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Abstract: The analysis of consecutive reactions A→B→C in porous catalyst particles, where the sim-

ultaneous processes of diffusion and chemical reactions take place and both reactant and products 

are subjected to diffusion limitations, was performed for catalyst particles with non-uniform sizes, 

a fact that has not been considered so far. The system comprises first-order consecutive irreversible 

reactions that proceed on spherical catalyst particles with a log-normal volume particle size distri-

bution (PSD), which is typical in many catalytic applications. Regardless of the prevailing diffusion 

regime (chemical control, transition situation or intraparticle diffusion control), the yield of the in-

termediate product (B) reaches a maximum value as a function of the conversion of reactant (A), 

then decreases as a consequence of the prevalence of the secondary reaction that converts it into the 

secondary product (C). If intraparticle diffusion resistances affect the reactant species, given the re-

lationship between the kinetic constants and the mean particle size, the selectivity to the intermedi-

ate product is negatively affected by the dispersion in PSD. The larger the dispersion in PSD, the 

stronger the negative impact. 

Keywords: particle size distribution; consecutive reactions; selectivity; intermediate product 

 

1. Introduction 

Important examples of series reactions can be found in the chemical process industry, 

where maximizing the yield of the intermediate product is intended, as it is more im-

portant than the other products [1,2]. This concept includes multicomponent systems, 

where the reactant(s) and intermediate and final product(s) are indeed very complex mix-

tures and lumping methodologies are used [3]. Among them, for example, it is clear that 

intermediate fuels or olefins are the product of interest in the processes of hydrocracking 

[4] or catalytic cracking of hydrocarbons [5] and the conversion of methanol to hydrocar-

bons [6]. The oxidation of n-butane to maleic anhydride in the petrochemical industry is 

a remarkable illustration of consecutive reactions [1], with the primary product, maleic 

anhydride, being the desired one instead of the final oxidation products. The partial oxi-

dation of methane, leading to the intermediate product of methanol, more extended oxi-

dation products, such as formaldehyde and formic acid, or final CO2 and H2O, represents 

another example [2]. The selectivity issue in consecutive (series) reactions A→B→C, cata-

lyzed by porous solids, has focused on the intermediate product B, as it may be converted 

into less appreciated products. The consequences of diffusion limitations on selectivity 

problems were extensively studied by, for example, Wheeler [7], Weisz et al. [8,9], van de 

Vusse [10], Vayenas and Pavlou [11], Sutradhar et al. [12], Szczygieł [13], García et al. 

[5,14–16], and Kang et al. [2]. 

It is well known that the intraparticle diffusion resistances are an intrinsic property 

of porous catalyst particles, which, under given reaction conditions, depend on pore size, 
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shape, tortuosity and constrictions, molecular size and configuration and diffusion length, 

with all these factors affecting the magnitude of a diffusivity parameter. Models, both 

fundamental and applied, were developed, which propose approaches with different 

complexity [17]. These issues severely affect the important concept of the catalytic effec-

tiveness factor, which shows the working efficiency of active sites in a porous solid cata-

lyst and simplifies chemical reactor analysis and design [18]. The effectiveness factor is 

expressed by the well-known Thiele modulus  , which includes diffusion and kinetics 

parameters [18–22], with the size of catalyst particles being a major issue in determining 

its magnitude, as it represents the diffusion length. 

However, usually, the calculations of the effectiveness factors are founded upon the 

assumption that all the catalyst particles are the same size, a comfortable tool, provided 

the range in the sizes is narrow [23,24]. On the contrary, if the evidence of non-uniform 

sizes cannot be ignored, the analysis of the effectiveness factor is more difficult and criteria 

to quantify intraparticle diffusion limitations may become ambiguous [24]. For example, 

the well-known parameter by Weisz and Prater [8], which is the relationship between the 

observed reaction rate and a characteristic diffusion rate [18], is used to determine diffu-

sion restrictions [19] and intrinsic kinetic constants when intraparticle diffusion limita-

tions exist, if the catalyst particles are uniform in size [20,22,25–27]. If a particle size dis-

tribution exists, a characteristic dimension must be defined to represent all the particles, 

so as to avoid errors in the estimation of kinetic parameters [24]. Moreover, it is obvious 

that particles with different sizes will show different catalytic effectiveness [23,24]. 

Different methods exist to determine the particle size distribution (PSD) of catalyst 

particles, such as electron microscopy [28], laser diffraction analysis [29], light scattering 

[30], elutriation [31,32], or sieving [33]. It is common practice to assume log-normal vol-

ume distributions of the particle sizes [29,32,34], meaning that the logarithm of the particle 

diameter has a Gaussian distribution [35]. 

It is the objective of this work to study the consequences derived from the occurrence 

of a catalyst particle size distribution in a catalytic bed on the selectivity to intermediate 

products in consecutive (series) chemical reactions of the type A→B→C, under diffusion 

limitations. The influences of PSD on the yield curves of product B, according to the mean 

Thiele modulus and the relative magnitude of the kinetic constants, are analyzed and 

compared against the case of uniform catalyst particle size. 

2. Theoretical Background: Uniform Catalyst Particle Size 

2.1. System Description 

The system under analysis includes the following consecutive reactions: 

1 2
k k

A B C⎯⎯→ ⎯⎯→  (1) 

B and C are the primary and secondary products, respectively. 

The reactions, which are assumed to be irreversible and are first-order reactions, take 

place over spherical porous catalytic particles in a reactor where only the reactant A is fed 

with inlet concentration o

A
C . The system is assumed to be isothermal and the adsorption 

equilibrium is linear; thus, k1 and k2 are overall kinetic constants, including Henry’s law 

adsorption equilibrium constants. The catalyst deactivation is disregarded and the re-

sistance to mass transfer in the film around the particles is negligible. Furthermore, the 

concentration profiles in the catalyst particles are assumed to be steady. Diffusion of reac-

tant species in the pore system of the catalyst particles obeys Fick’s law and the diffusion 

coefficients for reactant A and primary product B in the catalyst pores are assumed to be 

the same ( )A B
D D D= = . 

2.2. Mass Balances 

The mass balance for reactant A within a spherical catalyst particle with radius R is 
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( )

( )
2

12

1 A r

A r

dCd
D r k C

r dr dr

  
=   

   

   ( )Rr 0  (2) 

0A
dC

dr
=         ( )0=r  (3) 

A A f
C C=         ( )Rr =  (4) 

and for the intermediate product B, it is 

( )

( ) ( )
2

1 22

1 B r

A Br r

dCd
D r k C k C

r dr dr

  
= − +   

   

 ( )Rr 0  (5) 

0B
dC

dr
=         ( )0=r  (6) 

B B f
C C=         ( )Rr =  (7) 

The reduction in the number of parameters that control these systems and their sim-

pler analysis can be achieved by means of the dimensional analysis approach [36]. By de-

fining dimensionless variables in Equations (A1)–(A3) (see Appendix A), the following 

dimensionless parameters characterize the reacting system: 

( ) ( )

( )

( )

1 1p R

R R

p R

Vk k
L

D A D
 = =   (8) 

and 

2

1

k
m

k
=  (9) 

where 
( )R

  is the generalized Thiele modulus for the primary reaction ( 1
k

A B⎯⎯→ ) [37] and 

m is the relationship between the intrinsic kinetic constants for the secondary reaction (k2) 

and the primary reaction (k1) [9]. 

2.3. Conversion, Yield, and Selectivity 

Conversion can be calculated from the observed concentration of reactant A in the 

fluid phase (
A f

C ) as 

o

o

A A f

A

A

C C
X

C

−
=  (10) 

or from the corresponding flux-based equation. 

The relationship between the moles of product B observed in the fluid phase and the 

moles of reactant A fed into the reactor shows the yield of that product as 

o

B f

B

A

C
Y

C
=  (11) 

Selectivity to product B can be expressed as the relationship between its overall rate 

of formation and the rate of consumption of reactant A [19] and, after the mass balances 

in the fluid phase of the reactor, it is easy to show that 
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( ) ( )( )

( )( )

1 2

1

p

p

A Br rV B f

B

A fA rV

k C k C dV dC
S

dCk C dV

− −
= =



 (12) 

Weisz and Swegler [9] used Equation (12) to analyze selectivity in this system, which 

can be written as a function of 
A

X  (Equation (10)) and 
B

Y  (Equation (11)) as 

( )

( ) ( )( )

( ) ( )( )

coth 11 1

1 1 1coth 1

R RB B

B R

A A R R

m mdY Y
S

dX m X m

 

 

 −      = = − −      − − −   −   

 (13) 

and solved considering that the initial condition is 

( )0 0
B A

Y X = =  (14) 

Then, for a given pair of parameters 
( )R

  (Thiele modulus for the primary reaction) 

and m (relationship between kinetic constants, k2/k1), the yield of product B can be calcu-

lated as a function of the conversion of reactant A as 

0

AX

B B A
Y S d X=   (15) 

or, by introducing Equation (13), as 

( ) ( )( )

( ) ( )( )0

coth 11 1

1 1 1coth 1

AX R RB

B A

A R R

m mY
Y dX

m X m

 

 

 −        = − −        − − −   −     

  (16) 

Figure 1 shows the yield of primary product B, as calculated from Equation (16), as a 

function of the conversion of reactant A, for different values of the Thiele modulus for the 

primary reaction ( ) and relationships between kinetic constants (m). A similar behavior 

to this has been recently reported by Valecillos et al. [6] in the conversion of methanol to 

hydrocarbons. The authors observed that the yield of light olefins reached a maximum 

value of about 47% at 91% conversion of methanol, then decreased at higher conversions. 

This is certainly expected for the methanol to hydrocarbons reaction, as light olefins are 

intermediates in the kinetic scheme [38,39] and the continuous increases in the yields of 

light paraffins, heavy aliphatics and aromatics at high conversions indicate that these are 

the final products [6]. 

It can be observed in Figure 1 that under extreme conditions, that is, pure chemical 

control or net diffusion control, the yield curves of product B do not change as the size of 

the particles increases. 

In effect, it is very simple to verify that when  →0, Equation (13) can be reduced to 

1
1

B B

B

A A

dY mY
S

dX X

 
= = −  

− 

, (17) 

with its integration leading to [7] 

( ) ( )
( )11

1 1 1
1

m

B A A
Y X X

m

−   = − − −   − 
 (18) 

Moreover, it is well known for porous catalysts that if   < 0.3, the effectiveness fac-

tor ( ) for the primary reaction does not depend on the particle size [21,37,40]. 

If   is very large, in the region of net intraparticle diffusion control, the effective-

ness factor is asymptotically inversely proportional to the particle size ( 1 → ) [21,37,40]. 

However, as it can be observed in Figure 1, the yield of product B for a given value of 

conversion is independent from the particle size, and it can be verified that if  → , 

Equation (13) adopts the following form: 
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1

11

B B

B

A A

dY m Y
S

dX Xm

 
= = −  

 −+  

 (19) 

and, consequently, the yield is [7] as follows: 

( ) ( )
( )11

1 1 1
1

m

B A A
Y X X

m

−   = − − −    − 
 (20) 

For intermediate values of  , the larger the particle size, the lower the effectiveness 

factor [21,37,40] and the yield of B is negatively affected, as confirmed in Figure 1. 

  

  

Figure 1. Yield of primary product B as a function of the conversion of the reactant A for different 

values of the Thiele modulus ( ) and relationships of kinetic constants (m = k2/k1). (a) 3D color map 

surface m = 0.25; (b) contour lines for   values, m = 0.25; (c) 3D color map surface m = 1.00; (d) 

contour lines for   values, m = 1.00. 

3. Non-Uniform Catalyst Particle Sizes: Case of Log-Normal Volume Particle Size Dis-

tribution 

The mass balances in Section 2.2 were written for a spherical particle with radius R. 

Consequently, the analysis in Section 2.3 is applicable to a catalytic bed of uniform size 

particles. 

Certainly, considering that all the particles in a catalytic bed have exactly the same 

size is a strong idealization. On the contrary, it has been reported that a great number of 

catalysts follow a theoretical log-normal PSD [29,32,34,41–44], i.e., the logarithm of the 
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particle radii is normally distributed [35]. In this case, the volume density function of the 

particle size (that is, the volume PSD, see Appendix B) is 

( )

( )( )
2

2

ln

v 2

1 1
exp

2

R

R
R

f



 

− −   =      

,    ( )0 R    (21) 

As it can be observed from Equation (21), a log-normal distribution is characterized 

by the following two parameters: the location parameter (α = ln(R50)) and the dispersion 

parameter (β). R50 is the median of the size distribution; that is, 50% volume of the particles 

in the set have a size larger than R50. The parameter β represents the standard deviation of 

the natural logarithm of the particle size, and is indicative of how much the actual distri-

bution deviates from a uniform size (see Figure A1, Appendix B). Table 1 shows the values 

of the central position (R50) and dispersion (β) parameters that correspond to different 

cases of commercial catalysts. 

While 
( )v R

f , given by Equation (21), represents the volume PSD, 
( )v R

f dR  is the 

differential volume fraction of particles with radii between R and (R + dR), 
( )Rf  is the 

numerical PSD and 
( )R

f dR  is the differential fraction in the number of particles with 

radii between R and (R + dR). As shown in Appendix B (Equations (A12)–(A14)), the vol-

ume PSD 
( )v R

f  is easily related to the number PSD, 
( )Rf  [23,24]. 

In addition to the hypotheses mentioned in Section 2.1, it will now be assumed that 

the size distribution of catalyst particles, the particle density and the intrinsic catalytic 

activity are the same throughout the whole volume of the catalytic bed. 

Table 1. Parameters of the theoretical log-normal volume PSD in different samples of catalysts 

calculated from various authors. 

Catalyst R50 (μm) β Authors Reference 

FCC 26.8–29.6 0.199–0.425 Grace and Sun [32] 

FCC 35.3–54.5 0.318–0.613 Issangya et al. [29] 

FCC 46.3 0.429 Qie et al. [43] 

FCC 27.5 0.407 Rodriguez et al. [34] 

IE resin 284.6 0.243 Dardel [41] 

Y zeolite 0.21–0.30 0.134–0.304 Zhang et al. [42] 

Al2O3 0.50 0.678 Pabst and Gregorová [44] 

As it was shown in Figure 1, provided a relationship of kinetic constants (m = k2/k1) is 

set, the yield of the intermediate product B for a given conversion of reactant A depends 

on the Thiele modulus. However, if different sizes (R) can be observed in a bed of catalytic 

particles, it is clear that for a given diffusion-reaction system, a distribution of Thiele mod-

uli 
( )( )R

  will occur. Consequently, if the consecutive reactions represented by Equation 

(1) take place over a set of particles with a volume PSD 
( )v R

f , the contribution to the yield 

of B from those particles with sizes between R and (R + dR) is 

( ) ( )
( )

( )v0

AX

B B AR R
R

dY S d X f dR=      ( )0 R    (22) 

Then, at a given conversion 
A

X , the yield of the intermediate product B, resulting 

from the catalytic particles with different sizes in the bed, is 

( )
( )

( )v0 0

AX

B B A R
R

Y S d X f dR


=    (23) 

For log-normal distributions (see Equation (21)), the following equation can be ob-

tained: 
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( )
( )

( )( )
2

2

ln

20 0

1 1
exp

2

AX R

B B A
R

Y S d X dR
R



 

 − −    =        
   (24) 

Thus, for consecutive reactions with a given relationship between kinetic constants 

m = k2/k1, proceeding on a bed of spherical catalytic particles with a log-normal PSD (me-

dian R50 and dispersion β), the yield of the primary product B as a function of the conver-

sion of reactant A can be obtained from the following combination of Equations (13) and 

(24): 

( ) ( )( )

( ) ( )( )

( )( )
2

2

0 0

ln

2

coth 11

1 1 coth 1

1 1 1
exp

1 2

AX R R
B

B

A R R

R

A

m mY
Y

m X

dX dR
Rm





 

 

 



− −

   −      = −      − −  −    

      −         −      

 
 (25) 

It is important to note that the dependency on the radius of the catalyst particles in 

the integrand of Equation (25) is not only due to the PSD (Equation (21)), but also to the 

selectivity itself (see Equation (13)), which involves the Thiele modulus 
( )( )R

 , in turn de-

pending on the particle size. As described, the characteristic length in the generalized 

Thiele modulus (Equation (8)) is expressed by the relationship between the volume and 

the area of a sphere with radius R [37], which is as follows: 

( )

( )

( ) ( )

3

2

4

3

34

p R

R

p R

R
V R

L
A R





 
 
 

= = =  (26) 

and then 

( )
1

3
R

kR

D
 =  (27) 

The average volume and area of a set of particles with different sizes are 

( )
( )

PSD 3 3

0

4 4

3 3
p R

V R f dR R 
  

= = 
 

  (28) 

and 

( ) ( ) ( )

PSD 2 2

0
4 4

p R
A R f dR R 



= =  (29) 

where the third and second order momenta of the PSD (Equation (A13), Appendix B) can 

be recognized in Equations (28) and (29), respectively. 

Analogously to Equation (26), it is possible to adopt a characteristic length for the set 

of particles with a certain PSD as the relationship between the average volume (Equation 

(28)) and area (Equation (29)) of the particles [24]. 

( )
( )

( )

PSD 3
PSD

PSD 2

1

3

p

p

V R
L

A R
= =  (30) 

By inspection of Equation (A16) (Appendix B), it is easy to recognize in Equation (30) 

that 

( )
( )

( )

PSD

PSD

PSD 3

mp

p

RV
L

A
= =  (31) 

where Rm is the mean harmonic radius, that is, the radius of spherical particles in a bed 

with uniform particle size, whose relationship 
( ) ( )m m

p pR R
V A  is the same as that of a bed 
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of particles with a size distribution of ( ) ( )PSD PSD

p p
V A  [23,24]. Then, for particles with a cer-

tain number 
( )( )R

f  or volume 
( )( )v R

f  PSD, a representative value of the Thiele modulus 

of the primary reaction ( 1
k

A B⎯⎯→ ) can be expressed in terms of this characteristic length, 

in a similar way to Equation (8). 

( )

( )

PSD

1 1

PSD 3

p m

m

p

V Rk k

D DA
 = =  (32) 

Using 
m
  is advantageous, as shown by Haynes [23] for first-order kinetics and Gar-

cía et al. [24] for more complex kinetics, including the power-law and Langmuir-Hinshel-

wood-Hougen-Watson type. It has been verified that even though the plots of the catalytic 

effectiveness factor ( ) as a function of 
m
  differ for each value of the dispersion (  ) in 

the PSD, all the curves have the same asymptotic behavior for the extreme situations of 

chemical control ( 1 →  when 0.1
m

  ) or intraparticle diffusion control ( 1
m

   

when )3
m
  , including, of course, the particular case of uniform particle size, that is, 

0 →  [23,24]. Then, for the subsequent analysis, it is convenient to express the size of 

the spherical particles (R) as a function of a standard log-normal variable (z, see Equation 

(A19), Appendix B), with the mean harmonic radius (Rm) and the standard deviation of 

the natural logarithm of the particle size (β) as parameters, that is, 

( )2
exp 2 2

m
R R z = +  (Equation (A22), Appendix B). Similarly, the Thiele modulus for 

a given particle size 
( )R

  can be expressed in terms of the Thiele modulus with a mean 

harmonic radius of its characteristic length, i.e., 
( ) ( )2

exp 2 2
mz

z   = +  (Equation 

(A24), Appendix B). BY introducing this change in variables, Equation (25) can be equiv-

alently written as 

( ) ( )( )

( ) ( )( )
( )

0

2

, ,

, ,

1

1 1

coth 1 exp1

1coth 1

A

m m

m m

X
B

B

A

z z

A

z z

Y
Y

m X

m m z
dX dz

m

 

 

 

 



−

     
= −     − −    

   − −     −      − −       

 

 (33) 

The following tree parameters occur in Equation (33): the Thiele modulus for the pri-

mary reaction, based on a characteristic length that represents the whole set of particle 

sizes in the bed ( )m
 , the dispersion of those particle sizes ( )  and the relationship be-

tween the kinetic constants of the secondary and primary reactions ( )m . 

4. Results and Discussion 

Figures 2 and 3 show how the yield of the primary product B changes as a function 

of the conversion of the reactant A for different values of the parameters 
m
 ,   and m. 

A number of similarities to the case of uniform particle size (see Figure 1) can be observed. 

In effect, the following conclusions can be drawn: 

‐ In all the cases, as expected, initially 
B

Y  increases as 
A

X  increases, reaching a max-

imum value and then decreasing at higher conversions. 

‐ If a relationship m = k2/k1 is set, at a certain conversion (
A

X ), the larger the Thiele 

modulus, the lower the yield of B. 

‐ For a known pair of parameters, 
m
  and  , the higher the relationship m = k2/k1, the 

lower the maximum yield of product B, which is achieved at lower conversions. 
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It can be observed that if the situation of uniform particle size is compared against 

the cases where a distribution of sizes exists, for a given pair of values of 
m
  and m, the 

yield curves are always higher in the case of a bed with uniform particle size, that is, β = 

0. Moreover, the more significant the dispersion, the lower the yield of B at a given con-

version. 

It was previously shown for simple reactions A → P that occur on catalysts with log-

normal volume PSD that the values of the effectiveness factor  , as a function of the 

Thiele modulus ϕm, besides being asymptotic at very small (chemical control) and very 

large (diffusion control) ϕm values, are always smaller than those of the uniform size case 

[23,24]. Moreover, the larger the dispersion, the smaller the effectiveness factor. This ob-

servation can be explained if it is considered that in log-normal volume PSD, Rm < R50 

always (see Equation (A21), Appendix B). As the radius of half the mass or volume of the 

bed particles is larger than R50, the proportion of particles with radii larger than Rm is 

higher than 50%. For example, it can be observed from Figure A1 (Appendix B) that the 

mass or volume percentages of particles with radii larger than Rm are 59.9% (β = 0.50), 

64.6% (β = 0.75) and 69.1% (β = 1.00). Therefore, the resulting global effectiveness of a bed 

with particles that show a certain dispersion in their PSD and a harmonic mean radius Rm 

is always lower than that of the bed that has particles with uniform sizes that are the same 

as Rm; moreover, the more important the dispersion, the more significant the difference. 
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Figure 2. Yield of primary product B as a function of the conversion of the reactant A for different 

values of the dispersion parameter (β). m = k2/k1 = 0.25. (a) ϕm = 0.1; (b) ϕm = 0.2; (c) ϕm = 0.3; (d) ϕm = 

1.0; (e) ϕm = 2.0; (f) ϕm = 3.0. 

This view can also be applied to series reactions to explain the lower yields of inter-

mediate product B due to the effect of PSD, as shown in Figures 2 and 3. In effect, given 

that the more dispersed the PSD, the higher the proportion of particles larger than Rm (the 

length that characterizes the Thiele modulus, ϕm) (Figure A1, Appendix B), the diffusion 

limitations both on reactant A and product B will be more important. It was observed in 

Figure 1, for particles with increasing uniform size, that the more important diffusion re-

strictions negatively impact the yield of the intermediate product B [7]. 

  

  

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

Y
B

XA

  = 0 (uniform size)

  = 0.50

  = 0.75

  = 1

(e)

(m = 0.25, m = 2.0)

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

Y
B

XA

  = 0 (uniform size)

  = 0.50

  = 0.75

  = 1

(f)

(m = 0.25, m = 3.0)

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

Y
B

XA

  = 0 (uniform size)

  = 0.50

  = 0.75

  = 1

(a)

(m = 1.00 m = 0.1)

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

Y
B

XA

  = 0 (uniform size)

  = 0.50

  = 0.75

  = 1

(b)

(m = 1.00 m = 0.2)

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

Y
B

XA

  = 0 (uniform size)

  = 0.50

  = 0.75

  = 1

(c)

(m = 1.00 m = 0.3)

0.00 0.25 0.50 0.75 1.00

0.2

0.4

0.6

Y
B

XA

  = 0 (uniform size)

  = 0.50

  = 0.75

  = 1

(d)

(m = 1.00 m = 1.0)



Catalysts 2022, 12, 1214 11 of 17 
 

 

  

Figure 3. Yield of primary product B as a function of the conversion of the reactant A for different 

values of the dispersion parameter (β). m = k2/k1 = 1.00. (a) ϕm = 0.1; (b) ϕm = 0.2; (c) ϕm = 0.3; (d) ϕm = 

1.0; (e) ϕm = 2.0; (f) ϕm = 3.0. 

Figures 2 and 3 show that, independently from the relationship m = k2/k1, the disper-

sion in the PSD does not influence significantly the yields when ϕm is larger than approx-

imately 3. This means that, even though the particles in the bed have many different sizes, 

essentially, all of them exert high diffusion resistances, both for the reactant and the pri-

mary product and the yield of B can be calculated directly from Equation (16) [7,9], ignor-

ing the dispersion, provided ϕm > 3. Moreover, it can be observed in Figures 2 and 3 that 

when ϕm < 0.1 (chemical control), the yield curves tend to overlap and the yield of B can 

be calculated directly from Equation (18), independently from the value of β. 

The case where m is much smaller than about 0.25 is close to the case of a simple 

reaction A→B. Under this scenario, the extent of the secondary reaction is essentially neg-

ligible over a wide range of conversions of reactant A (see Figure S1 in Supplementary 

Materials, m = 0.10); therefore, it no longer makes sense to analyze the system under the 

scheme of consecutive reactions. In contrast, a system of consecutive reactions, where the 

relationship m is much larger than about 1, is surely not attractive, as yields of the inter-

mediate product are very low (see Figure S2 in Supplementary Materials, m = 2.00). 

5. Conclusions 

In a similar manner to catalytic beds with uniform size particles, beds with particles 

of different sizes show that the yield of the intermediate product B in a system of consec-

utive reactions A→B→C, where both the reactant and products are subjected to diffusion 

limitations, reaches a maximum value as a function of the conversion of reactant A. The 

yield then decreases as a consequence of the prevalence of the secondary reaction to prod-

uct C. 

If the reaction system includes first-order irreversible reactions that proceed on 

spherical catalyst particles with a log-normal volume particle size distribution, which are 

common in many catalytic applications, the following three parameters characterize the 

system: ϕm, m and β. ( ) 1
3

m m
R k D =  is the Thiele modulus for the primary reaction, 

where Rm is the mean harmonic radius of the PSD. m is the relationship between the in-

trinsic kinetic constants for the secondary and primary reaction and β represents the 

standard deviation of the natural logarithm of the particle size, indicative of the dispersion 

of sizes in the distribution. The selection of the mean harmonic radius as the characteristic 

length that is representative of the whole set of particles in the calculation of the Thiele 

modulus is completely adequate. 

If intraparticle diffusion resistances affect the chemical species, the selectivity to the 

intermediate product B is negatively influenced by the dispersion in PSD, given m and ϕm. 

The larger the dispersion (β) in the PSD, the stronger the negative impact. However, in 
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extreme situations, such as the absence of diffusion restrictions (small ϕm) or under net 

intraparticle diffusion control (large ϕm), the dispersion in the particle size (β) does not 

affect the yield curves of the intermediate product B. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/catal12101214/s1, Figure S1: Yield of primary product B as a 

function of the conversion of the reactant A for different values of the dispersion parameter (β). m = 

k2/k1 = 0.10. (a) ϕm = 0.1; (b) ϕm = 0.2; (c) ϕm = 0.3; (d) ϕm = 1.0; (e) ϕm = 2.0; (f) ϕm = 3.0; Figure S2: Yield 

of primary product B as a function of the conversion of the reactant A for different values of the 

dispersion parameter (β). m = k2/k1 = 2.00. (a) ϕm = 0.1; (b) ϕm = 0.2; (c) ϕm = 0.3; (d) ϕm = 1.0; (e) ϕm = 

2.0; (f) ϕm = 3.0. 
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Abbreviations 

Symbols 

A area (m2) 

C concentration (gmol/m3) 

D effective diffusion coefficient (m2/s) 

f particle size distribution (1/m) 

F cumulative particle size distribution (dimensionless) 

k overall kinetic constant (1/s) 

L characteristic length (m) 

m relationship between the intrinsic kinetic constants (dimensionless) 

P generic product 

R catalyst particle radius (m) 

r radial distance (m) 

S selectivity (dimensionless) 

V volume (m3) 

X conversion (dimensionless) 

Y yield (dimensionless) 

z standard log-normal variable (dimensionless) 

Greek symbols 

α location parameter in log-normal volume particle size distribution 

β dispersion parameter in log-normal volume particle size distribution 

χ dimensionless concentration in the fluid phase 

ϕ Thiele modulus 

η effectiveness factor 

ρ dimensionless radial distance 

ξ dimensionless concentration in the catalyst particle 

Subscripts 

1 refers to primary reaction 

2 refers to secondary reaction 
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50 refers to the median of a particle size distribution 

A refers to reactant 

B refers to primary product 

f fluid phase 

m refers to the mean harmonic value 

p particle 

R refers to a specific particle size 

v volume 

Superscripts 

° inlet or initial concentration 

– refers to the x-th order momentum of a continuous distribution 

PSD refers to the particle size distribution 

x  x-th order momentum 

Appendix A 

By using the following definitions of dimensionless variables, 

( ) R

r

AV

r

pp

3
==  (A1) 

( )

o

A r

A

A

C

C
 = ,   ( )

o

B r

B

A

C

C
 =  (A2) 

o

A f

A

A

C

C
 = ,   

o

B f

B

A

C

C
 =  (A3) 

the mass balances in the catalyst particles for reactant A (Equation (2)) and primary prod-

uct B (Equation (5)), and their corresponding boundary conditions, can be written dimen-

sionless as 

2 2

12

1
A

A

dd

d d


  

  

 
= 

 
     ( )0 3   (A4) 

0A
d

d




=         ( )0 =  (A5) 

A A
 =         ( )3 =  (A6) 

( )2 2 2

1 12

1
B

A B

dd
m

d d


    

  

 
= − + 

 

   ( )0 3   (A7) 

0B
d

d




=         ( )0 =  (A8) 

B B
 =         ( )3 =  (A9) 

where 

( )

( )

( )

1

1

p R

R

p R

V k

A D
 =  (A10) 

is the Thiele modulus for the primary reaction ( 1
k

A B⎯⎯→ ), and 

2

1

k
m

k
=  (A11) 
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is the relationship between the intrinsic kinetic constants for the secondary ( )B C→  and 

primary ( )A B→  reactions. It is important to note that, in the right hand side of Equa-

tion (A7), the term that expresses the consumption of product B by the chemical reaction 

shows the coefficient 2 2 21 2

1 2

1

k k
m L

D k
 

  
= =  
   

, 
2

  being the Thiele modulus for the 

secondary reaction ( 2
k

B C⎯⎯→ ). Then, 
2 1

m  = . 

For the sake of clarity, the subscript 1 in the Thiele modulus for the primary reaction 

is omitted in the text, i.e., 
( ) ( )1 R R

 = . 

Appendix B 

The meaning of the volume distribution of particle sizes (
( )v R

f , Equation (21)) can be 

understood, considering that 
( )v R

f dR  is the differential volume fraction of particles 

with radii between R and (R + dR). That is, 

( )

( )

( )

( )

( )

3
3

v
3

3

0
0

4

3

4

3

R
R

R

R
R

R f dR
R f dR

f dR

R f dRR f dR








 
 
 

= =
 
 
 



 
(A12) 

Instead, 
( )Rf  is the number distribution of particle sizes, implying that 

( )R
f dR  is 

the differential fraction in the number of particles with radii between R and (R + dR). 

The x-th order momentum of a continuous distribution 
( )R

f dR  [35] is given by 

( )


=
0

dRfRR R

xx  (A13) 

Then, it is clear from Equation (A12) that the relationship between the volume and 

the number distributions of particle sizes is 

( ) ( )

3

v 3R R

R
f f

R
=  (A14) 

where, for a given PSD, the third-order momentum is constant [35]. 

By using Equation (A14) in Equation (A13), the second-order momentum (x = 2) is 

( ) ( )
2 2 3

v0 0

1
R R

R R f dR R f dR
R

   
= =  

 
 

 
(A15) 

It was shown in Equation (28) that the average volume of a set of particles with a 

number distribution of particle sizes 
( )Rf  is proportional to 3

R , while the average area 

is proportional to 2
R  (Equation (29)). Then, according to Equation (30), it can be ob-

served that the characteristic length in the generalized Thiele modulus includes the rela-

tionship 3 2
R R , which can be visualized from Equation (A15) to be 

( ) ( )

3

2

v0

1

1
m

R

R
R

R R f dR


= =



 
(A16) 

Rm is the mean harmonic radius, which can be easily calculated from Equation (A16) 

if the 
( )v R

f  or 
( )Rf  PSD are known. 

Different authors [29,32,34,41–44] reported that the particle sizes in different catalysts 

follow log-normal volume distributions. 
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( )

( )( )
2

2

ln

v 2

1 1
exp

2

R

R
R

f



 

− −   =      

   ( )0 R    (A17) 

where α is the natural logarithm of the median (R50) and β is a dispersion parameter that 

quantifies how much the actual distribution diverts from a uniform size. 

The cumulative distribution function of a log-normal volume distribution 
( )( )v R

F
 

represents the volume fraction in the bed of those particles with sizes smaller than or equal 

to R. From the definition of the error function [45], it can be shown that 

( ) ( )

( )ln

v v 20

1 1
erf

2 2

R R

R R
F f dR





−
+  = =

    ( )0 R    (A18) 

Figure A1 shows the plots of differential (Equation (A17)) and cumulative (Equation 

(A18)) log-normal volume particle size distributions with different dispersions (β). 

  

Figure A1. Differential 
( )v R

f  (a) and cumulative 
( )v R

F  (b) log-normal volume PSD with different 

dispersions (β). The thick dots indicate the location of Rm/R50 (Equation (A21)). 

In practice, it is helpful to use the standard log-normal variable (z) in order to stand-

ardize the actual (dimensional) particle size (R) [23,35]. 

( ) ( )50
ln ln

2 2

R R R
z



 

−
= =  (A19) 

According to this variable transformation, the particle size (R) can be written in terms 

of z, with the median (R50) and the standard deviation of the natural logarithm of the sizes 

(β) as parameters. 

( ) ( )50
exp 2 exp 2R z R z  = + =  (A20) 

By replacing R from Equation (A20) and 
( )v R

f  from Equation (A17) in Equation 

(A16), it is possible to obtain an expression for the mean harmonic radius of a log-normal 

volume distribution [23], which yields 

( ) ( )2 2

50
exp 2 exp 2

m
R R  = − = −  (A21) 

and, by combining this expression with Equation (A20), one can obtain the following 

equation: 

( )2
exp 2 2

m
R R z = +   (A22) 

If the particle radius R given by Equation (A22) is introduced into Equation (27), the 

generalized Thiele modulus is 
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( )

2

1 exp 2
3 2

m

z

p

R k
z

D


 

 
= + 

 

 (A23) 

and, according to Equation (32), this last expression can be rewritten into 

( )

2

,
exp 2

2m
mz

z



  

 
= + 

 

 (A24) 
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