & PaBVMO & NOX & GDH NAD+ & NADP+ 41.2 ± 2.7

Wildtype MlADH & PaBVMO NAD+ 6.7 ± 1.2
NADP+ 20.1 ± 3.9

M1(D37G) & PaBVMO
NAD+ 2.1 ± 1.1

NADP+ 42.4 ± 2.2

M2(D37G-V39S) & PaBVMO
NAD+ 5.3 ± 1.4

NADP+ 25.8 ± 3.2

M3(D37G-A38T-V39K) & PaBVMO
NAD+ 2.4 ± 0.8

NADP+ 49.3 ± 3.6

Molecular docking was introduced to analyze the benefit reason of above two positive
mutants. As shown in Figure 4, the substitution of the amino acid residue of position
37 from Asp to Gly would expand the size of co-factor binding pocket, remove the po-
tential electrostatic repulsion, decrease the effect of steric hinderance, and increase the
binding affinity of NADP+ successfully. Except for position 37, the residue of Val 39 also
affected the ADH to accept NADP+. However, the mutation of D37G-V39S does not dis-
play an obvious effect for the utilization of NADP+. For the combinatorial mutation of
D37G/A38T/V39K, the simulation result revealed that the substitution of Ala 38 to Thr
provide more intermolecular hydrogen bonds between peptide chain and the phosphate
of NADP+. Meanwhile, from the binding energy analysis results in Table 3, the binding
energy of wild-type MlADH to NADP+ is only −14.31 kJ/mol, which was significantly
lower than that of each mutant. For each mutant of MlADH, the binding energy of NADP+

with protein changed significantly and comes to the same level of the wild-type MlADH
with NAD+ (−34.60 kJ·mol−1). Mutant MlADH_D37G-A38T-V39K demonstrated the best
results of−34.96 kJ·mol−1, which may explain the reversion of the better NADP+ utilization
of MlADH mutant M3 (Table 2). However, the worse catalytic results of mutant M2 could
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not be explained by the results of the docking simulation, and the reason needs further
analysis.
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Table 3. Docking and binding energy of MlADH and its mutants to NAD(P)+.

MlADH or Mutants Co-Factors Binding Energy (kJ·mol−1)

Wildtype NAD+ −34.60
NADP+ −14.31

M1(D37G)
NAD+ −29.79

NADP+ −27.69

M2(D37G-V39S)
NAD+ −30.87

NADP+ −32.56

M3(D37G-A38T-V39K)
NAD+ −31.73

NADP+ −34.96

3. Materials and Methods
3.1. Materials

The 10-oxooctadecanoic acid and 10-ketostearic acid were purchased from Kaiwei
Chemical Technology Co., Ltd. (Shanghai, China). The 10-hydroxyoctadecanoic acid
was purchased from Bide Pharmaceutical Technology Co., Ltd. (Shanghai, China). Other
chemicals and reagents were purchased from BioRo Yee Ltd. (China), and all of them were
of analytical grade. The strain of E. coli DH5α (used for molecular cloning) and E. coli BL21
(DE3) (used for gene expression) were purchased from Shanghai Weidi Biotechnology Co.,
Ltd., China. The site mutation kit of “mut express II fast mutagenesis kit V2” was from
Vazyme Biotech Co., Ltd. (China). Plasmid extraction kits and gel extraction kits were
obtained from Omega Bio-tek (USA).
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3.2. Molecular Modeling

Homology models of ADH from Micrococcus luteus (NCBI Reference Sequence:
ADD83022.1, 310 amino acid residues) were generated based on the structures of dike-
toreductase (PDB code: 4E12, 283 amino acid residues) using the molecular modeling
platform SWISS-MODEL (https://swissmodel.expasy.org, accessed on 23 May 2019) [35],
the information of homology model was illustrated in Figure S1 The docking simulations of
co-factor-MlADH complexes were performed with the YASARA software package (version
21.8.26). With the MlADH homology model as the rigid receptor, the cofactor as the flexible
ligand, and the carboxyl oxygen of Asp37 as the center, a 25 × 25 docking “box” was
set. Then, AMBER 03 force field was used, and docking simulation was carried out at
298K and atmospheric pressure. The docking script “dock_run.mcr” was run to complete
50 rounds of docking, and the optimal docking conformation was screened according to
the binding energy and binding conformation. The conformational clusters with correct
docking conformation and the highest binding energy with co-factor were considered for
further molecular dynamics (MD) simulations to improve the structure of the model. The
MD simulations were carried out in aqueous environments with an AMBER03 force field
at a pH of 7.5 and a temperature of 313K for 10 ns.

It should be noticed that there is a new structure of MlADH (PDB code: 6KQ9)
published. To check the influence of the difference between our homology models from
4E12 and the experiment structure of 6KQ9, a series of simulation works with 6KQ9 as a
template were carried out. The results of structure comparison of the homology model
from different templates (Figure S7), the comparison of the simulation results of homology
model from 4E12 and 6KQ9 (Figure S8), and the details of the structure of NADP+ binding
sites analysis (in Figure S9) indicated that there were not significant alterations between the
simulation results in the homology model from 4E12 and the MlADH structures of 6KQ9.

3.3. Gene Cloning and Expression of Recombinant Enzymes

The gene of PaBVMO (BVMO from Pseudomonas aeruginosa, NCBI Reference Sequence:
WP_003087250.1) and MlADH (ADH from Micrococcus luteus, NCBI Reference Sequence:
ADD83022.1) was synthesized by Inovogen Ltd. (China), and the sequence was inserted
into the plasmid pET28a (+) and pET22b (+) between the NdeI and HindIII restriction
nuclease sites, respectively.

Site-directed mutagenesis was performed by the MutExpress II Fast Mutagenesis Kit
V2, and the operations were undertaken according to the manufacturer’s instructions. The
code of primers utilized for mutagenesis are shown in Table 4.

Table 4. Primers used for mutagenesis.

Mutants Primer

M1(D37G)
F CGGCACTGCACCATAGGCCATCAC
R GGCCTATGGTGCAGTGCCGGC

M2(D37G-V39S)
F GCTGCCGGGCTTGCACCATAGGCCATCAC
R GATGGCCTATGGTGCAAGCCCGGCAGCAC

M3(D37G-A38T-V39K)
F GTGCTGCCGGCTTTGTACCATAGGCCATCAC
R GATGGCCTATGGTACAAAGCCGGCAGCAC

M4(Y36S-D37G-A38D)
F CTGCCGGCACGTCACCACTGGCCATCACTTTTTTG
R GTGATGGCCAGTGGTGACGTGCCGGCAGCAC

M5(Y36S-D37G-A38G-V39K)
F GTGCTGCCGGGCTTCCACCACTGGCCATCACTTTTTTG
R GTGATGGCCAGTGGTGGAAGCCCGGCAGCACTGG

M6(Y36S-D37G-A38D-V39K)
F GTGCTGCCGGGCTGTCACCACTGGCCATCACTTTTTTG
R GTGATGGCCAGTGGTGACAGCCCGGCAGCACTGG

For expression, the plasmid was transformed into E. coli BL21 (DE3). The trans-
formants were cultured in 100 mL TB medium at 37 ◦C and 200 rpm until the optical

https://swissmodel.expasy.org
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density at 600 nm (OD600) reached 0.6–0.8, followed by adding 200 µM of isopropyl-β-
D-thiogalactopyranoside (IPTG), and then cultured at 16 ◦C for 24 h. After culture, cells
were harvested by centrifugation (8000 g, 10 min) and washed twice using Tris-HCl buffer
(50 mM, pH 7.5). The crude extract was prepared using sonication (400 W, 15 min), and the
soluble expression of recombinant enzymes was analyzed via SDS-PAGE and purified by
His-tag through Ni-NTA affinity chromatograph [10].

3.4. Enzyme Kinetics Assay

The kinetic measurements were performed by monitoring the absorbance of NAD(P)H
at 340 nm on a UV-spectrophotometer (Enspize, PerkinElmer) at 25 ◦C. The assay mixture
(200 µL) contained a final concentration of 0.5–2.5 mM of 10-hydroxy-octadecanoic acid,
0.1 mM NAD(P)+, 50 mM Tris-HCl buffer (pH 7.5), and an appropriate amount of purified
enzyme. The kinetic parameters of the purified enzymes were assayed by the Michaelis–
Menten equation and Hanes–Woolf method (Figure S3A–C) [34].

3.5. Sebacic acid Production with In Situ NADP+ Regeneration System

Unless otherwise stated, the enzymatic cascade reaction contains 1.0 mM 10-
hydroxyoctadecanoic acid, 1 mM NAD(P)+, 10 µL Tween 20, 0.5 mg/mL MlADH (or
its mutants), 1 mg/mL PaBVMO. The total volume of reaction was 20 mL (50 mM Tris-HCl
buffer, pH 7.5). The reactions were carried out at 25 ◦C for 24 h.

After reaction, the extraction was carried out with ethyl acetate as solvent. Then, the
products were hydrolyzed by KOH (1.0 M) at 80 ◦C for 2 h [10]. After that, the mixture
was acidified to pH 2.0 with diluted HCl, following extraction with 1:1 (v/v) ethyl acetate.
Finally, the solvent was dried under nitrogen and derived by N-methyl-N-(trimethylsilyl)
trifluoroacetamide (TMS).

Then, the content of sebacic acid as the hydrolytic product of each cascade reaction
was measured by GC-MS with following chromatographic conditions. GC-MS (Agilent
7890A-5975C) was equipped with a HP-5 ms capillary column (30 m × 0.25 mm × 0.1 µm,
J&W Scientific Columns, Agilent Technologies, Shanghai, China) [10]. Peaks were identified
with a library search of NIST98 and standard sample analysis of each compound. GC-MS
results (Figures S4–S6) were quantified using the peak area normalization method, and all
measurements were conducted in triplicate.

4. Conclusions

Sebacic acid is an important chemical intermediate. With the development of enzy-
matic technologies, the multi-enzymatic cascade reaction makes it possible to produce
sebacic acid from natural oleic acid. However, the problem of co-factor regeneration limited
the progress of this biochemical technique. An efficiency and stable co-factor regeneration
system for this in vitro enzymatic process is necessary.

In this study, with the switch of co-factor preference of native MlADH from NAD+ to
NADP+ dependent, a NADP+/NADPH in situ regeneration system is established between
MlADH and PaBVMO. In silico simulation results indicated that the position of amino acid
residue 37 is a key site for the co-factor preference. Except for residue 37, the residue sites
of 38 and 39 also influenced the co-factor dependence. The experimental results demon-
strated that the mutant of M1(D37G) and M3(D37G/A38T/V39K) would efficiently utilize
NADP+, and the in situ co-factor regeneration system of MlADH_D37G/A38T/V39K and
PaBVMO combination has a higher sebacic acid yield than the multi-enzyme regeneration
system. All the results indicated that the investigation is beneficial for the sebacic acid
production and is helpful for simplifying product isolation, thus, reducing the cost of
the enzymatic transformations process. Furthermore, the method could also facilitate the
co-factor regeneration system design for other related biotransformation processes.
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