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Abstract: Developing high-performance photocatalysts for H2 production via fabricating hetero-
junctions has attracted much attention. Herein, we design a simple strategy to prepare composites
that consist of TaON/CdS hybrids via a hydrothermal process. The results show that the pristine
CdS nanoparticles loaded with 20 wt% TaON (TC4) could maximize the photocatalytic hydrogen
evolution rate to 19.29 mmol g−1 h−1 under visible light irradiation, which was 2.13 times higher
than that of the pristine CdS (9.03 mmol g−1 h−1) under the same conditions. The apparent quantum
yield (AQY) of the TC4 nanocomposites at 420 nm was calculated to be 18.23%. The outstanding
photocatalytic performance of the composites can be ascribed to the formation of heterojunctions.
The electrochemical measurements indicate that the decoration facilitates the generation of extra
photo-electrons, prolonging the recombination rate of photogenerated charge carriers, offering ade-
quate active sites and improving catalytic stability. This study sheds light on the construction strategy
and the deep understanding of the novel CdS-based composites for high-performance photocatalytic
H2 production.

Keywords: photocatalysts; TaON/CdS composites; hydrogen evolution; visible light irradiation

1. Introduction

Since the discovery of photocatalytic water splitting on TiO2 electrodes by Fujishima
and Honda in 1972 [1], solar-driven hydrogen evolution from water splitting has become
a promising method to solve the depletion of fossil fuels [2]. However, the quick re-
combination of the photogenerated charge carriers still limits the practical application of
photocatalysts [3]. Obtaining highly efficient and stable photocatalysts is the key to improve
the performance of the photocatalytic reactions [4]. Generally speaking, high-performance
photocatalysts should possess a narrow bandgap [5], strong visible absorption [6], appro-
priate energy band position [7], good photocatalytic stability and abundant active sites for
photocatalytic hydrogen evolution [8].

Attractive materials suitable for forming heterojunctions, such as sulfides [9], ni-
trides [10], and oxides [11,12], have been intensively studied. Among these materials,
cadmium sulfide (CdS) renders excellent photocatalytic H2 production performance, owing
to the narrow energy bandgap (2.4 eV) and suitable conduction/valence band potential for
hydrogen reductions [13]. However, the pristine CdS nanoparticles always suffer from fast
charge recombination rates. Therefore, the methods that include heterojunction construc-
tion [14,15] and element doping [16] are applied to enhance the photocatalytic efficiency.
Forming heterojunctions by loading co-catalysts has several advantages, such as facilitat-
ing the generation and transportation of photoinduced charge carriers [17], reducing the
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electron–hole recombination [18], improving the photocatalytic activity of catalysts [19]
and enhancing light harvesting ability [20]. However, the majority of studies focus on
the decoration of MoS2 due to its unique layer structure, proper bandgap (1.9 eV) and
redox potentials, as well as its stable chemical properties [21]. One good example has
been reported by Han et al., who demonstrated that MoS2/CdS heterostructures could
efficiently retard the charge carrier recombination [22]. However, decoration with other
guest materials needs to be further developed.

Tantalum oxynitride (TaON) has been proposed as a promising photocatalytic material
for H2 evolution, since its theoretical optical and electronic properties have been predicted
to be suitable for photocatalytic H2 evolution by density functional theory [23]. Compared
to Ta2O5 and Ta3N5, the appropriate band gap position [24] and good sunlight harvesting
ability [25] make TaON an ideal candidate for photocatalytic water splitting under visible
light irradiation. However, previous studies indicated that the photocatalytic hydrogen
evolution efficiency of pristine TaON was limited by its ultrahigh charge recombination
rate [26], poor photo-stability [27] and low quantum efficiency [28]. Therefore, it is necessary
to stabilize and boost the photocatalytic performance of TaON by forming heterojunctions
with other photocatalysts.

In this study, we prepared TaON-decorated CdS nanocomposites via the hydrother-
mal process of high-performance photocatalytic hydrogen production under visible light
irradiation, which is rarely reported in the literature. The optimized ratios of TaON to
CdS were determined by evaluating the photocatalytic H2 evolution performances. The
obtained photocatalysts achieved high quantum efficiency and excellent cycle stability.
The mechanism of H2 production performance after the formation of heterojunctions was
studied with the aid of electrochemical experiments. This work provides a new way to
prepare stable and high-performance photocatalysts for efficient hydrogen evolution.

2. Experimental
2.1. Materials

The chemicals used in this work were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China), including cadmium acetate (Cd(Ac)2·2H2O, 98%), thiourea
(NH2CSNH2, 99%), tantalic oxide (Ta2O5, 99.99%), lactic acid (85%), and ethanol (99.5%).
All of the reagents are directly used without further purification. All solutions were
prepared with ultrapure water.

2.2. The Preparation of TaON Particles

TaON particles were prepared by a nitrogenization method. The commercial Ta2O5
powders were placed in a ceramic boat and then transferred into a quartz tube furnace.
The nitrogenization was achieved by heating the powders at 900 ◦C for 5 h, under an NH3
gas flow of 20 mL·min−1. To avoid reoxidization, the NH3 gas continued to flow through
the powders during the cooling process.

2.3. The Preparation of TaON/CdS Nanocomposites

In a typical procedure, 0.3198 mg Cd (Ac)2·2H2O and 0.9134 mg thiourea were dis-
solved into 60 mL DI water with strong stirring for 2 h. The as-prepared TaON particles
were then added to the above solution. After we continued stirring for another 2 h, this
suspension was transferred to a 100-mL Teflon-lined stainless autoclave and heated at
200 ◦C for 22 h. The autoclave was allowed to be naturally cooled to room temperature.
Afterwards, the samples were washed with ultrapure water and ethanol several times,
followed by being dried at 60 ◦C for 12 h. Scheme 1 illustrates the preparation of the
TaON/CdS composites. To obtain different loading amounts of TaON, the mass ratios
of TaON to CdS were designed as 5, 10, 15, 20, 25 and 30 wt%, which was equal to the
weight ratios of 1:20, 2:20, 3:20, 4:20, 5:20, 6:20, respectively. The obtained samples were
labelled as TC1, TC2, TC3, TC4, TC5, TC6, TaON, and CdS. The elemental composition
was measured by ICP-AES (inductively coupled plasma-atom emission spectrometry). The
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results are listed in Table S1 in the supporting information, indicating that the molar ratios
of TaON/CdS are consistent with the theoretical value.
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Scheme 1. Schematic of the preparation of the TaON/CdS composites.

2.4. General Characterization

XRD characterization was performed to determine the composition, crystal structure,
and the purity of the materials using Phillips X ‘Pert Multipurpose X-ray Diffraction System
(MPD) with Cu-Kα radiation in the 2θ range from 5◦ to 80◦, at a scan rate of 5◦ min−1.The
morphologies of the products were recorded by SEM images (Zeiss field emission scanning
electron microscope), TEM images (FEI tecnai G20 operated at an accelerated voltage of
100 kV), and high-resolution TEM (HRTEM, JEOL JEM-3010 with an accelerated voltage
of 200 kV). XPS spectra were obtained via a Physical Electronics PHI 5000 Versa probe
spectrometer with Al Kα radiation (1468 eV). The as-prepared powders were dispersed in
DI water by ultrasound in 1-cm quartz cells, and then placed in a UV–vis spectrophotometer
to scan the UV–vis absorption spectra. The BET surface area was determined using the
N2 adsorption isotherms, measured by an ASAP 2020 nitrogen adsorption apparatus
(Micromeritics Instruments, Norcross, USA).

2.5. Photoelectrochemical Testing

The relevant photoelectrochemical analysis of this work was achieved on an electro-
chemical work station (CHI660E, Shanghai, China) by using a three-electrode system. In
this system, the Ag/AgCl electrode was selected as the reference electrode and Pt-wire elec-
trode was used as the counter electrode. The working electrode was fabricated by painting
the suspension (4 mg of photocatalysts dispersed in 1 mL of ethanol and 10 µL of Nafion
solution) onto the FTO glass with a fixed area of 2 cm× 2 cm. Electrochemical impedance
spectroscopies (EIS) were carried out in 0.5 M Na2SO4 solution, with a frequency range of
0.01–105 Hz. The transient photocurrent measurements (i-T curves) were accomplished
in time-dependent light–darkness cycles at a bias potential of 0.3 V. The Mott–Schottky
curve (MS) was measured at a frequency of 500, 800 and 1000 Hz using this three-electrode
system.

2.6. Photocatalytic Hydrogen Production

The photocatalytic H2 evolution performances of the prepared photocatalysts were
evaluated by a commercial test system (LabSolar 6A systems, Perfect Light, Beijing, China)
connected to gas chromatography (Tianmei, GC7900), equipped with a TCD detector and
5 Å molecular sieve column, as shown in Figure S1. A vacuum was required for the test
system and Ar was used as the carrier gas. For photocatalysis, 10 mg of the prepared
TaON/CdS composites were dispersed in the 90-mL solution, containing 10 mL lactic
acid (as a sacrificial agent) aqueous solution with 2 wt% Pt cocatalyst. After stirring, the
solution was then transferred into an externally illuminated photocatalytic reactor with
a 300 W Xe lamp (PLS-SXE300, Perfect Light, Beijing, China) as a light source. The lamp
with a cut-off filter (λ > 420 nm) was placed 7 cm above the reactor. The temperature of the
reactor was kept at 5 ◦C using the recycled cooling water. The generated H2 was sent for
gas chromatography every 0.5 h for qualitative and quantitative analysis. The apparent
quantum yield value (AQY) of the catalyst for H2 evolution was measured by various
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single bandpass filters (420 ± 5, 475 ± 5, 550 ± 5, and 650 ± 5 nm). In addition the AQY
values were calculated by the following equation [29]:

quantum yield = number o f reacted electrons
number o f incident photons × 100%

= 2 number o f evolved H molecules
number o f incident photons × 100%

=
2×NH2

Ni
× 100%

=
2×NH2
I×A×t×λ

h×c
× 100%

(1)

where NH2 refers to the amount of hydrogen produced; I refers to the illumination intensity
(I = 6.16 mW/cm2; A is the illumination area (A = 16 cm2); t is the irradiation time, (t = 3600 s);
λ represents the optical wavelength (λ = 420 nm); h is Planck’s constant (h = 6.62×10−34 J·s); c
is the speed of light (c = 3×108 m/s).

3. Results and Discussion
3.1. Catalyst Characterization

The crystal structures of the pristine TaON particles, CdS nanoparticles, and the
composites (TC2, TC4 and TC6) were characterized by XRD, as shown in Figure 1. The
pattern at the bottom of the figure was indexed to the monoclinic phase TaON (PDF#01-070-
1193), while the red pattern was assigned to the hexagonal phase CdS (PDF#01-080-0006).
The sharp peaks indicate that the pristine CdS and TaON particles were well crystallized.
In the patterns of the composites, the majority of the diffraction peaks were indexed to
the CdS particles, suggesting that CdS was the dominant material in the composites. The
TaON peaks exhibited much lower intensities than that of CdS, indicating the low content
of TaON. No impurity peak was found in the composites, indicating that the hydrothermal
process did not change the phase of TaON and CdS.
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Figure 1. The XRD patterns of CdS, TaON, TC2, TC4 and TC6 samples.

The morphology of the as-prepared samples was investigated by SEM and TEM. As
shown in Figure 2a, the pristine CdS microparticles with a diameter of ~200 nm were ag-
gregated by CdS hexagonal nanoparticles (~100 nm). The pristine TaON showed a smaller
sphere-like structure with a diameter of 50–70 nm, as shown in Figure S2. Figure 2b–d
present the SEM images of TC2-6. To clearly distinguish the TaON and CdS particles, an
inset of the enlarged area (white circle) is provided in each SEM of the samples. In these
insets, the TaON and CdS particles are marked by arrows based on their shapes and sizes.
As the amount of TaON increased, the aggregated CdS microspheres were decomposed
into individual CdS nanoparticles, and more TaON particles were attached to the surface of
CdS particles.
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Figure 2. SEM image of (a) the CdS nanoparticles; (b) the TC2, (c) TC4 and (d) TC6 composites. The
insets in (b–d) are the zoomed-in SEM images in the white circles.

Figure 3a shows the TEM image of the pristine CdS nanoparticles. Discrete parti-
cles with hexagonal and irregulate shapes (~100 nm) were observed. The irregular CdS
nanoparticles with edges were probably generated from the hexagonal particles by Ostwald
ripening in the hydrothermal process. The prepared TaON showed a near spherical shape
with a relatively smooth surface (Figure 3b). The selected area electron diffraction (SAED)
patterns of the pristine CdS and TaON are displayed in the insets of Figure 3a,b, respec-
tively. The well-aligned diffraction spots of (100), (110) and (010) planes were observed
in the SAED of CdS, revealing that the CdS was a single-crystal hexagonal structure. The
diffraction dots of the pristine TaON were indexed to the (110) and (100) planes. The extra
electron diffraction spots were caused by the neighboring particles. Figure 3c displays the
TEM image of the TC4 composites, suggesting that the TaON particles were attached to
the CdS particles. An HRTEM image was taken at the interface between TaON and CdS
in the TC4 composites, as presented in Figure 3d. The intimate contact between the two
materials was observed, indicating that the heterojunction was formed. The lattice spacings
of 0.28 nm and 0.36 nm were indexed to the (011) plane of TaON and the (111) plane of
CdS. Figure 4 shows the elemental mapping of the contact area of TaON and CdS in the
TC4 composites to characterize the element distribution of the five elements (Cd, S, Ta, O
and N). The STEM image of the contact area is shown in Figure 4a. Figure 4b–f exhibit the
individual element distribution of Cd, S Ta, O and N, proving that the TaON nanospheres
were decorated on the surface of the CdS nanoparticles.
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Figure 4. (a) STEM image of the TC4 nanocomposites and the corresponding EDS mapping of (b) Cd,
(c) S, (d) Ta, (e) O, (f) N.

The XPS was performed to study the chemical composition and surface electron state
of the elements in the pristine materials and the TC4 nanocomposites, as shown in Figure 5.
Figure 5a displays the XPS surveys of the pristine CdS and TC4 composites. Only Cd,
S, O and C elements were observed in the spectrum of the pristine CdS, where the C1s
peak located at 284.6 eV was indexed to the reference C for calibration. In the survey of
the TC4 composites, the peaks included the elements of Ta, O, N, Cd, and S. Figure 5b
depicts the high-resolution spectra of Cd 3d in the pristine CdS and TC4. The Cd 3d5/2
and Cd 3d3/2 in the Cd 3d spectrum were located at 404.6 eV and 411.4 eV, suggesting
the existence of Cd2+. In the spectrum of the composites, the two peaks shifted 0.1 eV
towards low energy. Only one fitted peak in the spectra reveals that no other valency of
Cd existed. The high-resolution spectra of S in the pristine CdS and the TC4 composites
are shown in Figure 5c. Two peaks were fitted in the spectra, corresponding to the S 2P3/2
and S 2P1/2. A 0.2-eV shift to low energy was observed in these peaks. The Ta spectra
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are presented in Figure 5d, in which the pristine TaON was added for comparison. The
Ta 4f7/2 and Ta 4f5/2 peaks in the TC4 composites were found at 24.9 eV and 26.8 eV, and
the binding energy was 0.1 eV lower than that of pristine TaON. The O1s peaks in the two
materials showed similar asymmetric peaks. The main peak at ~529.8 eV was indexed to
the lattice oxygen in the TaON crystal structure, while the other one located at 531.5 eV can
be attributed to the O vacancy. A similar scenario occurred in N spectra. The single peak
located at 395.9 eV belonged to the N 1s peak (Figure 5f). A binding energy shift to low
energy after modification happened in the XPS spectra of these elements, indicating the
interfacial electron transfer from CdS to TaON [30]. This phenomenon also proved that the
heterojunctions between the two materials formed, implying the enhanced photocatalytic
performance of the prepared composites.
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1s, (f) N 1s.

UV–vis optical spectroscopy was used to investigate the light-harvesting abilities of
the prepared samples. Figure 6a shows the UV–vis absorption spectra of the pristine TaON,
CdS and various composites (TC2, 4, and 6). The absorption band edges of the pristine
TaON and CdS were located at about 450 nm and 500 nm, respectively. Compared with the
pristine samples, the composites exhibited a wider and stronger absorption peak. The red-
shifts of the absorption peaks of the CdS/TaON composites indicate the better utilization
of solar light when forming heterojunctions. Furthermore, the intensities in the visible light
range also increased for the composites. This also confirms that the light adsorption of the
composites in the visible range increased. The highest absorption intensity from 550–800
nm was observed in TC4 but decreased in TC6. This is probably due to the shielding
effect induced by excessive TaON, which hampered the light absorption of CdS [31,32]. To
characterize the bandgaps of the TaON and CdS, Tauc plots of the two pristine materials
were drowned based on the UV–vis adsorption spectra, as shown in Figure 6b. The Tauc
plots, used to calculate the bandgaps of the samples based on the UV–vis adsorption
spectra, were quantitatively acquired from the following equation [33]:

(αhν)2 = A (hν − Eg) (2)

where α, h, ν, Eg and A are the absorption coefficient, Planck constant, light frequency,
bandgap and constant, respectively. The bandgaps of the pristine CdS nanoparticles and
TaON particles were calculated to be 2.64 eV and 2.38 eV, respectively, in good agreement
with the literature [34,35].
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3.2. Photocatalytic Performance Tests

To verify the influence of the catalyst dose of the photocatalysts on photocatalytic
hydrogen performance, the experiments with the different initial concentrations of the
TaON/CdS nanocomposites were firstly carried out under visible light irradiation. As
shown in Figure S3, the highest hydrogen production performance (19.18 mmol g−1 h−1)
was found at the catalyst concentration of 0.1 g L−1. Therefore, we selected 0.1 g L−1 of
catalysts to evaluate the photocatalytic performance in this study. Photocatalytic hydrogen
production over the pristine CdS and TaON/CdS nanocomposites was evaluated under
visible light irradiation. Figure 7a shows the photocatalytic H2 evolution rates of the
as-prepared photocatalysts. The composites exhibited higher H2 evolution rates than the
pristine CdS nanoparticles. The highest hydrogen production rate (19.29 mmol g−1 h−1)
was found in TC4 composites, which was 2.13 times higher than that of the unmodified
CdS nanoparticles (9.03 mmol g−1 h−1). The corresponding time-dependent H2 evolution
rates of the as-prepared photocatalysts are shown in Figure 7b. The produced H2 evolution
amounts of the pristine CdS particles and the composites steadily increased with time,
while the pristine TaON showed little photocatalytic activity under visible light irradiation.
When the TaON nanospheres were loaded with the CdS nanoparticles, a heterojunction
was established, accelerating the separation and charge transfer of the generated electron–
hole pairs. The cycle stability tests of the pristine CdS and the TC4 composites were also
evaluated, as depicted in Figure 7c. The result of the 4-cycle test demonstrates that the
composites exhibited much better catalytic stability. The poor stability of the pristine CdS
may be caused by the photo-corrosion that originates from the reduction of surface sulfur
ions. The formation of the heterojunction led to the transfer of the photo-generated electrons
to TaON, which enables them to suppress the photo-corrosion. The SEM and XRD of TC4
(Figure S6) after the cycle stability test indicate that the morphology and crystal structure
of TC4 changed only slightly. Figure 7d shows the apparent quantum yield (AQY) of the
TC4 sample under various single wavelength irradiations and the corresponding UV–vis
absorption spectrum was provided for comparison. The AQY has been calculated to be
18.23% at 420 nm, 22.13% at 470 nm, 3.25% at 550 nm and 0.42% at 650 nm, respectively. The
photocatalytic H2 performances of some reported CdS-based photocatalysts with different
co-catalysts are summarized in Table 1. It can be concluded that the TaON/CdS composites
prepared in this work exhibit better photocatalytic H2 evolution rates and AQY values.
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Table 1. The photocatalytic HER performances of various CdS-based catalysts.

Photocatalysts Light Source Sacrificial
Reagent

Activity
(mmol g−1 h−1)

AQY
(420 nm) References

TaON
/CdS hybrids λ > 420 nm 10% lactic acid 19.29 18.23% This work

MoS2
/CdS nanocrystals λ > 420 nm 10% TEOA 1.15 0.66% [36]

C-doped CdS
nanoparticles
@Graphene

AM 1.5G 0.125 M Na2S
0.15 M Na2SO3

3.12 11.7% [37]

CdS nanorods
/ZnS nanosheets λ > 420 nm 0.025 M NaH2PO2 9.44 / [38]

CuO
/CdS nanorods λ > 420 nm 8% lactic acid 3.317 6.3% [39]

NiS
/CdS nanorods λ > 420 nm 0.35 M Na2S

0.25 M Na2SO3
1.131 6.1% [40]

mesoporous SiO2 λ > 420 nm 10% TEOA 0.607 / [41]
SiO2-derived
g-C3N4@CdS λ > 420 nm 10% TEOA 2.73 / [42]

3.3. Photocatalytic Mechanism Analysis

To deeply understand the underlying reasons for the enhanced photocatalytic perfor-
mances of the as-prepared catalysts, several electrochemical measurements were conducted.
Figure S4 shows the transient photocurrent of TaON, CdS, and a series of the composites
with the light on/off period under visible light irradiation. The photocurrent density of the
pristine TaON was quite low, which may be the reason for the negligible HER performance
of TaON. The CdS particles also exhibited a low response but better than that of TaON.
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The photocurrent intensities of the composites were much higher than that of the pristine
CdS, indicating that the decoration of TaON induces extra photogenerated charges. The
TC4 nanocomposites showed the highest photocurrent density, implying more photoelec-
trons were generated to participate in the hydrogen evolution reaction. Electrochemical
impendence spectroscopy (EIS) was used to further evaluate the charge transfer ability and
separation efficiency of the as-prepared photocatalyst. In the EIS Nyquist plots (Figure 8a),
the pristine TaON and CdS particles showed larger arc diameters, indicating higher charge
transfer resistance. The smallest arc diameter was found at the TC4 sample, suggesting
the best charge transfer ability among the samples. To quantitatively compare the charge
transfer properties, an equivalent circuit was used to fit the EIS plots (the inset in Figure 8a).
Rct represents the charge transfer resistance between the electrodes and solution; Rs is
the solution resistance and CPE corresponds to the double layer capacitor for the constant
phase element. Table 2 lists the fitting results of Rs, Rct and CPE of the pristine TaON and
CdS, and TC2-6 samples. The TC4 sample exhibited similar Rs and CPE but the smallest Rct
(1.71 × 105 Ω), implying that the TC4 may possess higher photocatalytic HER performance.
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Table 2. The fitted resistances of the prepared samples based on the equivalent circuits.

Samples Rct (Ω) Rs (Ω) CPE (µF)

CdS 6.02 × 105 6.65 121.4
TaON 8.63 × 105 8.52 211.3
TC2 4.28 × 105 7.59 124.2
TC4 1.71 × 105 6.06 122.3
TC6 3.35 × 105 7.62 125.7

The Mott–Schottky curves were measured to verify the flat-band potential and com-
pare the concentrations of charge carries of the pristine CdS, TaON particles, and the TC4
composites. As shown in Figure 8b, the slopes of the Mott–Schottky diagram of the samples
were positive, indicating that the three samples were typical n-type semiconductors. The
flat band potentials of the pristine CdS nanoparticles, TaON particles and the TC4 nanocom-
posites were estimated to be −0.53 V, −0.28 V and −0.46 V (vs. NHE). In addition, it is well
accepted that the conduction band potential is negative ~0.1 eV compared to the flat band
potential for n-type semiconductors. Therefore, the conduction band (CB) potentials (ECB)
of the pristine CdS nanoparticles, TaON particles and TC4 nanocomposites were calculated
to be −0.63 V, −0.38 V and −0.56 V (vs. NHE). In addition, the valance band potential
(EVB) could be calculated by the following formula [43]: EVB = ECB + Eg. Combined with
the results of the Tauc plots, the valence bands of the pristine CdS and TaON particles
were 1.75 V and 2.26 V. Based on the calculation, the band structures of CdS and TaON
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can be drawn, as shown in Figure 9. Moreover, the donor densities of the three samples
can be qualitatively estimated by the slopes of the Mott–Schottky plots. The smaller slope
represents the larger donor density. The slopes of the tangent lines in the Mott–Schottky
plots (Figure 8b, 800 Hz) were calculated as 5.67 × 108, 4.76 × 108, 2.03 × 108 for the
pristine CdS nanoparticles, the TaON particles, and the TC4 nanocomposites, respectively.
The donor density of the composites was higher than those of the pristine CdS and TaON,
indicating that the composites possessed the enhanced photocatalytic properties. Further-
more, nitrogen adsorption isotherms were used to investigate the specific surface areas
and pore structures of the samples. As shown in Figure S5, the adsorption–desorption
isotherms of the samples were typical type IV isotherms. The BET surface areas of TaON,
CdS, and TC4 were calculated to be 5.22, 10.26 and 26.82 m2 g−1. In comparison to the
pristine CdS, the specific surface area of TC4 composites slightly increased, suggesting that
the specific surface area may be a factor for enhancing the photocatalytic activity.
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Figure 9. Schematic illustration of photocatalytic mechanism of TaON/CdS nanocomposites under
visible light irradiation.

The band structures of the pristine TaON and CdS nanoparticles and the possible
transfer mechanism of charge carriers between the heterojunction of the TaON/CdS system
are illustrated in Figure 9. Under visible light irradiation, the photogenerated electrons
were excited from the VB to the conduction band of CdS and led to the generation of a
photocurrent, which was proved by the photocurrent transient response (Figure S4). The
holes remained at the VB of CdS. The pristine CdS exhibited low photocatalytic activities,
probably due to the fast recombination of the photo-excited charge carriers that arose from
the inherent defects of the CdS photocatalysts. Benefitting from the fabrication of the
TaON/CdS heterojunction, the photogenerated electrons produced from CdS transferred
to TaON due to the band bending of the heterostructures, and then combined with the
absorbed H+ to generate H2. The positive holes created in the VB of CdS were trapped
by the sacrificial agent (lactic acid). This process reduces the recombination rate and
leads to more electrons combining with H+ to produce H2, which is confirmed by the
photo-response current (Figure S3). Furthermore, the presence of the cocatalyst TaON
enhances the transfer of charge carriers (Figure 8a), and increases the electron density
(Figure 8b). In addition, the decoration of TaON enhances the adsorption of visible light
(Figure 6a). In summary, establishing heterojunctions between CdS and TaON is critical for
the enhancement of catalytic activity, attributed to the following three reasons: (1) inhibiting
the recombination of photogenerated electron–hole pairs, (2) increasing the absorption of
light, and (3) generating more photogenerated electrons combined with H+ to produce H2.

In addition, we think that the highest photocatalytic performance of TC4 is strongly
related to the suitable decoration amount of TaON. As shown in Figure 2b–d, the CdS
microspheres (see Figure 2a) gradually decomposed into CdS nanoparticles. This process
increased the active surface of CdS and the surface where a heterojunction can form
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with TaON. Less decorated TaON particles cannot provide sufficient heterojunctions (TC2,
Figure 2b). Excessive TaON particles on the CdS surface (TC6, Figure 2d) may block
the light absorption of CdS and decrease the activity [31]. Only a suitable amount and
distribution of TaON on CdS provide optimized photocatalytic activity.

4. Conclusions

In this study, high-performance and stable TaON/CdS nanocomposites were success-
fully fabricated by a one-step hydrothermal method with the existence of TaON particles.
Various mass ratios of CdS to TaON (TC-2, 10 wt%; TC-4, 20 wt%, and TC-6, 30 wt%)
were optimized, according to the performance of photocatalytic hydrogen production.
Among the composites, TC4 exhibited the highest photocatalytic hydrogen evolution rate
(19.29 mmol g−1 h−1) among these samples, which was 2.13 times higher than that of
the pristine CdS (9.03 mmol g−1 h−1). Moreover, the apparent quantum yield (AQY)
of photocatalytic H2 evolution reached 18.23% at 420 nm. The enhanced photocatalytic
hydrogen efficiency was ascribed to the construction of the TaON/CdS heterojunction,
leading to increased active sites, the effective separation and low recombination rate of
photogenerated charges, the small transfer resistance of photoelectrons, and enhanced
stability. This work provides new insights into designing the construction of CdS-based
photocatalysts in realizing highly efficient photocatalytic hydrogen evolution.
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