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Abstract: Constantly increasing hydrocarbon fuel combustion along with high levels of carbon diox-
ide emissions has given rise to a global energy crisis and environmental alterations. Photocatalysis
is an effective technique for addressing this energy and environmental crisis. Clean and renewable
solar energy is a very favourable path for photocatalytic CO2 reduction to value-added products
to tackle problems of energy and the environment. The synthesis of various products such as CH4,
CH3OH, CO, EtOH, etc., has been expanded through the photocatalytic reduction of CO2. Among
these products, methanol is one of the most important and highly versatile chemicals widely used
in industry and in day-to-day life. This review emphasizes the recent progress of photocatalytic
CO2 hydrogenation to CH3OH. In particular, Metal organic frameworks (MOFs), mixed-metal oxide,
carbon, TiO2 and plasmonic-based nanomaterials are discussed for the photocatalytic reduction of
CO2 to methanol. Finally, a summary and perspectives on this emerging field are provided.

Keywords: photocatalysts; nanomaterials; CO2 reduction; methanol; photocatalytic CO2 conversion

1. Introduction

Today’s global issues and challenges include the energy crisis and environmental
concerns [1]. Carbon dioxide comes primarily from the combustion of carbon sources such
as fossil fuels and other natural sources. Developing renewable energy technologies to
reduce pollutant emissions has become a significant area of research for the development
of a sustainable planet.

In light of this, various advanced nanomaterials for CO2 reduction have been re-
ported, including alkali hydroxide [2,3], CuNi@g-C3N4/TiO2 [4,5], Pd50-Ru50/MXene [6,7],
CoSA-Ti3C2Tx [8,9], CuSAs/TCNFs carbon nanofibers [10], and copper selenide (Cu2xSe(y)
nanocatalysts) [11]. Gawande and his co-workers recently reviewed advanced Ag-based
nanomaterials used for various photocatalytic applications, including CO2 hydrogenation
processes [12]. One promising approach to addressing issues related to climate change and
the energy crisis is photocatalytic CO2 reduction into value-added chemicals. Photocatalysis
is considered to be a promising method for CO2 conversion into valuable products, such as
methanol, methane, formaldehyde, ethanol, and higher hydrocarbons [13]. Photosynthesis
is an ideal method for effectively resolving issues relating to energy and the environment by
reducing CO2 into value-added chemicals and fuels [14]. The photocatalytic performance
of a photocatalyst is highly dependent upon its electronic band structure and bandwidth
energy. For an effective photocatalyst, the bandgap energy must be less than 3 eV to
expand the light absorption in the visible area and use solar power efficiently. To date, a
variety of photocatalysts including P- and F-co-doped carbon nitride (PFCN) [15], RuSA–
mC3N4 [16], Cu-ZIF [17,18], single Cu2O particle [19,20], g-C3N4-TiO2 [21], (Pd/Pt)SA/g-
C3N4 [22], O-doped g-C3N4 (OCN-Tube) [23], Cu-TiO2 [24], Ni-nanocluster loaded on
TiO2 (Ni/TiO2[Vo]) [25], aerogel flow-reactor [26], porous-g-C3N4/TiO2-nanotube [27–29],
carbon-doped TiO2 [30–32], RGO-NH2-MIL-125(Ti) [33], Cu porphyrin-based MOF [34],
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Zn2GeO4/ZIF-8 nanocomposite [35,36], TZTZ-TA-CMP [37], graphene quantum dots [38]
and In2O3–CuO [39] have been reported for photocatalytic CO2 reduction to valuable
chemicals. Figure 1 indicates that the interest of researchers is continuously growing in
the field of “Photocatalytic reduction of CO2 to methanol”. In the last decade, there has
been a significant increase in the publication of research articles. Recently, carbon, TiO2,
MOFs, and mixed-metal-oxide-based supporting materials have been utilized for photo-
catalytic hydrogenation of carbon dioxide into methanol. In this context, highly efficient
solar-convertible materials to be reserved into chemicals are desired.

Catalysts 2022, 12, x FOR PEER REVIEW 2 of 39 
 

 

C3N4/TiO2-nanotube [27–29], carbon-doped TiO2 [30–32], RGO-NH2-MIL-125(Ti) [33], Cu 
porphyrin-based MOF [34], Zn2GeO4/ZIF-8 nanocomposite [35,36], TZTZ-TA-CMP [37], 
graphene quantum dots [38] and In2O3–CuO [39] have been reported for photocatalytic 
CO2 reduction to valuable chemicals. Figure 1 indicates that the interest of researchers is 
continuously growing in the field of “Photocatalytic reduction of CO2 to methanol”. In the 
last decade, there has been a significant increase in the publication of research articles. 
Recently, carbon, TiO2, MOFs, and mixed-metal-oxide-based supporting materials have 
been utilized for photocatalytic hydrogenation of carbon dioxide into methanol. In this 
context, highly efficient solar-convertible materials to be reserved into chemicals are de-
sired. 

 
Figure 1. The number of publications for the keyword search “Photocatalytic reduction of CO2 to 
methanol” as found in Web of Science (dated: 12 November 2021). 

Due to its role as a greenhouse gas, the conversion of CO2 to alternative chemicals 
has enabled many options. However, CO2 is highly thermodynamically stable, which 
means that converting it into valuable chemicals requires a large amount of energy. A 
promising photo-reduced product of CO2 is methanol. Methanol has multiple applica-
tions, including fuel transportation, biodiesel transesterification, and electricity genera-
tion [40–42]. The CO2 conversion to methanol is a highly suitable method for reducing 
CO2 emissions into the atmosphere. Methanol is greener than gasoline and has a high en-
ergy density. In addition to being a feasible clean fuel, methanol is also an important feed-
stock for chemical industries. The internal combustion engines can directly use it if stored 
at atmospheric pressure (atm P) due to its high octane number [43,44]. In light of all the 
above advantages of methanol, we examine the various strategies to enhance the photo-
catalytic CO2 conversion to CH3OH using carbon-based, TiO2 based, MOFs based, mixed 
metal-oxide, and plasmonic-based photocatalysts. 

2. Scope and Focus of This Review 
CO2 emissions are one of the greatest environmental concerns globally today. It is 

extremely necessary to convert this atmospheric CO2 into valuable fuel or chemicals 
through catalysis. Photocatalysis is one of the ideal paths for CO2 conversion into value-
added products. 

There has not been a review on photocatalytic selective hydrogenation of CO2 to 
methanol yet. Though there are some reviews on CO2 reduction into value-added chemi-
cals reported, none of these reviews focused solely on methanol [43–54]. Thus, in this re-
view, we highlighted the photocatalytic CO2 reduction to selectively solar fuel such as 

Figure 1. The number of publications for the keyword search “Photocatalytic reduction of CO2 to
methanol” as found in Web of Science (dated: 12 November 2021).

Due to its role as a greenhouse gas, the conversion of CO2 to alternative chemicals has
enabled many options. However, CO2 is highly thermodynamically stable, which means
that converting it into valuable chemicals requires a large amount of energy. A promising
photo-reduced product of CO2 is methanol. Methanol has multiple applications, including
fuel transportation, biodiesel transesterification, and electricity generation [40–42]. The
CO2 conversion to methanol is a highly suitable method for reducing CO2 emissions into
the atmosphere. Methanol is greener than gasoline and has a high energy density. In
addition to being a feasible clean fuel, methanol is also an important feedstock for chemical
industries. The internal combustion engines can directly use it if stored at atmospheric
pressure (atm P) due to its high octane number [43,44]. In light of all the above advan-
tages of methanol, we examine the various strategies to enhance the photocatalytic CO2
conversion to CH3OH using carbon-based, TiO2 based, MOFs based, mixed metal-oxide,
and plasmonic-based photocatalysts.

2. Scope and Focus of This Review

CO2 emissions are one of the greatest environmental concerns globally today. It
is extremely necessary to convert this atmospheric CO2 into valuable fuel or chemi-
cals through catalysis. Photocatalysis is one of the ideal paths for CO2 conversion into
value-added products.

There has not been a review on photocatalytic selective hydrogenation of CO2 to
methanol yet. Though there are some reviews on CO2 reduction into value-added chemicals
reported, none of these reviews focused solely on methanol [43–54]. Thus, in this review, we
highlighted the photocatalytic CO2 reduction to selectively solar fuel such as methanol by
using photoactive supporting materials, including carbon, TiO2, MOF, mixed metal-oxide,
and plasmonic based photocatalysts (Figure 2). We believe that a detailed overview of
the catalytic performance of various photocatalysts for CO2 reduction to methanol would
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be useful to a broad community of scientists with interests in nanotechnology, materials
chemistry, inorganic chemistry, organic chemistry, and chemical engineering.
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3. Applications

Photocatalytic CO2 reduction is a promising method for converting CO2 into valuable
fuels and chemicals by utilising solar energy. An everyday variety of products utilize
utilise methanol as a chemical building block, such as paints, plastics, and construction
materials. In this section, a variety of photocatalysts for CO2 reduction to methanol are
included, including MOF-based, mixed-metal oxide-based, carbon-based, TiO2-based and
plasmonic-based photocatalysts.

3.1. Photocatalyst Based on MOFs

The metal–organic framework (MOF) is a hybrid (inorganic–organic) crystalline
porous material that consists of metal ions surrounded by organic linkers. Due to an
internal hollow structure, it has a remarkably large internal surface area, since the metal
ions serve as nodes that bind the linker arms together [55]. In contrast to other porous
materials, MOFs exhibit unparalleled structural diversity–atomic structural uniformity,
uniform pore structures, tunable porosity, as well as flexibility in network topology, and
chemical utility. MOFs’ cage-like structure is currently being exploited in numerous fields,
including purification, gas separation and storage, liquid separation, sensing, gas storage,
and catalysis [49]. The various types of MOF-based photocatalysts, such as MOF-based,
MOF composites, MOF-derived, MOFs as support, and single-site MOFs, are employed for
the reduction of CO2.

In recent years, MOF-based materials for photoreduction of CO2 have attracted signif-
icant research interest [50]. MOF materials are easily designed with convenient metallic
sites, specific heteroatoms, and an orderly structure of functional organic ligands [54]. They
can efficiently increase the efficiency of photocatalytic activity and electron–hole separa-
tion. MOF porosity can help to expose channels for reactant adsorption and more active
sites, thus resulting in an excellent catalytic performance. This can increase the efficiency
of charge transfer and solar power while inhibiting the recombination of photo-induced
electrons. Based on the above merits, the researchers attempt to use various MOFs for the
photocatalytic reduction of CO2.

MOFs have porous and channel structures that provide anchored centres for photo-
catalysis, giving them their structural and functional characteristics. Wang et al. reported
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composites (Cd0.2Zn0.8S/UiO-66-NH2) with various UiO-66-NH2 compositions via the
solvothermal method, which is used for CO2 photoreduction and hydrogen evaluation un-
der visible light [55]. The electron microscopic (TEM/HR-TEM) images of CZS/UN20 con-
firmed that Cd0.2Zn0.8S NPs were evenly distributed on the surface of the UiO-66NH2 cubes,
and the lattice spacing (0.313 nm), which corresponds to the (111) plane of Cd0.2Zn0.8S
(Figure 3a,b). The composite (Cd0.2Zn0.8S/UiO-66-NH2) showed the largest photocur-
rent density, implying effective photo-generated charge transfer (between Cd0.2Zn0.8S
and UiO-66-NH2), which is reliable for improved photocatalytic performance (Figure 3c).
The UiO-66-NH2 content significantly influences the photoactivity of Cd0.2Zn0.8S. The
CZS@UN20 sample shows the higher methanol evolution rate among the as-prepared sam-
ples (6.8 µmol h−1 g−1) under irradiation of visible light; it was larger (3.4 times) compared
to pure Cd0.2Zn0.8S (Figure 3d). Because of the transfer and charge separation (between
Cd0.2Zn0.8S and UiO-66-NH2), the photo-induced electrons absorbed by these materials
could be transferred over the surface for the reduction of CO2. Apart from photocatalytic
performance, the lifetime of the catalyst is very important. Furthermore, the photocatalyst
(Cd0.2Zn0.8S/UiO-66-NH2) showed excellent stability after four recycles in the system of
photoreduction CO2 (Figure 3e). A plausible interface electron transfer behaviour and a
related mechanism of photocatalytic CO2 reduction were demonstrated in Figure 3f.

The Z-scheme heterojunction has a high electron–hole pair separation efficiency and
redox ability and a broad light response range. The Z-scheme heterojunction is a wonderful
alternative for converting CO2 into value-adding compounds because of the advantages
listed above. The artificial Z-scheme photocatalyst is typically made up of two connected
semiconductor photocatalysts: one for oxidation and the other for reduction [56]. The
Z-scheme gets its name from the fact that it connects the two photosystems in a fashion
that looks like the letter “Z”. In particular, the engineered Z-scheme direct photocatalysts
that mimic the natural photosynthetic system provide a number of advantages, includ-
ing improved light uptake, spatially separated reductive and oxidative active sites, and
well-preserved strong redox capacity. Furthermore, photogenerated separation was made
possible by the heterojunction at the interfaces, which boosted the charge participation in
catalysed conversion reactions [57]. Heterojunctions (Z-scheme) are an effective way to iso-
late photogenerated electron holes and improve photocatalytic activity in semiconductors.
On the other hand, heterojunction-based MOFs are rarely documented. In a similar con-
text, Liu et al. have recently designed a Z-scheme O-ZnO/rGO/UiO-66-NH2 (OZ/R/U)
heterojunction that was obtained by pairing UiO-66-NH2 and rGO (reduced graphene
oxide) with O-ZnO (oxygen-poor) by a facile solvothermal method [58]. The SEM and
TEM images of the OZ/R/U catalyst displayed that the UiO-66-NH2 and O-ZnO were well
dispersed over the rGO NS with close contact (Figure 4a,b). The OZ/R/U catalyst has a
much higher photocurrent intensity than the OZnO and UiO-66-NH2 catalysts. As a result,
it confirms the high charge transfer and separation ability of the OZ/R/U (Figure 4c). The
optimal rGO content was 1.5 wt% for the photoactivity of the composite OZnO/rGO/UiO-
66-NH2 photocatalyst (Figure 4d). Under visible light irradiation, the ternary photocatalyst
demonstrated excellent photocatalytic performance for CO2 reduction into methanol and
formic acid, as well as good stability. The results showed that this ternary composite
could effectively reduce CO2 to HCOOH and CH3OH and that activity was far better than
ZnO/rGO/UiO-66-NH2 and O-ZnO/UiO-66-NH2. Under visible light irradiation, the
yield of HCOOH and CH3OH over the ternary composite (O-ZnO/rGO/UiO-66-NH2)
achieved 6.41 and 34.83 µmol g−1 h−1, respectively (Figure 4e). The photoinduced electrons
on the CB of O-ZnO are transferred to the VB of UiO-66-NH2 through rGO and combined
with the photoinduced holes, resulting in the accumulation of electrons on the CB of UiO-
66-NH2 and the accumulation of holes over the VB of O-ZnO. The CB level of UiO-66-NH2
is more negative than the reduction potential of CO2. The electrons accumulated over CB
of UiO-66-NH2 can readily reduce CO2 to methanol. This Z-scheme charge transfer process
of the above two semiconductors can reduce the rate of recombination of photogenerated
charge carriers while maintaining the photogenerated electrons’ high reduction capacity at
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more negative CB of UiO-66-NH2 and the strong oxidation capacity of the photoinduced
holes over more positive VB of O-ZnO. This Z-scheme photocatalytic system improved
charge separation efficiency by transferring electrons from the CB of O-ZnO to the rGO NS
and then recombining those electrons to holes in the VB of UiO-66-NH2 (Figure 4f). This
boosted composite photocatalyst activity was assigned to the development of a photocat-
alytic system (Z-scheme), which inhibits photogenerated charge carriers’ recombination,
while maintaining the high reduction capacity of UiO-66-NH2 and the strong oxidizing
ability of O-ZnO (Figure 4f).
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The copper single-atoms (CuSA) on the UiO-66-NH2 support (CuSA@UiO-66-NH2) have
been developed for photoreduction of CO2 into liquid fuels in water medium (Figure 5a) [59]
under visible-light irradiation. The morphology of the CuSA@UiO-66-NH2 photocatalyst
was studied by HR-TEM and AC-STEM analysis, which clearly verified the occurrence of a
Cu single-atom catalyst marked with red circles (Figure 5b–d). The images of elemental
mapping of (CuSA@UiO-66-NH2), furthermore, demonstrated that the atoms N, C, O, Cu
and Zr are uniformly dispersed on the support (Figure 5e). Remarkably, it was observed
that the photocurrent density of CuSA@UiO-66-NH2 was more than UiO-66-NH2, and
the CuNPs@UiO-66-NH2 catalysts showed that a larger number of carriers were produced
under visible light illumination (Figure 5f). Remarkably, the developed CuSA@UiO-66-NH2
reached the solar-induced CO2 conversion to ethanol and methanol with an evolution
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rate of about 4.22 µmol h−1 g−1 and 5.33 µmol h−1 g−1, respectively. The yields were
significantly higher as compared to pure counterparts (Figure 5g).

Figure 5. (a) Schematic representation for the synthesis of (CuSA@UiO-66-NH2) photocatalyst;
(b,c) The (TEM and HR-TEM) images of CuSA@UiO-66-NH2 photocatalyst; (d) AC-STEM image of
CuSA@UiO-66-NH2; (e) EDS mapping; (f) Photocurrent spectra; (g) Photocatalytic activity. Repro-
duced from [59] with permission.
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Liu et al. developed (ZIF-8/g-C3N4) composites by developing various compositions
of nanoclusters of ZIF-8 over the surface of g-C3N4 [60]. The ZIF-8 nanoclusters were
deposited over g-C3N4 nanotubes (NT); the overall tubular morphology remained the same
(Figure 6a). Additionally, some nanoparticles protruded from the tube wall of g-C3N4
nanotubes. The corresponding TEM image indicated that the ZIF-8 was effectively inserted
on the surface of the g-C3N4 NT (Figure 6b). After ZIF-8 surface grafting, charge separation
and transfer efficiency were retarded. Further confirmation of this conclusion came from the
photoelectrochemical measurements. Among the three samples, a TCN sample achieved
the highest stable photocurrent value, indicating the rapid charge separation (Figure 6c,d).
Due to the incorporation of ZIF-8 nanoclusters, ZIF-8@g-C3N4 composites could adsorb
more CO2 than the g-C3N4 NT without compromising light absorption ability. The (ZIF-
8/g-C3N4) composites had improved photocatalytic functioning for the reduction of CO2
due to the higher charge separation efficacy and CO2 capture ability of ZIF-8 from the
g-C3N4 NT, where the highest methanol evolution rate arrived at 0.75 mmol h−1 g−1 under
the ZIF-8/g-C3N4 composite (Figure 6e). The methanol production rate for bulk g-C3N4
and g-C3N4 NT was 0.24 and 0.49 mmol h−1g−1 respectively, under similar conditions.
However, the methanol was not produced on pristine ZIF-8 nanocrystals. Remarkably,
the number of grafted ZIF-8 nanoclusters was critical for the conversion of ZIF-8 and
synergetic nanostructural patterns. By combining nanostructure semiconductor and MOF
grafts, the ZIF-8/g-C3N4 photocatalyst exhibited an enhanced capacity of CO2 adsorption,
light-harvesting ability, and charge separation efficiency; it therefore, exhibited an excel-
lent increment in effective photocatalytic methanol generation. Typically, a higher CO2
adsorption capability accompanies a greater efficiency of photocatalytic CO2 reduction for
a semiconductor photocatalyst.

In a membrane reactor, Maina et al. demonstrated the controlled incorporation of TiO2
nanoparticles and CuII-doped TiO2 nanoparticles over ZIF-8 films via the rapid thermal
deposition (RTD) method (Figure 7a) [61]. The presence of TiO2 NPs in the MOF matrix
was emphasized with the red square (Figure 7c). Under UV irradiation, the Cu-TiO2@ZIF-8
hybrid film exhibited powerful photocatalytic activity. The results indicate that, compared
with only the quantity generated by pure ZIF-8 film single, the yields of CH3OH and
CO raised by 50% and 188%, respectively (Figure 7d). Furthermore, when Cu@TiO2
nanoparticles are loaded on MOF, the photocatalytic CO2 reduction to CO and CH3OH is
considerably enhanced (Figure 7e). When the loading of Cu@TiO2 nanoparticles was 7 µg,
the Cu-TiO2@ZIF-8 displayed excellent catalytic efficacy. Compared to the pure ZIF-8 film,
CO and CH3OH yields were 23.3% and 70% respectively. This is attributed to a synergistic
effect caused by semiconductor NPs’ ability to generate photogenerated electrons under
light illumination and the CO2 adsorption potential of MOFs.

In 2018, Cardoso et al. prepared a MOF-based Ti/TiO2NT-ZIF-8 photocatalyst by
growing films of ZIF-8 over Ti@TiO2 nanotube electrodes through a layer-by-layer method
(Figure 8a) [62]. Figure 8b shows the addition of ZIF-8 composites to the TiO2 NTs. Figure 8c
displays the image captured by TEM for Ti/TiO2NT-ZIF-8: ZIF-8 nanoparticles can be
observed between and within TiO2 nanotubes. The photo-electrocatalytic CO2 reduction
by (Ti/TiO2NT-ZIF-8) electrodes was executed in sodium sulphate saturated with CO2 at a
constant potential (+0.1 V) under UV-visible light illumination. Notably, 0.7 mmol/L of
methanol and 10 mmol/L of ethanol were generated in 3 h (Figure 8d). Because of the lack
of ZIF-8 films, the Ti4+ species in Ti@TiO2NT may have a lower ability for CO2 absorption
(Figure 8e).
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Catalysts 2022, 12, 94 10 of 35

Figure 8. (a) Sketch of preparation of ZIF-8 nanoparticles over TiO2 nanotube (Ti@TiO2NT-ZIF-8);
(b) SEM image of incorporated ZIF-8 on Ti/TiO2NT; (c) TEM image of Ti/TiO2NT-ZIF-8 catalyst;
(d) Generation of methanol by photo-electrocatalytic technique; (e) Product selectivity; (f) Mecha-
nism of CO2 reduction using Ti/TiO2NT-ZIF-8 electrode under UV-visible irradiation. Reproduced
from [62] with permission.
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As a consequence of the interaction between Cu/ZnOx nanoparticles and their ligands
and Zr6 SBUs, these ultra-small well-mixed NPs do not agglomerate as much and do
not undergo phase separation. The Cu/ZnOx@MOF catalysts produce extremely higher
activity with yield (2.59 g MeOH kg Cu−1 h−1), and higher selectivity for the CO2 hydro-
genation to obtain methanol, and strong stability for over 100 h. The catalyst was prepared
by the in situ reduction of post-synthetic metalized UiO-bpy (Figure 9a). The ideal precat-
alyst structure of Zn@UiO-bpy-Cu via post-synthetic Cu co-ordination to bpy is shown
in Figure 9b. As shown in Figure 9c, the CuZn@UiO-bpy has enriched sites that enhance
the yield of methanol. The Cu and ZnOx combine well to form Zn and Zr, which leads
to improved hydrogenation of CO2. The STEM-HAADF images of ultrasmall Cu/ZnOx
and CuZn@UiO-bpy catalyst clearly showed the Cu and Zn were uniformly dispersed and
mixed across the entire MOF particle and nanoparticles of 0.5−2.0 nm in size (Figure 9d,e).
The UiO-bpy proved to have an effective selectivity for methanol production (Figure 9f).

Catalysts 2022, 12, x FOR PEER REVIEW 13 of 39 
 

 

Figure 8. (a) Sketch of preparation of ZIF-8 nanoparticles over TiO2 nanotube (Ti@TiO2NT-ZIF-8); 
(b) SEM image of incorporated ZIF-8 on Ti/TiO2NT; (c) TEM image of Ti/TiO2NT-ZIF-8 catalyst; (d) 
Generation of methanol by photo-electrocatalytic technique; (e) Product selectivity; (f) Mechanism 
of CO2 reduction using Ti/TiO2NT-ZIF-8 electrode under UV-visible irradiation. Reproduced from 
[62] with permission. 

As a consequence of the interaction between Cu/ZnOx nanoparticles and their lig-
ands and Zr6 SBUs, these ultra-small well-mixed NPs do not agglomerate as much and do 
not undergo phase separation. The Cu/ZnOx@MOF catalysts produce extremely higher 
activity with yield (2.59 g MeOH kg Cu−1 h−1), and higher selectivity for the CO2 hydro-
genation to obtain methanol, and strong stability for over 100 h. The catalyst was prepared 
by the in situ reduction of post-synthetic metalized UiO-bpy (Figure 9a). The ideal precat-
alyst structure of Zn@UiO-bpy-Cu via post-synthetic Cu co-ordination to bpy is shown in 
Figure 9b. As shown in Figure 9c, the CuZn@UiO-bpy has enriched sites that enhance the 
yield of methanol. The Cu and ZnOx combine well to form Zn and Zr, which leads to 
improved hydrogenation of CO2. The STEM-HAADF images of ultrasmall Cu/ZnOx and 
CuZn@UiO-bpy catalyst clearly showed the Cu and Zn were uniformly dispersed and 
mixed across the entire MOF particle and nanoparticles of 0.5−2.0 nm in size (Figure 9d,e). 
The UiO-bpy proved to have an effective selectivity for methanol production (Figure 9f). 

 
Figure 9. (a) The preparation of CuZn@UiO-bpy catalyst; (b) The precatalyst structure (Zn@UiO-
bpy-Cu); (c) Active sites of MOFs; (d,e) STEM-HAADF images of ultrasmall Cu/ZnOx and 
CuZn@UiO-bpy catalyst (f) Product selectivity. Reproduced from [63] with permission. 

It was crucial to enhance the stability of metal-oxide QDs for reaction patterns con-
taining H2O so that they could be employed in photocatalytic CO2 reduction. Recently, Li 
et al. designed the (g-C3N4/CuO@MIL-125(Ti)) photocatalyst for the reduction of CO2 with 
the proximity of H2O by encapsulating CuO quantum dots with pores of MOFs of MIL-

Figure 9. (a) The preparation of CuZn@UiO-bpy catalyst; (b) The precatalyst structure (Zn@UiO-bpy-
Cu); (c) Active sites of MOFs; (d,e) STEM-HAADF images of ultrasmall Cu/ZnOx and CuZn@UiO-
bpy catalyst (f) Product selectivity. Reproduced from [63] with permission.

It was crucial to enhance the stability of metal-oxide QDs for reaction patterns con-
taining H2O so that they could be employed in photocatalytic CO2 reduction. Recently,
Li et al. designed the (g-C3N4/CuO@MIL-125(Ti)) photocatalyst for the reduction of CO2
with the proximity of H2O by encapsulating CuO quantum dots with pores of MOFs of
MIL-125 (Ti) via a complexation-oxidation method (Figure 10a) [64]. In aqueous reaction
systems, the photocatalyst displays significantly enhanced stability due to the protection
offered by the MIL-125(Ti) framework. Because of the close contact between the CuO QDs
and the Ti active site in MIL-125 (Ti), electron transfers between the confined CuO QDs
and the Ti active site were observed (Figure 10b). The presence of water greatly increases
the photocatalytic activity of g-C3N4/CuO@MIL-125(Ti) composites for the photoreduc-
tion of CO2. Among the prepared catalysts, the resultant 2.5% g-C3N4/1%CuO@MIL-
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125(Ti) photocatalyst performed better for photocatalytic reduction of CO2 to CH3OH,
CO, CH3CHO, and CH3CH2OH, implying water (reductant), with yields of 997.2, 180.1,
531.5, and 1505.7 umol/g, respectively (Figure 10c). Figure 10d–g depicts the structural
morphologies of the 2.5% g-C3N4/1% CuO@MIL-125(Ti) photocatalyst. This study de-
veloped an efficient method for enhancing charge separation efficiency and stability of
metallic-oxide QD-adapted photocatalyst. Furthermore, MIL-125(Ti), due to its high spe-
cific surface area and porous structure, provides an encapsulating structure for CuO QDs
to prevent aggregation and provides excellent stability and recyclability. Moreover, the
unique heterostructure of the composite ensures high light absorption and efficient electron
transport from g-C3N4 nanosheets and MIL-125(Ti) to QDs as well. The recent research
progress of MOF-based materials/photocatalysts for photocatalytic reduction of CO2 is
summarised in Table 1.
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Figure 10. (a) The preparation of g-C3N4/CuO@MIL-125(Ti) composite photocatalyst; (b) CO2

reduction mechanism; (c) Photocatalytic stability and product selectivity; (d–g) The morphological
analysis of g-C3N4/1% CuO@MIL-125(Ti) catalyst with (SEM/TEM/HR-TEM) images. Reproduced
from [64] with permission.
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Table 1. Reported MOF-based photocatalysts for reduction of CO2 to fuels.

Photocatalyst Light Source Method ProductsYield
(µmol h−1 g−1)

Proton Donor/
Reaction Reagent Year Ref.

Cu-porphyrin MOFs Visible CH3OH (262.6) TEOA 2013 [34]

Cu (II) ZIF Visible Hydrothermal CH3OH
(1712.7) H2O 2013 [65]

Zn2GeO4/ZIF-8 UV Hydrothermal CH3OH (0.22) H2O 2013 [35]

Cd0.2Zn0.8S@UiO-66-NH2 Visible Solvothermal
method CH3OH (6.8) H2O 2017 [55]

g-C3N4/ZIF-8 300 W Xe lamp
In situ

heterogeneous
deposition method

CH3OH (0.75) H2O 2017 [60]

Cu/ZnOx MOFs - Solvothermal CH3OH (2.59) H2 2017 [63]

Cu-TiO2 ZIF-8 UV Rapid thermal
deposition (RTD) CH3OH, CO TEOA 2017 [61]

TiO2 ZIF-8 UV-Visible Layer-by-layer
process

CH3OH,
CH3CH2OH Na2SO4 2018 [62]

Zn-Ni bimetallic MOF Calcination/Thermal CH3OH 2018 [66]

2Cu-ZIF-8N2 Visible Hydrothermal CH3OH (35.82) Na2SO3 2018 [67]

Cu-porphyrin-Ti-MCM-48 Visible Impregnation CH3OH (297) Na2SO3 2018 [68]

O-ZnO/rGO/UiO-66-
NH2

Solvothermal CH3OH (34.85),
HCOOH (6.41) TEOA 2019 [58]

rGO-NH2-MIL-125(Ti) Visible CH3OH TEOA 2020 [33]

g-C3N4/CuO@MIL-
125(Ti) Visible light

Complexation-
oxidation
method

CH3OH, CO,
CH3CH2OH,

CH3CHO
2020 [64]

Aux@ZIF-67 Visible
CH3OH (2.5),
CH3CH2OH

(0.5)
2020 [69]

CuSA@UiO-66 NH2 Visible
CH3OH (5.33),
CH3CH2OH

(4.22)
TEOA 2020 [59]

3.2. Mixed-Metal-Oxide-Based Photocatalyst

Mixed metal oxides (MMOs), containing two or more types of metals and oxygen, have
been broadly employed as photocatalysts for the reduction of CO2. The semiconducting
properties of their aqueous suspensions irradiated with visible light have been a prominent
subject of research. Mixed metal oxide (MMO) is one of the most important photocatalysts,
with features that differ from ordinary oxides in circumstances such as acid-base, redox,
and surface area. These have been widely explored for several catalytic applications due to
their excellent chemical-thermal stability compared to single oxides [70–72].

Transition and Non-Transition Metals

Singhal et al. reported Ni/InTaO4 as supported catalysts for the CO2 photoreduction
to methanol under visible light irradiation by the facile sol–gel method. Loading of 1 wt%
Ni on InTaO4-produced methanol with a higher yield and slowed down recombination by
reducing the bandgap slightly. The bandgap of InTaO4 and Ni/InTaO4 catalysts was noted
at 2.6 eV and 2.54 eV, respectively. The SEM image shows the agglomerated nature of the
catalyst, and EDX confirmed the existence of elements (In, Ta, O, and Ni). TEM displays the
size of nanomaterials at 50–80 nm. The HR-TEM demonstrated the crystallinity of InTaO4,
which was a good match for the XRD pattern. XPS measurement of the catalyst showed
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the presence of Ni and NiO due to four peaks at different binding energies. The catalyst
displayed sharp diffraction peaks, indicating monoclinic InTaO4. The material crystalline
phase is not altered by Ni loading [73]. Recently, the bimetallic oxide was derived from
MOFs developed by Cheng et al. [74].

Kumar et al. proposed a highly efficient rGO-covered magnetically separable core-
shell-structured microsphere photocatalyst (rGO@CuZnO@Fe3O4) for CO2 reduction below
visible light illumination (Figure 11a) [75]. In order to allow simultaneous CO2 reduction
and water oxidation, the semiconductor should have a wide bandgap. Neither Fe3O4
nor ZnO by themselves can convert CO2 to methanol because electrons can only move
from the valence band (VB) to conduction band (CB) under the influence of UV light. The
morphology of the surface and core-shell structure of microspheres were examined by
FE–SEM tomography. The structure of rGO@CuZnO@Fe3O4 remains the same after GO
reduction to rGO (Figure 11b). The HR-TEM image clearly showed the 1D lattice plane at
about 0.26 nm interplanar distance, corresponding to the (002) plane of ZnO. Additionally,
the amorphous zone (0.64 nm thickness) related to rGO was visual (Figure 11c,d). The
rGO@CuZnO@Fe3O4 catalyst has shown excellent catalytic activity for a methanol yield
(2656 µmol g−1) among the various catalysts prepared (Figure 11e). The advantages of this
catalyst include a high yield of methanol, no sacrificial donor requirement, ease of recovery,
and effective recycling (Figure 11f). The methanol yield increased with Cu loading from
0.25 to 1.0 wt%; however, the photocatalytic performance did not improve with a further
increase in Cu content. The enhancement in the reduction in methanol yield due to Cu
content can be attributed to the trapping of photo-generated electrons, which reduces the
recombination process of electron holes (Figure 11g). This catalyst has a low price, higher
electron mobility, and environmental preservation than ZnO. The large surface area and
excellent charge-carrier mobility of rGO can lead to the development of a highly efficient,
reusable photocatalyst for CO2 reduction.

Gao et al. synthesized separate Vv-rich and Vv-poor o-BiVO4 atomic layers with the
thickness of a unit of a cell at the gram-scale using an intermediate lamellar hybrid approach
(Figure 12a) [76]. The single-unit-cell o-BiVO4 layers with a high content of vanadium
vacancies (Vv) are high in the production of methanol(398.3 µmol g−1 h−1) compared to
atomic layers of Vv-poor o-BiVO4 (Figure 12c). At the atomic level, a correlation between
defect sites and photoreduction of CO2 was investigated. A density-functional theory
calculation shows that vanadium (V) vacancies introduce a new defect level and greater
hole concentration around Fermi levels, resulting in enhanced electronic conductivity and
photoabsorption (Figure 12b). The increased surface photovoltage of layers with vanadium
voids is confirmed by the enhanced carrier lifetime of the o-BiVO4 layers, which is shown
through time-persistent fluorescence spectra.

Yu et al. prepared a novel efficient visible light 2D photocatalyst (Ti3C2/Bi2WO6
nanosheets) via in situ progress of ultrathin nanosheets of Bi2WO6 with a surface of
Ti3C2 nanosheets (Figure 13a) [77]. The generation of the 2D/2D heterojunction was
characterized by TEM studies; the results demonstrated the clean ultrathin nanosheets
along with lucent features, nanoparticles of Ti3C2@ Bi2WO6 nanosheets, and the element
composition and distribution (Figure 13b–d). The Ti3C2@Bi2WO6 heterostructured hybrids
with distinct atomic layers had much higher photoreduction activity than pure Bi2WO6,
with a 4.6 times higher overall yield of CH3OH and CH4 than pure Bi2WO6 (Figure 13g).
Under solar light irradiation, photo-induced electrons are excited and jump from the VB
to the CB of Bi2WO6. The Bi2WO6 has a more negative CB potential compared to the EF
of Ti3C2 with terminal -O; photoinduced electrons can then be transferred from Bi2WO6
to Ti3C2 via an ultra-thin layered heterojunction. The photo-induced electrons that have
accumulated on the surface of Ti3C2 can then interact with the CO2 molecules that have
been adsorbed. The photo-induced electrons can be quickly transferred from the bulk
of Bi2WO6 to the heterojunction interface up to the Ti3C2 surface because of the unique
atomic layer 2D/2D heterostructure. Thus, a significant enhancement in the efficiency
of photocatalytic CO2 reduction was observed. This 2D photocatalyst possesses a high
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contact area and a small distance of charge transport. As a result, electrons are efficiently
transferred from the Bi2WO6 (photocatalyst) to the Ti3C2 (cocatalyst) (Figure 13h). The
enhancement of photocatalytic functioning is due to excellent CO2 adsorption ability and
effective separation of charge carrier. The present work demonstrated that Ti3C2 nanosheets
can be employed as effective cocatalysts for the photoreduction of CO2.
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Viswanathan et al. synthesized a photocatalyst (Fe-N/Na(1−x)LaxTaO(3+x)) via a hy-
drothermal method. Using a variety of approaches, researchers evaluated the effect of
doping or co-doping LNTO (lantana) with iron (Fe) and nitrogen (N) on the photo-physical
properties of catalysts. The dopant iron (Fe-3d) energy level of the orbital was lower
than the Ta-5d energy level. The new energy level is under the conduction band. The
Fe3+ ion (dopant) retains the capacity to capture and de-capture the charge carriers. It
can readily capture photogenerated electrons from the CB of NaTaO3. A decrease in the
PL line intensity suggests that dopants/co-dopants (Fe or N) can reduce recombination,
therefore enhancing the charge carrier’s lifetime. The enhancement in activity is because
of co-doping with N and Fe over lantana (LNTO). The XPS and XRD results show that
the Fe3+ occupies the Ta5

+ ions site, La3+ ions Na+ ion sites, and Nitrogen (N) takes O2−

sites. N and Fe co-doping in a Ta matrix results in the confining of the bandgap because
of the formation of secondary energy levels between the bandgap and the absorption of
visible light. The presence of dopants (La3+ and Fe3+) in the tantalate (Ta) lattice assures
electro-neutrality. The charge trapping and de-trapping of (Fe3/Fe4+) ions efficiently de-
creases the recombination of the charge carrier. The co-doping of LNTO through N and Fe
increases the absorption of visible light because of the synergetic effect. It hinders charge
carrier recombination and boosts charge transfer interfacial, enhancing photocatalytic CO2
reduction to CH3OH in aqueous alkaline media higher than that of pure NaTaO3 [78].

Kumar et al. developed a Z-scheme heterostructured (rGO/InVO4/Fe2O3) photocata-
lyst for the reduction of CO2 to methanol over visible light illumination by the deposition–
precipitation method. The existence of a few dark spots over the sheet surface suggested
the presence of iron oxide (Fe2O3) in the nanocomposites. In Raman spectra, the presence of
comparable bands of all constituents at 468, 924, 1329, and 1587 cm−1 proved the existence
of Fe2O3, InVO4, and rGO in the composites. In comparison to Fe2O3 and InVO4, notably
rGO/InVO4/Fe2O3 had a lower PL intensity, indicating less charge recombination and
thus greater photocatalytic activity. The XRD pattern indicated the appearance of Fe2O3
and InVO4 into the composite The photo-induced electron transfer occurred from the CB of
Fe2O3 into the VB of InVO4 and further to the CB of InVO4 over the Z-scheme system for
the CO2 photoreduction. Triethylamine (TEA) was employed as a sacrificial electron donor
to achieve methanol yields as high as 16.9 mmol gcat−1 employing the Z-scheme-based
photocatalyst. The recycling ability of the photocatalyst demonstrated greater stability and
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efficient recyclability. The synergistic effect of the ternary rGO/InVO4/Fe2O3 photocatalyst
leads to effective separation of charge carriers and charge mobility over the surface of the
catalysts, which results in an effective reduction of CO2 and an enhancement in the yield of
methanol [79].

1 
 

 Figure 13. (a) Schematic representation for preparation of ultrathin Ti3C2/Bi2WO6 nanosheets; (b–d)
TEM, enlarged image, elemental mapping; (e) FESEM; (f) Transient photocurrent spectra of the
prepared catalyst; (g) Photocatalytic activity; (h) Energy profile diagram of Ti3C2 and Bi2WO6 and
process electron transfer. Reproduced from [77] with permission.
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Yan et al. [80] developed a polymorph of indium oxide as a photocatalyst for the
formation of CO and CH3OH. Zhang et al. reported an efficient, highly selective, and stable
photocatalyst (In2O3−x(OH)y) with a rod-like nano-crystallized structure for hydrogenation
of gaseous carbon dioxide to methanol and an evolution rate (0.06 mmol gcat −1 h−1)
under solar irradiation [81]. The SEM image showed the rod length of the nanocrystal
superstructure to be about 2.6 µm (Figure 14a). The nanoporous nature of the materials
produced, made up of nanocrystalline superstructures, has been confirmed by TEM studies
(Figure 14b,c). The photocatalytic stability of the In2O3−x(OH)y nano-crystallized structure
sample was illustrated. The stabilized rate of methanol within the first 15 h led to a signifi-
cant enhancement in the 16th h optimized at 250 ◦C in the light for 20 h (Figure 14d). DFT
measurements of the energy profile for the production of methanol via CO2 hydrogenation
over In2O3−x(OH)y (111) were investigated. An acetal intermediate was formed by adding
a hydride (H2CO2*). The lowest energy issue was chosen as the probable intermediate
(Figure 14e).
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3.3. Photocatalysts Based on Carbon Materials

Carbon-based photocatalysts have become increasingly popular for the reduction of
CO2 because of their excellent physicochemical and electrochemical properties. Several
excellent carbon-based supports such as graphene, CNT, carbon dots, graphitic carbon-
nitride, and conducting polymers have been employed for several applications over the
years. The use of different carbonaceous materials as supports for photocatalysis is highly
beneficial, since carbon has fair photocatalytic activity, high surface area, high electrical
conductivity, higher dispersion, and visible light absorption capability [82,83].

Gusain et al. synthesized rGO-CuO nanocomposites for CO2 reduction to methanol
over visible light illumination. The deposition of CuO nanorods over rGO enhanced
photocatalytic efficiency and produced a higher yield of methanol compared to pure CuO
nanorods [84]. In a similar line, Liu et al. prepared cuprous oxide decorated to various
morphologies of rGO(Cu2O/rGO photocatalysts) for CO2 reduction under visible light.
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As-prepared and well characterized rhombic dodecahedral Cu2O/rGO catalysts exhibited
the maximum methanol yield [85].

Yu et al. reported a ternary composite (Ag2CrO4/g-C3N4/GO) for the photoreduction
of CO2 to methane and methanol by using silver chromate NPs (photosensitizer) and
graphene oxide (cocatalyst) [86]. The dispersion of Ag2CrO4 nanoparticles over the surface
of the g-C3N4 sheet was investigated through SEM and TEM imaging (Figure 15a,b). The
triplet composites displayed an increased conversion of CO2 with a TOF of 0.30 h−1, which
was higher than bare g-C3N4 under sunlight irradiation. The photocatalytic activity was
enhanced because of expanded light absorption, greater adsorption of CO2, and efficient
charge separation. Ag2CrO4 nanoparticles can improve the g-C3N4 light absorption, and
GO cocatalyst (electron acceptor), besides promoting charge transfer, also provides higher
adsorption of CO2 and catalytic sites. Notably, charge transfer takes place between Ag2CrO4
and g-C3N4 via a direct Z-scheme mechanism, which enhances the photocatalytic system’s
redox ability while promoting charge separation (Figure 15e).
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Figure 15. (a,b) Characterization (SEM/TEM images) of the Ag2CrO4/g-C3N4/GO composite
photocatalyst; (c) CH3OH formation of methanol over different samples of CN, under induced
sunlight irradiation (1 h); (d) CH3OH and CH4 formation over various catalysts; (e) The Z-scheme
mechanism for reduction of CO2. Reproduced from [86] with permission.
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Jain et al. developed a cobalt phthalocyanine embedded over g-C3N4 as a hybrid
photocatalyst (denoted as g-C3N4/CoPc-COOH) for selective reduction of CO2 into CH3OH
by employing a sacrificial electron donor (triethylamine (TEA) in the presence of visible light
(Figure 16a) [87]. The immobilization of the CoPc-COOH complex over the g-C3N4 support
was confirmed by HR-TEM (Figure 16b). The resultant g-C3N4/CoPc-COOH hybrid
provided greatly increased affinity of CO2 through active Co2+ sites, charge separation
through the g-C3N4 surface, as well as large surface areas for efficient CO2 conversion.
They have demonstrated and investigated that the hybrid photocatalyst offered a much
improved yield of methanol than the reported catalysts. The higher methanol yield over the
hybrid photocatalyst was observed after 24 h, employing TEA as an electron contributor
(Figure 16c). Notably, the durable interaction between –COOH with heteroatoms of g-
C3N4 support makes a robust hybrid photocatalyst that ultimately inhibits metal leaching
during photoreduction.
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Figure 16. (a) Preparation of g-C3N4/CoPc-COOH photocatalyst; (b) HR-TEM images of catalyst;
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The Gong group investigated the production of a family of polymeric C3N4/CdSe
QDs (p-CNCS) with various particle sizes of CdSe for CO2 photoreduction into methanol,
targeting maximum selectivity and activity by the quantum confinement effect [88]. Based
on the quantum confinement effect, the energy of the CB electrons was modified to a suitable
value, which was deficient for H2 formation but sufficient for methanol formation, and
which enhances activity and selectivity for methanol production from the photocatalytic
CO2 reduction reaction (CO2RR). CdSe QDs were packed on p-C3N4 via an impregnation
method, producing p-CNCS as a photocatalyst (Figure 17b–d). The correlation between the
band energy and photocatalytic activity have been discussed. Moreover, the high surface
area and appropriate dangling bonds of p-C3N4 (Polymeric carbon nitride nanosheet)
provide sufficient loading sites for CdSe quantum dots, allowing a strong interaction
between p-C3N4 and CdSe to the heterojunction (Figure 17e,f). The heterojunction within
0D/2D materials could transport photoinduced holes and electrons to CdSe and p-C3N4,
enhancing charge separation and increasing CdSe stability.
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Bafaqeer et al. synthesized 2D/2D heterojunction composite catalyst (2D/2D ZnV2O6/pCN)
via combing ZnV2O6 and g-C3N4 (protonated -CN) for selective photoreduction of CO2
with H2O via the solvothermal method [89]. The HR-TEM was employed to examine the
crystalline structure of the pCN merged with ZnV2O6 nanosheets (Figure 18b,c). The surface
charge conversion with protonation of g-C3N4 acts as a moderator and trapped photo-
excited electrons. The performances of as-prepared catalysts were studied in gas-phase
and liquid photocatalytic methods under light irradiation (UV/visible). The methanol for-
mation rate of the 2D/2D ZnV2O6/pCN(100%) composite catalyst was 3742 µmol g-cat−1

higher than that of the pure ZnV2O6 and pCN catalysts (Figure 18d,e). When bombarded
with light, the pCN in the heterostructured photocatalysts functions as a sensitizer, absorb-
ing photons and exciting electron and hole pairs. Photoexcited electrons on pCN might
be transported to ZnV2O6 CB because the CB edge potential of pCN (1.12 eV) is more
negative than that of ZnV2O6 (0.87 eV). The protonation of g-C3N4 can operate as an ex-
cellent acceptor and trap for photoexcited electrons, allowing the photo-induced electrons
to be quickly transported to the ZnV2O6 and converted to methanol. The photoexcited
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electron–hole pairs could be effectively separated in this way. As a result, the created
junction between pCN and ZnV2O6 in heterostructured photocatalysts reduces electron
and hole recombination during the charge carrier transfer process, resulting in improved
photocatalytic activity of pCN/ZnV2O6 heterojunctions. In addition to the synergistic effect
of ZnV2O6 and pCN nanosheet heterojunctions, combining pCN with ZnV2O6 resulted
in increased activity. Furthermore, the hierarchical structure, rich 2D coupling surfaces,
increased interfacial contact, and charge separation could all help to improve photoactivity
and product selectivity. The photocatalytic stability of the 2D/2D ZnV2O6/pCN composite
catalyst with a moderator was excellent.
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Figure 18. (a) FESEM image of ZnV2O6/pCN (100%) nanosheets; (b,c) TEM and HR-TEM images
of ZnV2O6/pCN (100%) nanosheets; (d) yield of CH3OH over various photocatalysts; (e) yield of
CH3OH for UV and visible light against illumination time. Reproduced from [89] with permission.

Kumar et al. synthesized CNT-TiO2 photocatalysts for photoreduction of CO2 and
water splitting by joined sonothermal and hydrothermal method [90]. Figure 19a–d shows
the effect of CNT on TiO2 morphology. The (101) plane of anatase TiO2 (lattice spacing
0.342 nm) is confirmed by HRTEM. The CNT content increases the attachment of spherical
TiO2. The prepared CNT-TiO2 photocatalysts showed increased photocatalytic activity for
the reduction of CO2 compared to bare TiO2 in the presence of visible light. As prepared
catalysts, the 2.0 CNT-TiO2 showed better performance for the yield of methanol under UV
light (Figure 19g,h). According to a computational study, the binding of CNT to TiO2 NPs
was desirable at (101) surfaces rather than (001) facets (Figure 19e). The photoexcitation
of this composite over visible light leads to charge transfer within CNT and TiO2 and the
formation of isolated charge carriers, while UV light excitation leads to charge transfer in
all directions from TiO2 to CNT and CNT to TiO2 (Figure 19i).
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composite; (f) Sketch for CNT-TiO2 orbitals; (g) Time-dependent profiles for production of methanol;
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formation of product. Reproduced from [90] with permission.
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Tang et al. investigated a special variety of CD (carbon-dots) as a hole receiver
for mCD/CN composite when produced via the flexible microwave method [38]. The
co-residence and morphological information of both mCD and CN structures were investi-
gated through HR-TEM. The as-prepared CN was graphene-like nanosheets, and mCD has
a graphitic structure with a featured-spacing of about 0.23 nm (Figure 20a,b). The mCD/CN
composite was c.a. 12 times more active than sCD/CN (sonication method) for the conver-
sion of CO2. Remarkably, the mCD/CN nanocomposite generated methanol and oxygen
from H2O and CO2 with a selectivity of around 100% methanol (Figure 20d) and an inter-
nal quantum efficiency of 2.1% in the visible area, which was validated through isotopic
labelling. Furthermore, the unique mCD captured holes from CN (carbon nitride) and hin-
dered methanol adsorption, which resulted in the oxidization of water instead of methanol
and the enhancement of the selectivity for reduction of CO2 to alcohols (Figure 20c).
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3.4. TiO2 Based Photocatalysts

Titanium dioxide (TiO2) is a wide-bandgap semiconductor. In a variety of energy
and environmental applications, TiO2 is employed as a photocatalyst because of its high
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stability, efficient photoactivity, low price, and safety for people and the environment. TiO2
has properties such as nontoxicity, easy availability, chemical stability, and the capability
to oxidize in the presence of radiation. TiO2-based photocatalysts will be able to solve
the main global problems related to pollution of the environment and renewable energy
requirements [91,92].

Nogueira et al. reported nanocomposite TiO2/Ti4O9/Cu2O for photocatalytic CO2
reduction through loading of Cu2O on TiO2-pillared tetratitanate (K2Ti4O9) [93]. The struc-
tural and compositional characteristics of as-prepared catalysts were investigated through
XRD, XPS, and TEM images (Figure 21a–d). The TEM and HR-TEM revealed that the
size of the Cu2O and TiO2 nanoparticles were approximately 5 and 10 nm, respectively
(Figure 21d,e). The enhancement in the photoactivity of the as-prepared photocatalyst was
because of the synergistic effect produced by pillaring K2Ti4O9 (layered semiconductor)
with TiO2 and the eventual loading of Cu2O nanoparticles as cocatalyst. The increment in
the surface area of the photocatalyst TiO2/Ti4O9/Cu2O was from (25 to 145 m2 g−1) anal-
ysed through nitrogen adsorption–desorption isotherms (NADI). The methanol production
was double that of the pure K2Ti4O9 due to the enhanced activity of the photocatalyst
(Figure 21f). Incorporating Cu2O nanoparticles onto mesoporous solid surfaces extended
solar radiation absorption, mobility of electron and charge separation at the surface.

Jiang and co-workers synthesized hybrid carbon@TiO2 composite hollow spheres for
CO2 photo-reduction by the simple and benign method of employing colloidal carbon
spheres (Figure 22a) [94]. The nanostructure, hollow spherical structure, and elemen-
tal mapping of the as-prepared composite were confirmed by FESEM, TEM and STEM
analysis (Figure 22b–f). The obtained carbon@TiO2 composite nanostructure displayed
good photoreduction of CO2 operation and selectivity over artificial solar light compared
to TiO2 (P25). The methanol generation rate was (9.1 µmol g−1 h−1) greater than pure
TiO2 (Figure 22g). The carbon composition of the carbon@TiO2 composites considerably
affected photocatalytic activity. The improvement in the photocatalytic performance of the
carbon@TiO2 photocatalyst was because of enhanced specific surface area (110 m2 g−1), the
CO2 absorption capacities, and a native photothermal impact near the photocatalyst due to
the carbon. According to the electrochemical impedance spectra (EIS), carbon composition
could affect the efficiency of charge transfer of carbon@TiO2 composites.

Yadav et al. successfully loaded Au nanoparticles on S8-TiO2 (S8-TiO2 (40)-Au pho-
tocatalyst) via the sol immobilization method. The as-prepared catalysts employed or
CO2 photoreduction to methanol and HER under visible light irradiation [95]. Sharma
et al. developed a nanocomposite photocatalyst NiO-TiO2/ACF via the sol–gel method
for photoreduction of CO2 with H2O into methanol by immobilization of Ni loaded TiO2
on initiated carbon fibers (ACFs) under UV and visible light illumination (Figure 23a) [96].
The SEM images of ACF, ACF-TiO2 and NiO-TiO2/ACF photocatalyst indicated that the
even distribution of NiO/TiO2 nanoparticles was found over the surface of ACF with high
crystallinity. The ACF surface was almost clean after pre-treatment with a hierarchical
porous structure capable of acting as active sites for adsorption (Figure 23b–d). The yield of
methanol over NiO-TiO2/ACF photocatalyst was 986.3 and 755.1 µmol g−1 under visible
light and UV, respectively (Figure 23e). Increasing the photocatalytic activity of Ni-loaded
TiO2 was achieved with the use of the ACF support, which inhibited electron–hole re-
combination. The ACFs (surface area: 163.9 m2/g) and NiO were used to increase CO2
adsorption capacity and also to alter the electronic absorption properties of TiO2. Moreover,
NiO co-doped TiO2 beat the recombination rate issue of electron–hole and induced the
formation of Ti3+ and oxygen vacancies for CO2 conversion into CH3OH over UV/visible
light irradiation (Figure 23f).
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Figure 22. (a) The mechanism for the preparation of carbon@TiO2 composite hollow structure;
(b–e) FESEM and TEM images of samples T60 and T120; (f) STEM image of T60 and comparable
elemental mapping images of C, O and Ti; (g) The photocatalytic activity of carbon@TiO2 com-
posite samples; (h) Photo-excitation process of the carbon@TiO2 composite. Reproduced from [94]
with permission.

Catalysts 2022, 12, x FOR PEER REVIEW 31 of 39 
 

 

toreduction of CO2 with H2O into methanol by immobilization of Ni loaded TiO2 on initi-
ated carbon fibers (ACFs) under UV and visible light illumination (Figure 23a) [96]. The 
SEM images of ACF, ACF-TiO2 and NiO-TiO2/ACF photocatalyst indicated that the even 
distribution of NiO/TiO2 nanoparticles was found over the surface of ACF with high crys-
tallinity. The ACF surface was almost clean after pre-treatment with a hierarchical porous 
structure capable of acting as active sites for adsorption (Figure 23b–d). The yield of meth-
anol over NiO–TiO2/ACF photocatalyst was 986.3 and 755.1 µmol.g−1 under visible light 
and UV, respectively (Figure 23e). Increasing the photocatalytic activity of Ni-loaded TiO2 
was achieved with the use of the ACF support, which inhibited electron–hole recombina-
tion. The ACFs (surface area: 163.9 m2/g) and NiO were used to increase CO2 adsorption 
capacity and also to alter the electronic absorption properties of TiO2. Moreover, NiO co-
doped TiO2 beat the recombination rate issue of electron–hole and induced the formation 
of Ti3+ and oxygen vacancies for CO2 conversion into CH3OH over UV/visible light irradi-
ation (Figure 23f).  

 
Figure 23. (a) Schematic representation for the preparation of NiO-TiO2/ACF photocatalyst; SEM 
images of (b) activated carbon fibers (ACF) and (c) ACF-TiO2; (d) SEM images of NiO-TiO2/ACF 
photocatalyst; (e) Methanol selectivity test for CO2 conversion to CH3OH and CO; (f) The mecha-
nism for photocatalytic CO2 reduction into methanol by using NiO-TiO2/ACF photocatalyst. Repro-
duced from [96] with permission. 

Xu et al. synthesized hybrid TiO2/Ni(OH)2 photocatalysts for photoreduction of CO2 
by deposition of perpendicularly arranged Ni(OH)2 nanosheets on the TiO2 fibers by elec-
trospinning and the wet-chemical precipitation method (Figure 24a) [97]. The FESEM, 
TEM, and HR-TEM images of TiO2/Ni(OH)2 photocatalyst revealed that the hierarchical 
nanostructure. The thickness of nanosheets of Ni(OH)2 was nearly 20 nm and was well 
deposited on TiO2 surface (Figure 24b–d). The TiO2/Ni(OH)2 composite nanofibre exhib-
ited unusually enhanced activity of CO2 photoreduction than the bare TiO2 fibers. The 
yield of CH3OH over this hybrid photocatalyst was increased after loading of 15 wt% 
Ni(OH)2 and irradiation time (Figure 24e,f). The TiO2/Ni(OH)2 photocatalyst displayed an 
increased activity of CO2 reduction, selectivity, the efficiency of charge separation, and 
increased the density of the CO2 on photocatalyst surface due to the existence of Ni(OH)2 
nanosheets as cocatalyst. The clusters of Ni(OH)2/Ni can act as electron sinks and stimu-
late the photo-generated electron separation from TiO2 to a cluster of Ni(OH)2/Ni and to-

Figure 23. (a) Schematic representation for the preparation of NiO-TiO2/ACF photocatalyst; SEM
images of (b) activated carbon fibers (ACF) and (c) ACF-TiO2; (d) SEM images of NiO-TiO2/ACF
photocatalyst; (e) Methanol selectivity test for CO2 conversion to CH3OH and CO; (f) The mechanism
for photocatalytic CO2 reduction into methanol by using NiO-TiO2/ACF photocatalyst. Reproduced
from [96] with permission.



Catalysts 2022, 12, 94 28 of 35

Xu et al. synthesized hybrid TiO2/Ni(OH)2 photocatalysts for photoreduction of
CO2 by deposition of perpendicularly arranged Ni(OH)2 nanosheets on the TiO2 fibers
by electrospinning and the wet-chemical precipitation method (Figure 24a) [97]. The
FESEM, TEM, and HR-TEM images of TiO2/Ni(OH)2 photocatalyst revealed that the
hierarchical nanostructure. The thickness of nanosheets of Ni(OH)2 was nearly 20 nm and
was well deposited on TiO2 surface (Figure 24b–d). The TiO2/Ni(OH)2 composite nanofibre
exhibited unusually enhanced activity of CO2 photoreduction than the bare TiO2 fibers.
The yield of CH3OH over this hybrid photocatalyst was increased after loading of 15 wt%
Ni(OH)2 and irradiation time (Figure 24e,f). The TiO2/Ni(OH)2 photocatalyst displayed
an increased activity of CO2 reduction, selectivity, the efficiency of charge separation,
and increased the density of the CO2 on photocatalyst surface due to the existence of
Ni(OH)2 nanosheets as cocatalyst. The clusters of Ni(OH)2/Ni can act as electron sinks and
stimulate the photo-generated electron separation from TiO2 to a cluster of Ni(OH)2/Ni
and toward CO2 molecules, which can play a vital role as active sites and during the
photocatalytic process, reducing photo-excited charge carrier recombination (Figure 24g).
Later on, modified TiO2/rGO/CeO2 composite photocatalyst was investigated for CO2
photoconversion by the ultrasonication method [98].
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3.5. Photocatalysts with Plasmonic Properties

Recently, plasmonic photocatalysis has enabled rapid advances in improving the pho-
tocatalytic efficiency for CO2 reduction under irradiation with visible light. It employs
precious metal NPs dispersed on semiconductor photocatalysts and has outstanding prop-
erties such as localized plasmonic surface resonance (LSPR), which contributes to the strong
absorption of visible light and the excitation of active charge carriers. The conduction of
electrons on the nanoparticle surface offers plasmonic materials extraordinary optical char-
acteristics. The interaction between free electrons in metal nanoparticles and incident light
is known as the plasmonic effect. Plasmonic metal nanoparticles with high light absorp-
tivity have been shown to represent a new class of photocatalysts with features that differ
dramatically from those of typical semiconductor photocatalysts. Plasmonic nanoparticles
have unique optical, electrical, and thermal properties [99–107]. In this section, we focused
on plasmonic photocatalysts for the photoreduction of CO2 to methanol.

Becerra et al. developed an efficient method for the preparation of plasmonic photo-
catalyst (Aux@ZIF-67) [69]. The decoration of Au NPs over ZIF-67 was investigated for the
reduction of CO2 under irradiation with sunlight. The plasmonic system showed greatly
enhanced photocatalytic activity for CO2 reduction to CH3OH with excellent selectivity.
The plasmonic Au NPs (size 30–40 nm) significantly enhanced the absorption of visible
light, increased separation of charge, and contributed to selectivity. This nanocomposite
demonstrated the advantages of high specific surface area (SSA) as well as electrochemical
properties. An optimal production rate of methanol (~2.5 mmol g−1 h−1) was achieved for
the conversion of CO2. This deposited Au NPs favours both the activity and the selectivity
of synthesized plasmonic photocatalyst because of the injection of energetic electrons on
the surface of the ZIF-67 derived from the plasmonic response. The localized surface
plasmon resonance (LSPR) at the edges of rod- and triangular nanostructures decreases
the recombination of electron–hole pairs during the photocatalytic reduction of CO2. The
production of CH3OH (~2.5 mmol g−1 h−1)and C2H5OH (0.5 mmol g−1 h−1) were achieved
from Au nanorods and Au nanotriangle, respectively. This Au@ ZIF-67 plasmonic system
has been significantly improved in terms of photocatalytic activity to reduce CO2 and
improve cost-efficiency. Yadav et al. reported plasmonic photocatalyst (Au/TixSi1−xO2)
for photoreduction of CO2 employing an LED light source by deposition of plasmonic Au
NPS on mesoporous titania with isolated silica (TixSi1−xO2). Following a DFT study, an
excellent adsorption of CO2 on the surface was observed, which could have been due to
the incorporation of silica sites. The methanol production was 1835 µmol gcat−1 using
Au/TixSi1−xO2 material with 28 mol% Si in titania lattice and 1.0 wt% Au nanoparticle
deposition [108].

Ye et al. reported plasmonic catalysts (Cu/ZnO) for photoreduction of CO2 into
methanol that promoted visible light illumination under atmospheric pressure. The rich
Cu-ZnO interfaces are recognized as active sites for the production of CH3OH (Figure 25a).
The production rate of methanol rose from 1.38 to 2.13 µmol g−1 min−1, and the noticeable
activation energy was reduced from 82.4 to 49.4 kJ mol−1 (Figure 25b). N2 sorption
isotherms specified that the physicochemical characteristics of the decreased Cu/ZnO
catalyst were mesoporous in nature (Figure 25c). The mechanism fuses the photo-generated
hot electrons onto Cu NPs, and these electrons can transfer to the ZnO via interfaces
of metal-support (Figure 25d). The activation of reaction intermediates co-operatively
promoted by hot-electrons over Cu and ZnO leads to the photo-promoted synthesis of
methanol [109].



Catalysts 2022, 12, 94 30 of 35Catalysts 2022, 12, x FOR PEER REVIEW 34 of 39 
 

 

 
Figure 25. (a) HR-TEM image of Cu/ZnO catalyst; (b) Methanol production; (c) N2 sorption iso-
therms; (d) The mechanism of methanol preparation. Reproduced from [109] with permission. 

Fan et al. established a plasmonic photocatalyst (Cu/TiO2) by employing both hydro-
thermal and microwave-assisted processes [110]. Both Cu NPs and unique TiO2 film dis-
play the properties of light harvesting as per LSPR. The charge carrier recombination was 
decreased by the deposition of Cu NPs, that were found during fluorescence quenching. 
The photocatalytic activity of Cu/TiO2 films was excellent because of charge transfer effi-
ciency and LSPR absorption of Cu NPs. Recently, Wang et al. prepared plasmonic photo-
catalysts (Ag NPs/ACFs) by deposition of plasmonic Ag NPs over acid-ached carbon fi-
bers (ACFs) coupled with ultrasonication for photoreduction of CO2 to methanol under 
visible light irradiation [111].  

4. Conclusions and Future Perspectives 
In this review, we discussed the recent research advances of photocatalytic CO2 re-

duction into methanol. Photocatalysts such as MOFs, mixed-metal oxide, carbon, TiO2 and 
plasmonic-based photocatalytic reduction of CO2 to methanol were systematically sum-
marized. The photocatalytic activity, photo-excited charge transfers and separation effi-
ciency, CO2 capture capacities, and stability can be enhanced by supporting synthetic pro-
cedures, semiconductor, metal, and ligand replacement, and incorporation of photoactive 

Figure 25. (a) HR-TEM image of Cu/ZnO catalyst; (b) Methanol production; (c) N2 sorption
isotherms; (d) The mechanism of methanol preparation. Reproduced from [109] with permission.

Fan et al. established a plasmonic photocatalyst (Cu/TiO2) by employing both hy-
drothermal and microwave-assisted processes [110]. Both Cu NPs and unique TiO2 film
display the properties of light harvesting as per LSPR. The charge carrier recombination
was decreased by the deposition of Cu NPs, that were found during fluorescence quench-
ing. The photocatalytic activity of Cu/TiO2 films was excellent because of charge transfer
efficiency and LSPR absorption of Cu NPs. Recently, Wang et al. prepared plasmonic
photocatalysts (Ag NPs/ACFs) by deposition of plasmonic Ag NPs over acid-ached carbon
fibers (ACFs) coupled with ultrasonication for photoreduction of CO2 to methanol under
visible light irradiation [111].

4. Conclusions and Future Perspectives

In this review, we discussed the recent research advances of photocatalytic CO2 reduc-
tion into methanol. Photocatalysts such as MOFs, mixed-metal oxide, carbon, TiO2 and
plasmonic-based photocatalytic reduction of CO2 to methanol were systematically summa-
rized. The photocatalytic activity, photo-excited charge transfers and separation efficiency,
CO2 capture capacities, and stability can be enhanced by supporting synthetic procedures,
semiconductor, metal, and ligand replacement, and incorporation of photoactive responsive
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units. A detailed overview of the catalytic performance of various photocatalysts for CO2
reduction to methanol would be helpful to researchers. The selectivity and catalytic activity
that are mostly directed by the electronic environment of the metals could be attuned by a
combination of support, doping of heteroatoms, and employing a system with multiple
metals. The photoreduction of CO2 to valuable chemicals and to fuels has gradually be-
come important because of its efficiency in simultaneously solving global warming and
energy crisis problems. Indeed, photoactive materials retain their specific benefits with
light-driven CO2 reduction, and all of these efficient variation strategies will offer directions
to the rational design of photocatalysts with improved catalytic performance. It is hoped
that this review will play a crucial and interesting role in serving future developments in
this important field.
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