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Abstract: A general Rh-catalyzed addition reaction of nitrogen containing heterocycles to internal
allenes is reported. Starting from racemic internal allenes a dynamic kinetic resolution (DKR)
provides N-allylated triazoles and tetrazoles. Simultaneous control of N1/Nx-position selectivity,
enantioselectivity and olefin geometry gives access to important building blocks of target-oriented
synthesis. The synthetic utility is demonstrated by a gram-scale reaction and a broad substrate
scope tolerating multiple functional groups. Deuterium labeling experiments and experiments with
enantioenriched allenes as starting material support a plausible reaction mechanism.
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1. Introduction

5-membered nitrogen containing heterocycles are found in a variety of bioactive
compounds. Molecules containing triazoles exhibit antifungal [1], anxiolytic [2], antibac-
terial [3], and anticancerogenic [4] activity. Tetrazoles display antifungal [5], immuno-
suppressive [6], and antiviral [7] properties. In addition, the isosterism of tetrazoles to
carboxylic acids makes them a suitable motif in drug design [8]. In particular, the subclass
of α-chiral N-alkylated triazoles and tetrazoles features a broad range of biological activity
(Figure 1) [5,9–12].
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Due to the importance of these moieties, different strategies for obtaining them have
been developed in the past (Scheme 1). Zhao and coworkers published the transition metal
catalyzed allylic substitution with sodium benzotriazolide [13,14]. Despite the excellent
enantioselectivities in some cases, the method lacks regioselectivity and requires depro-
tonation of the triazole in a previous step. Khan recently reported the allylic substitution
of cyclic carbonates with tetrazoles [15]. However, allylic substitutions in general are not
in accordance with the principle of atom economy by releasing stoichiometric amounts of
waste [16]. A series of organocatalyzed aza-Michael additions overcomes this shortcoming
and in some cases convinces with high selectivities, but the scope of these transformations is
limited [17–22]. Furthermore, a three-component reaction of tetrazoles, aldehydes, and acid
anhydrides should be mentioned, which uses a Dynamic Kinetic Resolution to synthesize
α-chiral tetrazoles as hemiaminals [23,24].
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Scheme 1. Selected methods for the synthesis of α-chiral triazoles and tetrazoles [13–24].

In the last decade, our group developed the transition metal-catalyzed addition of a
variety of pronucleophiles to allenes and alkynes [25,26]. C- [27–29], N- [30–32], O- [33–35],
and S-pronucleophiles [36,37] can thus be allylated enantioselectively, which creates an
atom economic analogon to the Tsuji-Trost allylation [38–45] and allylic oxidations [46–48].
Furthermore, the synthetic utility of these reactions has already been demonstrated in
several total syntheses [49–51]. We recently reported on the rhodium-catalyzed addition
of pyrazoles to internal allenes [52]. Due to the importance of triazoles and tetrazoles, we
also wanted to extend the Rh-catalysis for these heterocycles. Hence an optimized catalytic
protocol for the synthesis of such frameworks is presented using a DKR, a powerful and
important method in asymmetric catalysis and synthesis [53–57].

2. Results and Discussion

Coupling benzotriazole (2) with our screening allene, 1, resulted in 96% yield and
perfect enantio-, regio-, and E/Z-selectivity by using [Rh(COD)Cl]2, (R,R)-DIOP, and
50 mol% of PPTS at 60 ◦C. Phenyltetrazole (4) was coupled at 40 ◦C and with 20 mol%
PPTS with ideal regio- and Z/E-selectivity and good enantiomeric excess (Scheme 2) (For
optimization and screening tables, see the Supporting Information).
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Scheme 2. Optimized reaction conditions of the Rh-catalyzed hydroamination of racemic 1,3-
disubstituted allenes. Scale: 0.25 mmol; 1.25 mL of toluene (0.2 M). Yields reported for isolated
products. Enantioselectivities were determined by HPLC analysis using a chiral stationary phase.
COD = cyclooctadien, PPTS = pyridinium p-toluenesulfonate. Gram-scale catalysis (4.03 mmol allene):
benzotriazole: 96% yield, N1/N2 96:4, E/Z > 95:5, 95% ee; phenyltetrazole: 84% yield, Z/E > 95:5,
85% ee. For determination of absolute configuration, see the Supporting Information.

After identifying optimized reaction conditions, the broad applicability is demon-
strated by several scopes. Initially we subjected a variety of triazoles to the screening allene
1 (Figure 2).
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Figure 2. Scope of the addition of Triazoles to rac-1,7-diphenyl-hepta-3,4-diene (1). Reactions were
performed at 0.25 mmol scale. Cumulative yield for all isolated isomers. E/Z-selectivities determined
by 1H-NMR. Enantioselectivities were determined by HPLC analysis using a chiral stationary phase.
Unless specified, ee-values refer to main-stereoisomer of the main-regioisomer. Shown regioisomer is
designated as an N1-product.



Catalysts 2022, 12, 1209 4 of 11

The benzotriazol-derived substrates (6–12) showed up to 96% yield and enantios-
electivities up to 97% ee. While N1/N2-selectivity was consistently greater than 91:9
for symmetrically substituted triazoles (3, 6–8, 13, 14), asymmetric substrates added the
challenge of N1/N3-regioselectivity. 5-substituted benzotriazoles (10–12) provided the
corresponding products in an almost statistical N1/N3-distribution. Placing the methyl-
group in 4- position (9) and thus closer to the reactive site increased N1/N3-selectivity to
4:1. Notably, there was a decrease of E/Z-selectivity for heterosubstituted benzotriazoles
(8, 11, 12), whereas a nearly perfect E-selectivity was present in all other cases. The nitro-
substituted benzotriazole (12) even led to an inversed olefine geometry, with the Z-product
being preferred.

We subsequently tested several allenes for compatibility in the reaction with benzo-
triazole 2 (Figure 3). Dialkyl substituted allenes (16–18) yielded perfect regioselectivity
and enantiomeric excess of up to 98% ee. Even a sterically more demanding (19) and a
macrocyclic allene (20) were tolerated as well. The method has its limitations for sterically
very demanding and aryl-substituted allenes (21, 22), as well as for a trisubstituted allene
(23). For these substrates, yield and selectivity decreased. Next, we subjected several
tetrazoles to the corresponding reaction conditions (Figure 4).
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Figure 3. Scope of the addition of Benzotriazole (2) to different racemic allenes. Reactions were
performed at 0.25 mmol scale. Cumulative yield for all isolated isomers. E/Z-selectivities determined
by 1H-NMR. Enantioselectivities were determined by HPLC analysis using a chiral stationary phase.
Unless specified, ee-values refer to main-stereoisomer of the main-regioisomer. [a] Reaction was
heated for 72 h.
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Figure 4. Scope of the addition of Tetrazoles to rac-1,7-diphenyl-hepta-3,4-diene. (1) Reactions were
performed at 0.25 mmol scale. Cumulative yield for all isolated isomers. Z/E-selectivities were
determined by 1H-NMR. Enantioselectivities were determined by HPLC analysis using a chiral
stationary phase. Unless specified, ee-values refer to main-stereoisomer of the main-regioisomer.
Unless specified full N2-selectivity was obtained. [a] Reaction was performed at 60 ◦C.

Halogen-substituted phenyltetrazoles were coupled in nearly quantitative yields (25–27).
Tetrazoles containing thioethers (31, 32) were the only ones to yield products with reduced
N2/N1-regioselectivity (about 3:1); however, maintaining quantitative yield and consis-
tently high Z/E- and enantioselectivity. Eventually, we subjected several allenes to the
reaction with 5-phenyl-tetrazole (4) (Figure 5).
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Except for one sterically more challenging substrate (38), all products were obtained
in perfect Z-selectivity. Only the di-cyclohexyl substituted substrate (38) showed shares
of the E-product, indicating the limitation of the catalyst controlling the olefin geome-
try for sterically more demanding allenes. Some mechanistic control experiments were
carried out (Scheme 3).
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Scheme 3. Control experiments: Without PPTS, only the allene could be reisolated. After reactions
with deuterated pronucleophiles, the deuterium was observed exclusively at the former central atom
of the allene.

If the catalysis was performed without PPTS, no reaction occurred, revealing the
important role of the additive for the reaction. Furthermore, we prepared deuterated nucle-
ophiles, which we subjected to the respective catalysis conditions. The deuterium atoms
were found exclusively at the former central atom of the allene. This is in contrast to earlier
results with terminal allenes, where deuterium was found at several positions [58–60].
Using enantiomerically enriched allenes in the catalysis, both enantiomers of allene yielded
the (S)-product for the triazole and the (R)-product for the tetrazole regardless of the
configuration of the allene used (Table 1).

When the achiral dppb ligand was used instead of the chiral DIOP ligand in the
reactions with enantiomerically enriched allene, the racemic products were obtained,
indicating a racemization step in the catalytic cycle. These findings lead us to propose the
following reaction mechanism (Scheme 4).

A RhI-DIOP complex is first formed from [Rh(COD)Cl]2 and (R,R)-DIOP (inner box of
Scheme 4). With the help of PPTS, the pronucleophile is then added by oxidative addition to
form the Rh-hydride species A. Now, syn-hydrometallation from the sterically less demand-
ing side occurs at the respective allene enantiomers. This occurs in such a way that the
hydrogen atom results at the former central atom of the allene. Initially, two diastereomeric
Z-configured σ-complexes B and dia-B are formed, which are in equilibrium with their
corresponding syn, anti-configured π-complexes C and dia-C. Finally, a σ-π-σ-isomerization
and a bond rotation lead to the identical pseudo-meso-π-allyl complex D for both diastere-
omers. Dynamic kinetic resolution is ensured via this syn, syn-configured π-complex, since
the initial hydrometallation products B and dia-B can be converted into each other via D.
If a triazole is the pronucleophile in the catalysis, reductive elimination occurs of pseudo-
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meso-π-allyl complex D, with the chiral ligand ensuring enantioselectivity. In contrast,
when a tetrazole is used as a pronucleophile, reductive elimination preferentially occurs
from syn-anti-π-complex C. This could explain why the (S)-E product is formed for the
triazole and the (R)-Z product for the tetrazole.

Table 1. Control experiments with enantioenriched allene.

# Allene Ligand Product
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3. Materials and Methods
3.1. Materials

Toluene was freshly distilled over Sodium/Benzophenone and degassed with argon
prior to use. Solvents employed for work-up and column chromatography were purchased
in technical grade quality and distilled by rotary evaporator before use. [Rh(COD)Cl]2 was
purchased from Sigma-Aldrich (St. Louis, MO, USA). (R,R)-DIOP was prepared according
to the procedure shown in the Supplementary Materials.

3.2. Methods

A 20 mL screw-cap Schlenk tube was dried under a vacuum, backfilled with ar-
gon (Argon 5.0 Sauerstoffwerke Friedrichshafen, Friedrichshafen, Germany), and cooled
to room temperature using a standard Schlenk line apparatus. The tube was filled with
[Rh(COD)Cl]2 (6.2 mg, 0.013 mmol, 5.0 mol%), (R,R)-DIOP (12.5 mg, 0.025 mmol, 10.0 mol%),
PPTS (31.5 mg, 0.125 mmol, 50.0 mol% or 12.6 mg, 0.05 mmol, 20.0 mol%), and triazole
(0.500 mmol, 2.0 equiv.) or tetrazole (0.30 mmol, 1.2 equiv.). The tube was put on a vacuum
and backfilled with argon again. Freshly distilled toluene (1.25 mL) and allene (0.25 mmol,
1.0 equiv.) were added by syringe under a flow of argon, and then the tube was sealed by
a screw cap. The mixture was stirred at 60 ◦C (for triazoles) or 40 ◦C (for tetrazoles) for
16 h. The tube was cooled to room temperature, the solvent was removed under reduced
pressure and the residue was purified by flash column chromatography using AcOEt and
hexanes as eluent on silica gel. In the case of the synthesis of racemic samples dppb was
used as the catalyst.

4. Conclusions

To conclude, we developed a highly selective Rh-catalysis to add triazoles and tetra-
zoles to internal allenes. In only one step, allylated triazoles and tetrazoles were constructed
in an enantio-, stereo-, and regioselective fashion. Mechanistic studies with deuterated
pronucleophiles and enantioenriched substrates led us to propose a DKR mechanism. Fur-
ther investigations in terms of compatible pronucleophiles that can be subjected to this
catalytic system is the goal of future research in our laboratories.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12101209/s1, screening tables, preparation of ligand and
substrates, analytical data, 1H and 13C NMR spectra, determination of absolute configuration, HPLC
chromatograms of products and enantioenriched allenes, more detailed materials and methods [61–66].
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