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Abstract: Reactions of VCl3 with 1,2-Bis[(4-methylphenyl)imino]acenaphthene (4-Me-C6H4-bian)
or 1,2-Bis[(2-methylphenyl)imino]acenaphthene (2-Me-C6H4-bian) in air lead to the formation of
[VOCl2(R-bian)(H2O)] (R = 4-Me-C6H4 (1), 2-Me-C6H4 (2)). Thes complexes were characterized by IR
and EPR spectroscopy as well as elemental analysis. Complexes 1 and 2 have high catalytic activity
in the oxidation of hydrocarbons with hydrogen peroxide and alcohols with tert-butyl hydroperoxide
in acetonitrile at 50 ◦C. The product yields are up to 40% for cyclohexane. Of particular importance
is the addition of 2-pyrazinecarboxylic acid (PCA) as a co-catalyst. Oxidation proceeds mainly
with the participation of free hydroxyl radicals, as evidenced by taking into account the regio- and
bond-selectivity in the oxidation of n-heptane and methylcyclohexane, as well as the dependence of
the reaction rate on the initial concentration of cyclohexane.

Keywords: oxidovanadium complex; BIAN ligands; oxygenation; alkanes; 2-pyrazinecarboxylic acid;
alkyl hydroperoxides

1. Introduction

In recent decades, some metal complexes have been described as catalysts in alkane
oxygenation with dioxygen or peroxides [1–4]. In most oxidation reactions with peroxides,
the key oxidizing species is the hydroxyl radical. The first such system that performs oxida-
tion with the participation of hydroxyl radicals is the combination of H2O2 with an iron salt.
In the case of Fe(II) it is called “Fenton’s reagent” [5,6]. Vanadium coordination compounds
have attracted increasing interest due to their structural features [7–18]. Shulpin et al.
discovered in 1993 a new, very efficient catalytic system using vanadium complexes in the
presence of pyrazinecarboxylic acid with hydrogen peroxide as an oxidizing agent [19–22].
Oxidation mechanisms were later proposed for this system [23,24]. Further studies of vari-
ous vanadium complexes in the oxidative catalysis of alkanes and alcohols also turned out
to be very fruitful [25,26]. These complexes showed high yields of alkane oxidation prod-
ucts. In this case, an important factor is the presence of redox-active ligands in the composi-
tion of the complexes. Bis(imino)-acenaphthenes (BIANs) belong to the class of α-diimines,
which combine 1,4-diazabutadiene and naphthalene fragments [27–29]. Due to this combi-
nation, BIANs have strong σ-donor and π-acceptor properties, providing stabilization of
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both high and low oxidation states of the metal upon coordination. BIANs form complexes
with almost all main group elements [30–34] and transition metals [35–44]. The key feature
of BIANs is their pronounced redox activity, and this property is widely exploited by scien-
tists to implement various catalytic transformations [27]. Historically, the first BIAN-based
catalysts were Brookhart’s catalysts for the polymerization of olefins [45,46]. The various
stereoelectronic properties of BIAN ligands, including their oxidation states, allowed for
the modulation of catalyst properties, polyethylene branching, and polymer microstruc-
ture [47–49]. Much less attention has been paid to the study of other catalytic processes
involving metal/BIAN complexes. The most striking examples are reduction processes,
hydrogenation [39,50–55], reduction of nitroarenes [56–58], and hydroamination [33,59–61].
Examples of oxidative transformations catalyzed by metal/BIAN complexes are even rarer,
possibly due to the electron-withdrawing properties of ligands [62–67]. There are several
examples of vanadium-BIAN complexes that have been tested as catalysts in oxidation
reactions. In particular, square-pyramidal V(IV) complexes [VO(acac)(R-bian)]Cl efficiently
catalyze the epoxidation of terminal and internal olefins with tert-butyl hydroperoxide
or hydrogen peroxide [68] and the related complexes [VOCl2(dpp-bian)] or [VOCl2(dpp-
mian)(CH3CN)] provide easy CH-oxidation of alkanes with hydrogen peroxide [62,64].
In this work, we synthesized two new oxidovanadium(IV) complexes with redox-active
BIAN ligands [VOCl2(R-bian)(H2O)] (R = 4-Me-C6H4 (1) and 2-Me-C6H4 (2)) and studied
their catalytic properties in the oxidation of cyclohexane with hydrogen peroxide in the
presence of 2-pyrazinecarboxylic acid (PCA).

2. Results and Discussion
2.1. Synthesis of Complexes 1 and 2

For the synthesis of complexes 1 and 2, an approach was applied that included the use
of vanadium trichloride as a starting compound. During the reaction, vanadium(III) was
oxidized in air to form the {VO}2+ fragment. Previously, we successfully used this approach
to obtain a series of oxidovanadium(IV) complexes with redox-active ligands [62,67,69].
Complexes 1 and 2 were synthesized by a similar method (Scheme 1), by refluxing vana-
dium trichloride with R-bian (R = 4-Me-C6H4-bian or 2-Me-C6H4) in acetonitrile for 10 h.
Fine crystalline powders of complexes 1 and 2 were obtained by recrystallization from a
mixture of methylene chloride and hexane in 57% to 49% yields, respectively. Complex 1 is
more soluble in most organic solvents than complex 2.
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Our attempts to obtain single crystals suitable for X-ray structural analysis for both
complexes failed. Therefore, indirect methods were used to determine the composition
and structure: elemental analysis, and IR, UV-vis, and EPR spectroscopies. Elemental
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analysis data are in good agreement with the proposed formula. The IR spectra of these
complexes showed broad vibration bands of the OH group from the coordinated H2O in
the range of 3600–3100 cm−1. CH vibrations of the methyl group at 3057–2870 cm−1 for 1
and 3055–2869 cm−1 for 2 were found. Vibration bands of CC and CN groups of the R-bian
ligand appeared in the region of 1661–1018 cm−1 for 1 and 1662–1045 cm−1 for 2. Very
strong bands at 983 cm−1 for 1 and 989 cm−1 for 2 were assigned to the VO group [70,71].
The vibrations at 890–818 cm−1 for 1 and 870–831 cm−1 for 2 can be attributed to the linear
chain V = O . . . V = O [69].

The electronic absorption spectra of solutions 1 and 2 in acetonitrile revealed strong
absorption in the region of 260–410 nm, which can be attributed to charge transfer bands
(involving ligand and metal), as well as a low-intensity band at 497 nm for 1 and 489 nm
for 2, which is typical for d-d transitions.

2.2. EPR Spectroscopy Studies

The EPR spectra of 1 and 2 in dichloromethane were recorded at 77 K (Figures 1 and 2).
In both cases spectra in solution revealed an eight-line isotropic signal characteristic of VIV

(d1) complexes. The spectrum of 1 turned out to be a superposition of two spectra with
very close parameters, related to different forms. The ratio between these species was 10:1.
The simulation analysis for the strong spectrum (spectrum b) showed the following EPR
parameters: g1 = 1.96, g2 = g3 = 1.98, A1 = 17.15 mT, A2 = A3 = 6.1 mT, and for the weak
EPR spectrum (spectrum c): g1 = 1.952, g2 = g3 = 1.982, A1 = 17.45 mT, A2 = A3 = 7.5 mT.
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The simulation analysis for the spectrum of 2 gave the following EPR parameters:
g1 = 1.96, g2 = g3 = 1.98, A1 = 17.15 mT, A2 = A3 = 6.1 mT. These parameters coincided
with those for the strong signal in spectrum of 1 (spectrum b), which indicated an iden-
tical coordination environment around vanadium. The weak EPR signal with different
parameters found in the spectrum of 1 probably belongs to a complex in which vanadium
has a different coordination environment. This could be a complex with coordinated ace-
tonitrile [VOCl2(CH3CN)(4-Me-C6H4-bian)], which was formed as a by-product at the
stage of synthesis in acetonitrile. In general, the EPR parameters for 1 and 2 are typical for
oxidovanadium(IV) complexes [62,72].
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To confirm the composition and structure of the complexes, DFT calculations were
carried out. The proposed geometries of the complexes were optimized (Supplemen-
tary Tables S1 and S2), and the g-factors and hyperfine interaction (HFI) A tensors were
calculated for both complexes.

The calculated EPR parameters were (see Table 1):

Table 1. EPR parameters.

Complex 1 g1 = 1.965
A1 = 15.8 mT,

g2 = 1.979
A2 = 5.4 mT,

g3 = 1.979
A3 = 5.4 mT

Complex 2 g1 = 1.965
A1 = 15.9 mT,

g2 = 1.979
A2 = 5.4 mT,

g3 = 1.981
A3 = 5.3 mT

The calculated values of the EPR parameters are in good agreement with the exper-
imental data, which indicates the legitimacy of the attributed composition [VIVOCl2(R-
bian)(H2O)] (R = 4-Me-C6H4 (1), 2-Me-C6H4 (2)). Previously, we obtained a similar complex
[VIVOCl2(H2O)(dbbpy)] having a 4,4’-di-tert-butyl-2,2’-dipyridine ligand instead of BIAN,
for which very similar EPR parameters were found: gxx = gyy = 1.978, gzz = 1.945, Axx = Ayy
= 6.5 mT, Azz = 17.86 mT [69].

2.3. Oxidation of Alkanes

We have found that compounds 1 and 2 catalyze the oxidation of alkanes with H2O2
in acetonitrile in the presence of 2-pyrazinecarboxylic acid (PCA). Accumulation of cyclo-
hexanol and cyclohexanone in oxidation of cyclohexane with hydrogen peroxide catalyzed
by compound 1 and 2 is demonstrated by Figures 3–6. The data obtained in the oxidation
of cyclohexane for both complexes showed that in the presence of 2-pyrazinecarboxylic
acid, the reactions proceeded much faster, which is consistent with our previous studies of
oxidative processes using vanadium complexes as the catalysts [25]. A co-catalyst in these
reactions was 2-pyrazinecarboxylic acid.

Figure 3 shows the accumulation of products of cyclohexane oxidation with hydrogen
peroxide using complex 1 as a catalyst in the absence of 2-pyrazinecarboxylic acid (PCA).
Figure 4 shows the accumulation of cyclohexane oxidation products when PCA was added.

Complex 2 was studied in more detail. The reduction of the reaction solution with
PPh3 gave rise to a higher concentration of cyclohexanol and a decrease in cyclohexanone
concentration (Figure 4) (compare Graphs A and B). These changes indicate (the so-called
Shul’pin method [24,62,73]), that alkyl hydroperoxide is formed in the course of the ox-
idation. Alkyl hydroperoxides are transformed in the GC injector into a mixture of the
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corresponding ketone and alcohol. Due to this, we quantitatively reduced the reaction
samples with PPh3 to obtain the corresponding alcohol. Shul’pin’s method allows us to
calculate the real concentrations not only of the hydroperoxide but of the alcohols and
ketones present in the solution at a given moment.
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Figure 5. Accumulation of cyclohexanol and cyclohexanone in the oxidation of cyclohexane (0.46 M)
with H2O2 (2.0 M) catalyzed by complex 2 (5 × 10−4 M) in the presence of PCA (2 × 10−3 M), at
50 ◦C in acetonitrile. Concentrations of products were measured by GC before (A) and after (B) the
reduction of the reaction samples with solid PPh3.
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The rate at [CyH]0 = 0.1 M is approximately equal to half of the maximum rate.
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We studied the parameters of selectivity in the oxidation of n-heptane (regioselectivity)
and methylcyclohexane (bond selectivity) catalyzed by complexes 1 and 2. The regio-
selectivity parameters for the oxidation of n-heptane were obtained for complex 1:C (1):C
(2):C (3):C (4) = 1.0:5.6:5.7:5.4 (Complex-1 (5 × 10−4 M); n-heptane (0.5 M); H2O2 (2.0 M);
PCA (2 × 10−3 M), at 50 ◦C in acetonitrile (yield of reaction products—16% in 4 h; TON
= 160)) and for complex 2:C (1):C (2):C (3):C (4) = 1.0:5.0:5.2:4.7 (Complex-2 (5 × 10−4 M);
n-heptane (0.5 M); H2O2 (2.0 M); PCA (2× 10−3 M), at 50 ◦C in acetonitrile (yield of reaction
products—18% in 3 h; TON = 180)).

The bond-selectivity parameters for the oxidation of methylcyclohexane were obtained:
1◦:2◦:3◦ = 1.0:5.5:17.7 for complex 1 (Complex-1 (5 × 10−4 M); n-heptane (0.5 M); H2O2
(2.0 M); PCA (2 × 10−3 M), at 50 ◦C in acetonitrile (yield of reaction products—16% in
4 h; TON = 160)); and 1◦:2◦:3◦ = 1.0:6.6:18.5 for complex 2 (Complex-2 (5 × 10−4 M);
methylcyclohexane (0.5 M); H2O2 (2.0 M); PCA (2 × 10−3 M), at 50 ◦C in acetonitrile (yield
of reaction products—15% in 3 h; TON = 150)).

Data on the selectivity of oxidation (see above) show that the oxidizing species in
the studied catalytic system are hydroxyl radicals. This is also confirmed by the data
presented below on the reactivity of the oxidizing species. In the system under study, the
decomposition of hydroxyl radicals can occur when they interact with the ligand (L) bound
to vanadium

L + OH•→decomposition (1)

with 2-pyrazinecarboxylic acid present in the system

PCA + OH•→decomposition (2)

or with acetonitrile
CH3CN + OH•→decomposition (3)

The interaction of the hydroxyl radical with hydrogen peroxide leads to the formation
of the HO2

• radical, which most likely reduces the vanadium ion

H2O2 + OH•→H2O + HO2
• (4)

V(5+) + HO2
•→V(4+) + H+ + O2 (5)
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The reduced vanadium ion is oxidized by peroxide and the hydroxyl radical is regen-
erated

V(4+) + H2O2→V(5+) + OH− + OH• (6)

Thus, the interaction of OH• with H2O2 does not in fact lead to the destruction of
the hydroxyl radical. Taking the maximum possible value of 1010 M−1 s−1 for the rate
constants of the interaction of OH• with L and PCA, we obtained for the rate constants of
the pseudo-first order of the decomposition of OH• with L and PCA under our experimental
conditions the values k1[L] = 5 × 106 s−1, k2[PCA] = 2 × 107 s−1. A similar characteristic
for OH• decomposition with acetonitrile is k3[CH3CN] no less than 5 × 107 s−1. Thus, the
latter reaction is the main one in the absence of a substrate; the proportion of the reaction
involving PCA does not exceed 30% in the total hydroxyl decomposition channel, and the
contribution of the reaction involving L is negligibly small. Therefore, the dependence of
the initial rate of formation of oxygenation products on the concentration of cyclohexane
(Figure 7) reflects the competition of acetonitrile and PCA (reactions (2) and (3)) with the
introduced cyclohexane (reaction (7)) for the hydroxyl radical

C6Н12 + ОН• → (7)

Let us assume that the rate of generation of hydroxyl radicals by the catalytic system
under study under the conditions of Figure 7 is Wi. Let us further assume that steps (2), (3),
and (7) are limiting the decomposition of OH• with PCA, acetonitrile, and cyclohexane,
and the OH• concentration is quasi-stationary. Then we can write

Wi = (k2[PCA] + k3[CH3CN] + k7[C6H12]) [OH•] (8)

It follows from (7) that the quasi-stationary OH• concentration is determined by the
relation

[OH•] = Wi/(k2[PCA] + k3 [CH3CN] + k7[C6H12]) (9)

Assuming that reaction (7) is the limiting one in the sequence of transformations
leading to the formation of cyclohexyl hydroperoxide, we obtain the following equation for
the initial rate of its formation

(d[ROOH]/dt)0 = k7[C6H12]0Wi/(k2[PCA]0 + k3 [CH3CN]0 + k7[C6H12]0). (10)

To analyze the data in Figure 5, we transform the Equation (9)

[C6H12]0/(d[ROOH]/dt)0 = Wi
−1{((k2[PCA]0 + k3 [CH3CN]0)/k7) + [C7H12]0)} (11)

In accordance with (11), a linear dependence should be observed:
[C6H12]0/(d[ROOH]/dt)0 from [C6H12]0. The experimental data satisfy the expected

linear dependence, from the analysis of which it follows that

(k2[PCA]0 + k3[CH3CN]0)/k7 = 0.11М, a Wi = 1.1 × 10−4 M с−1 (12)

From the above estimates for k2[PCA]0 and k3[CH3CN]0 under the experimental
conditions presented in Figure 7, and relation (12), it follows that

0.08 < k3[CH3CN]0)/k7 < 0.11 (13)

The estimated value of k3[CH3CN]0)/k7 is close to the values obtained earlier for other
catalytic systems in which the formation of hydroxyl radicals has been established [74,75].
Thus, data on the reactivity of an intermediate species of an oxidizing nature that arises
during the catalytic decomposition of hydrogen peroxide in the presence of the catalyst
under study, as well as data on the regioselectivity of the oxidation of linear alkanes,
indicate that the detected intermediate species is a hydroxyl radical.
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The dependence of the initial rate of ROOH formation on temperature is shown in
Figure 9. It follows from the presented data that the effective activation energy of the
process leading to the formation of ROOH equals 18± 2 kcal/mol. This value is close to the
values obtained for the activation energy of alkane oxidation reactions in other previously
published works [24,76,77].
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in acetonitrile).

These data as well as the character of dependence of the initial cyclohexane oxida-
tion rate on the initial hydrocarbon concentration indicate that the reaction occurs with
the participation of hydroxyl radicals, and that alkyl hydroperoxides are formed as the
primary products.

Comparative parameters of the oxidation of cyclohexane catalyzed by complexes 1
and 2 and other previously published vanadium complexes are presented in Table 2, and
the differences among them are noticeable—the maximum yields of oxidation products
are obtained in less time, since the reaction rate is higher, apparently due to the influence
of ligands.

Table 2. Comparative parameters of the oxidation of cyclohexane catalyzed by complexes 1 and 2
and other previously published vanadium complexes.

Catalytic System Total Yield of Oxidation
Products (%) Time (hours) TON

Complex 1 (5·10−4 M), this work 38 1.5 350
Complex 2 (5·10−4 M), this work 42 1.5 380

Bu4N[VO3] (1·10−4 M) [19] 30 4.0 700
Bu4N[VO(PCA)2] (1·10−4 M) [22] 20 24.0 900

bis(maltolato)oxo complexes
of vanadium(V) (1·10−4 M) 27 14.0 2600
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Table 2. Cont.

Catalytic System Total Yield of Oxidation
Products (%) Time (hours) TON

Oxovanadium(V) triethanolaminate
(1·10−4 M) [24] 10 24.0 900

bis chelate oxoethoxovanadium
(2·10−4 M) [69] 30 24.0 700

[VO(OCH3)(5-Cl-quin)2 1/2CHCl3
(5·10−4 M) [68] 39 6.0 360

2.4. Oxidation of Alcohols

The complexes show moderate activity in the oxidation of alcohols with tert-butyl
hydroperoxide. The yields for the oxidation of phenylethanol (0.5 M) to acetophenone
with tert-butyl (1.5 M) hydroperoxide under catalysis with complexes 1 (5 × 10−4 M) and 2
(5 × 10−4 M) were 28% (TON = 280) and 56% (TON = 560), respectively, at a temperature
of 50 ◦C, in acetonitrile for 5 h. In analogous reactions of oxidation of cyclohexanol (0.5 M)
to cyclohexanone, corresponding yields were 15% (TON = 150) and 20% (TON = 200) after
5 h. In reactions of oxidation of 2-heptanol (0.5 M) to 2-heptanone, corresponding yields
were 36% (TON = 360) and 46% (TON = 460) after 5 h. Hydrogen peroxide was much less
productive in these reactions.

3. Experimental Section
3.1. General Procedures

All manipulations were carried out in air. VCl3 was commercially available. 1,2-
Bis[(2-methylphenyl)imino]acenaphthene (2-Me-C6H4-bian) and 1,2-Bis[(4-methylphenyl)
imino]acenaphthene (4-Me-C6H4-bian) were prepared as reported [78]. Organic solvents
(CH2Cl2, MeCN, glacial acetic acid, and hexane) were dried by standard methods before
use. All solvents were distilled by standard methods before use.

3.2. Physical Measurements

Elemental C, H, and N analyses were performed with a EuroEA3000 Eurovector
analyzer. The IR spectra were recorded in the 4000–400 cm–1 range with a Perkin–Elmer
System 2000 FTIR spectrometer, with samples in KBr pellets and Nujol. EPR spectra were
recorded in the X band at 77 and 300 K on an E-109 Varian spectrometer equipped with
an analog-to-digital signal converter. To analyze and simulate EPR spectra, EasySpin
(Matlab software package) was used [79]. A UV-2501 PC spectrometer was used for UV-vis
spectroscopic study. The UV-vis spectra were recorded in a quartz cuvette of 2 mm optical
layer at room temperature.

3.3. DFT Calculations

The spin-unrestricted DFT calculations were performed using the ADF 2021 program
package [80,81]. The optimized geometries were obtained with the generalized gradient
approximation (GGA) functional BP86 [82,83] and the triple-zeta basis sets (with one
polarization function) TZP [84]. The g- and A-tensors were calculated with hybrid PBE0
functional (25% HF exchange) [85,86] and TZP basis sets for all atoms except V, for which the
larger basis set TZ2P-J (triple-zeta with two polarization and several extra tight, mainly 1s,
functions) was used [84]. The EPR parameters were derived as second derivative properties
with spin-orbit coupling and external magnetic field taken as perturbation [87,88]. In all
calculations, the scalar relativistic effects were accounted for by the zeroth-order regular
approximation (ZORA) formalism [89,90]. Solvent effects (CH2Cl2) were considered using
the conductor-like screening model (COSMO) of solvation [91] as implemented on ADF
2021 [80,81].

Synthesis of [VOCl2(4-Me-C6H4-bian)(H2O)] (1). A mixture of VCl3 (43.6 mg, 277 µmol)
and 4-Me-C6H4-bian (100 mg, 277 µmol) was dissolved in 10 mL of acetonitrile. The mix-
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ture was refluxed for 10 h. The resulting bright brown solution was evaporated to dryness.
Crude product of 1 was redissolved in methylene chloride followed by a layering of hexane.
Brown-green crystalline precipitate of 1 formed after 1 day. Yield: 81 mg (57%). Anal.
Calc. for C26H22Cl2N2O2V*H2O: C 58.4, H 4.5, N 5.2; Found C 58.6, H 4.8, N 4.9. IR (KBr)
ν/cm−1: 3600–3070 (br. s), 3057 (w), 3034 (w), 2970 (w), 2925 (w), 2870 (w), 1964 (w), 1899
(w), 1772 (w), 1726 (w), 1661 (m), 1623 (s), 1586 (vs), 1507 (vs), 1489 (m), 1435 (w), 1419 (m),
1377 (w), 1357 (w), 1312 (w), 1292 (m), 1252 (m), 1226 (w), 1212 (w), 1187 (w), 1150 (w), 1132
(w), 1108 (m), 1064 (w), 1050 (w), 1039 (w), 1018 (w), 983 (vs), 890 (w), 858 (w), 830 (s), 818
(s), 776 (vs), 711 (w), 658 (w), 637 (w), 624 (w), 605 (w), 554 (w), 528 (w), 514 (w), 489 (m),
458 (w), 424 (m). UV-Vis (MeCN): λ(ε) = 271 nm (15254 M−1 cm−1), 316 (6899 M−1 cm−1),
410 (2247 M−1 cm−1), 497 (536 M−1 cm−1) nm.

Synthesis of [VOCl2(2-Me-C6H4-bian)(H2O)] (2). A mixture of VCl3 (43.6 mg, 277 µmol)
and 2-Me-C6H4-bian (100 mg, 277 µmol) was dissolved in 10 mL of acetonitrile. The mix-
ture was refluxed for 10 h. The resulting bright brown solution and brown precipitate were
formed. The solution was filtered and evaporated to dryness. Crude product of 2 was
redissolved in methylene chloride, filtered again, and followed by a layering of hexane.
Brown-green crystalline precipitate of 2 formed after 1 day. Yield: 70 mg (49%). Anal. Calc.
for C26H22Cl2N2O2V*0.2CH2Cl2: C 59.7, H 4.3, N 5.3; Found C 59.4, H 4.5, N 5.4. IR (KBr)
ν/cm−1: 3600–3120 (br.s), 3055 (w), 3018 (w), 2976 (w), 2924 (w), 2869 (w), 2579 (w), 1955
(w), 1909 (w), 1843 (w), 1708 (w), 1662 (m), 1619 (vs), 1596 (s), 1586 (vs), 1486 (vs), 1457
(w), 1445 (w), 1435 (m), 1418 (m), 1384 (w), 1357 (w), 1318 (w), 1294 (m), 1243 (m), 1228
(m), 1192 (m), 1155 (w), 1123 (m), 1094 (w), 1045 (m), 989 (vs), 931 (w), 870 (w), 853 (w),
831 (s), 777 (vs), 758 (s), 719 (m), 699 (w), 668 (w), 650 (w), 631 (w), 612 (w), 555 (w), 543
(w), 531 (w), 511 (w), 500 (w), 475 (w), 488 (m), 412 (w). UV-Vis (MeCN): λ(ε) = 268 nm
(ε = 9584 M−1 cm−1), 316 nm (ε = 6112 M−1 cm−1), 404 nm (ε = 1136 M−1 cm−1), 489 nm
(ε = 520 M−1 cm−1) nm.

3.4. Catalytic Studies

Total volume of the reaction solution was 5 mL. (CAUTION: the combination of air or
molecular oxygen and H2O2 with organic compounds at elevated temperatures may be
explosive!) Cylindrical glass vessels with vigorous stirring of the reaction mixture were
used for the oxidation of alkanes with hydrogen peroxide or tert-butyl hydroperoxide (for
alcohols), typically carried out in air in thermostated solution. Initially, a portion of 50%
aqueous solution of hydrogen peroxide was added to the solution of the catalyst, co-catalyst
(PCA), and substrate in acetonitrile. The aliquots of the reaction solution were analyzed by
GC (3700, fused silica capillary column FFAP/OV-101 20/80 w/w, 30 m× 0.2 mm× 0.3 µm;
argon as a carrier gas. Attribution of peaks was made by comparison with chromatograms
of authentic samples). Usually samples were analyzed twice, i.e., before and after the
addition portion by portion of the excess of solid PPh3.This method was proposed and
used previously by one of us [92,93].

4. Conclusions

New oxidovanadium(IV) complexes 1 and 2 were synthesized by reacting vanadium
trichloride with BIAN-type ligands (4-Me-C6H4-bian and 2-Me-C6H4-bian) in 57% and 49%
yields, respectively. These compounds were characterized by elemental analysis and IR
and EPR spectroscopy. Compounds 1 and 2 are a powerful catalyst for the efficient oxida-
tion of alkanes with peroxides. Data on the selectivity of oxidation and the nature of the
dependence of the initial rate of cyclohexane oxidation on the initial concentration of hydro-
carbon, as well as kinetic studies, indicate that the reaction proceeds with the participation
of hydroxyl radicals and alkyl hydroperoxides are formed as the primary products.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/catal12101168/s1, Figure S1: UV-spectrum of 1 in the CH3CN, Figure S2: UV-
spectrum of 2 in the CH3CN, Table S1: Optimized coordinates for complex 1, Table S2: Optimized
coordinates for complex 2.

https://www.mdpi.com/article/10.3390/catal12101168/s1
https://www.mdpi.com/article/10.3390/catal12101168/s1
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