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Abstract: Achieving efficient solid oxide fuel cell operation and simultaneous prevention of degra-
dation effects calls for the development of precise on-line monitoring and control tools based on
predictive, computationally fast models. The originality of the proposed modelling approach origi-
nates from the hypothesis that the innovative derivation procedure enables the development of a
thermodynamically consistent multi-species electrochemical model that considers the electrochemical
co-oxidation of carbon monoxide and hydrogen in a closed-form. The latter is achieved by coupling
the equations for anodic reaction rates with the equation for anodic potential. Furthermore, the
newly derived model is capable of accommodating the diffusive transport of gaseous species through
the gas diffusion layer, yielding a computationally efficient quasi-one-dimensional model. This
resolves a persistent knowledge gap, as the proposed modelling approach enables the modelling of
multi-species fuels in a closed form, resulting in very high computational efficiency, and thus enable
the model’s real-time capability. Multiple validation steps against polarisation curves with different
fuel mixtures confirm the capability of the newly developed model to replicate experimental data.
Furthermore, the presented results confirm the capability of the model to accurately simulate outside
the calibrated variation space under different operating conditions and reformate mixtures. These
functionalities position the proposed model as a beyond state-of-the-art tool for model supported
development and control applications.

Keywords: solid oxide fuel cell; electrochemical model; reduced dimensionality model; closed-form
solution; electrochemical co-oxidation; carbon monoxide and hydrogen

1. Introduction

Solid oxide fuel cells (SOFCs) are a promising and emerging technology with high
efficiency and very versatile fuel flexibility. Besides their instrumental role in the envis-
aged uptake of a hydrogen economy, they are also one of the key components in future
thermochemical conversion processes, which will also have a strong role in future energy
systems. Either through gasification or combustion, thermochemical conversion processes
are expected to represent an important supportive technology required to preserve energy
supply stability and to enable the conversion of challenging energy carriers such as the
steadily increasing anthropogenic waste. The latter is also addressed with gasification,
resulting in synthesis gas, one of the most promising second-generation fuels. The compo-
sition of the synthesis gas produced is highly dependent on the type of waste biomass and
on the gasification technology [1,2]. It can also be controlled by operational conditions [3,4]
or altered using catalysts [5,6]. Even though the utilisation of synthesis gas in internal
combustion engines offers relatively high efficiency [7], SOFCs provide several advantages
over these traditional energy conversion systems, namely high efficiency, relatively low
levels of emissions, and long-term stability and fuel flexibility. Exactly this aforementioned
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fuel flexibility, which can be achieved with an appropriate pre-treatment system with the
aim of avoiding intensified degradation from carbon deposition, exposure to tar, hydro-
gen sulphide, hydrogen chloride, and alkali metals on the SOFC anode [8], enables the
utilisation of various fuels ranging from synthesis gasses to hydrogen as well as multiple
other fuels. In combination with very high conversion efficiency to electric energy, these
properties characterise SOFCs as a very promising component of future energy systems.

The simultaneous reduction in production costs and the extension of service life while
maintaining high system efficiency are considered major challenges in their wider market
adoption. Reaching these objectives calls for the application of advanced virtual tools
over the entire product lifecycle management. Therefore, this paper addresses a specific
challenging aspect of developing an advanced system level model featuring physicochemi-
cal consistency with detailed mechanistic models. These advanced system level models
ensure high accuracy while featuring sufficiently short computational times. Such models
can be used in the left arm of the V-development process due to their mechanistic ba-
sis ensuring high accuracy and extrapolation capability. When such models also feature
real-time capability, they can be applied in the right arm of the V-development process in
control, digital twin, and hardware-in-the-loop (HiL) applications, where good extrapo-
lation capabilities also significantly enhance the applicability and accuracy of the model,
as it can be parametrised on smaller data sets. Fast running mechanistic models enable
the introduction of new functionalities such as advanced State of X—SoX (e.g., state of
operational conditions (SoOC), state of health (SoH), and State of Function (SoF)) observers,
further pushing the boundaries of performance and service life optimisations as well as
predictive maintenance and failure analysis.

Considering the listed objectives, the data-driven models of SOFC operation relying
on, e.g., neural network modelling [9,10], or Hammerstein–Wiener models [11] that are
commonly utilised in the system level analyses have limited applicability, since their
accuracy does not reach, in general, beyond the calibration space of parameters. The
latter proves to be especially cumbersome for FC applications due to the effects of the
curse of dimensionality [12]. These deficiencies motivate the use of computationally fast
Reduced Dimensionality Electrochemical Models (RDEM) featuring a more profound
physicochemically consistent mechanistic basis, as for example derived in [13] for single
fuel Proton-exchange membrane (PEM) fuel cells. Such types of models can be parametrised
by experimental data or based on 3D Computational Fluid Dynamics (CFD) results or
other models with higher fidelity. RDEMs possess better extrapolation capabilities for
operational points outside the calibration space of the model, as they use a more consistent
physicochemical basis, e.g., [13]. The literature offers multiple types of physicochemically
inspired reduced dimensionality models considering a single fuel [13–15] that are derived
in a closed-form, which is crucial to achieving very low computational efforts as well as
HiL compliance.

However, the present system level models of SOFCs, for example [16–26] that are applied
in performance [16–18,20,21,23–25] and service life [19,22] predictions, and optimisations do
not feature both of these requirements, i.e., the derivation of activation losses and utilisation
ratios for multiple fuel species in a closed-form, and physicochemical consistency. Models,
such as [16–23,26], model from the electrochemical point of view of only a single reactant com-
ponent fuel (hydrogen) and neglect the CO, and calculate its effects only via energy balances
or via the water–gas shift reaction (WGSR) without addressing the kinetics of electrochemical
co-oxidation. On the other end, these models aiming to address multi-component kinetics ob-
served in SOFC are also being developed [24,25,27–37]; however, they are usually embedded
in higher fidelity models [27–37], ranging from 1D+1D [25] over 2D [28,29,31,32,34–37] to
3D [29,30]. For a more in-depth review of these and other models, the reader is referred
to the review article published by Bao et al. [38]. In References [24,25,39–43], the authors
model multi-reactant fuel electrochemistry on the system level and are thus physicochemi-
cally consistent. However, the electrochemical models utilised in [24,25,39–41,43] obtain
the overall voltage and over-potentials with a linearised Tafel equation or in an iterative
manner, which inherently leads to increased computational times, preventing their use in
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SoX and HiL applications. In contrast, in [42,44], the approximate solution is obtained by
decoupling the charge and mass transfer and by neglecting the effect of species concentra-
tion on electrochemical kinetics. This missing combination of physicochemically consistent
treatment of multiple fuels in a closed-form model thus represents a clear knowledge gap
that is tackled in this paper.

An additional knowledge gap in need of addressing in the area of reduced dimension-
ality performance models, where models are commonly modelled by the Butler–Volmer
(BV) equation with the aim of achieving high prediction capability in the entire current
range and thus the entire range of net reaction rates, is obtaining the inverse of the BV
equation with the respect to the voltage. Some authors address this issue by utilising
fully empirical models in [19], the Tafel equation in [16,29,31,45], a linearised Tafel equa-
tion [36,37,40,41], and a modified Tafel equation with the natural logarithm replacement
with a sinus hyperbolicus [18,20,21,23,28]. The overall assumption needed for the deriva-
tion of electrochemical models based on the Tafel equation is that the the reaction from
reactants to products overshadows the backwards reaction, i.e., the reaction from products
to reactants. This assumption proves to be justified for high activation over-potentials and
consequential high current densities or molar fluxes but has a significant deficiency in
the region with low activation over-potentials, where the approximation error increases
exponentially when current density or molar flux approaches zero, which inevitably means
that the activation losses cannot be determined with sufficient accuracy.

To resolve this persisting knowledge gap and to present significant progress in the
aforementioned area, this paper introduces an innovative framework of a computationally
fast multi-species thermodynamically consistent RDEM of SOFC with co-oxidation of CO
and H2 based on the closed-form solution using the BV equation. The latter is derived from
the anodic and cathodic reaction rates over the BV equation to the final form using a mathe-
matically consistent substitution of the two exponential functions with a sinus hyperbolicus
function. The obtained anodic reaction rates are afterwards coupled using an equation
for anode potential, enabling the division of the closed-form solution. For the first time, a
model is also capable of evaluating the anode open circuit voltage and over-potential for a
two component fuel consisting of H2 and CO. The obtained expression is easily invertible,
and owing to its thermodynamically consistent basis, all of the calibration parameters
are uniquely identifiable. Consequentially, the modelling framework can be successfully
parametrised using known values of the parameters from the literature without the need
to calibrate the model. These features characterise the model as a suitable candidate for
crossing the system level part of the V-development process; for control applications, as a
modelling basis of digital twins; and for model-based design of experiments (DoEs) [46].

2. SOFC Electrochemical Model

This section presents the derivation of the main steps for the closed-form SOFC
electrochemical model using both H2 and CO on the anode side as species that are utilised
in electrochemical co-oxidation. In the case of synthesis gas utilisation, other hydrocarbons
and impurities are considered with the steam reforming reaction, which is considered
infinitely fast in this framework. On the other electrode, the oxygen reduction reaction
is considered an electrochemical reaction, whereas other gasses, e.g., nitrogen and water
vapour, are considered electrochemically inert species.

2.1. Derivation of Basic Governing Equations

The observed SOFC voltage is a composite function of several individual phenomena
that can be approximated with five individual terms [47]. These terms are the open circuit
voltages on the cathode—UOC

c and anode side—UOC
a , which are often written as a single

term UOC, and three voltage drop terms, which can be attributed to the ohmic resistance—
RI, the reaction kinetics over-potential on the cathode—ηc, and on the anode ηa [48]:

U = UOC
c + ηc − RI −UOC

a − ηa. (1)
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Based on the reaction orders of the reactions taking place on both electrodes, the
derivation starts with the set of equations describing reduction and oxidation based on
the Arrhenius expressions obtained from a summation of finite series describing thermally
accessible states of molecules with a Boltzmann distribution. As the aforementioned deriva-
tion is described in many of electrochemical books, i.e., [49], and can be utilised in general
to describe the kinetics of any electrochemical reactions taking place in the FC [48], it can be
reworked to successfully describe the kinetics of the anode and cathode reactions as well:

jRDc = C̃
ωO2
O2
· C̃ωe−

e− · k
∗
rO2
· e
(
− A

kBT

)
, (2)

jOXc = C̃
ωO2−
O2− · k∗oO2

· e
(
− A+∆gCO−Uce0Zc

kBT

)
, (3)

jRDaCO = C̃
ωe−
e− · C̃

ωCO2
CO2

· k∗rCO
· e
(
− B+∆gCO−Uae0Za

kBT

)
, (4)

jOXaCO = C̃ωCO
CO · C̃

ωO2−
O2− · k∗oCO

· e
(
− B

kBT

)
, (5)

jRDaH2
= C̃

ωH2O
H2O · C̃

ωe−
e− · k

∗
rH2
· e

(
−

D+∆gH2
−Uae0Za

kBT

)
, (6)

jOXaH2
= C̃

ωH2
H2
· C̃ωO2−

O2− · k∗oH2
· e
(
− D

kBT

)
, (7)

where jRDc is the reaction rate of the cathode reduction, jOXc is the reaction rate of the
cathode oxidation, jRDaCO is the reaction rate of the CO reduction on the anode, jOXaCO is
the reaction rate of the CO oxidation on the anode, jRDaH2

is the reaction rate of the H2

reduction on the anode, and jOXaH2
is the reaction rate of the H2 oxidation on the anode.

k∗rO2
, k∗oO2

, k∗oCO
, and k∗oH2

are the reaction rate constants, kB is the Boltzmann constant, T is
the temperature, e0 is the elementary charge, ∆gCO and ∆gH2 are the differences in specific
Gibbs free energy between reactants and products for their respective species, and Zc and
Za represent the number of electrons transferred in the electrochemical reaction on the
cathode and anode side. The values of ωO2 , ωe− , ωO, ωCO2 , and ωH2O represent the kinetic
reaction orders of their respective species participating in the reaction. C̃O2 , C̃e− , C̃CO2 , C̃CO,
C̃O2− , C̃H2O, and C̃H2 are the specific concentrations of oxygen, electrons, carbon dioxide,
oxygen ions, water, and hydrogen, respectively. They are normalised by their reference
concentrations. Ua and Uc represent electrical potentials on the anode and cathode sides.
The transition state energies A = A(Uc), B = B(Ua), and D = D(Ua) are functions of the
electrical potentials and can be written as follows:

A = A(Uc) = A0 + αcUce0Zc,

B = B(Ua) = B0 + αaUae0Za,

D = D(Ua) = D0 + αaUae0Za,

(8)

where αc and αa are the charge transfer coefficients on the cathode and anode sides. A0
represent the energy needed to arrive at the transition state at Uc = 0 at the cathode side,
B0 and D0 are the energies needed to arrive at the transition state at Ua = 0 for the CO
species and H2 species, respectively.

The terms C̃
ωe−
e− and C̃

ωO2−
O2− in Equations (2)–(7) represent the concentration of electrons

and oxygen ions and are assumed to be approximately uniform in the electrodes. Therefore,
they are effectively constants and, as such, can be merged with k∗rO2

, k∗oO2
, k∗oCO

, and k∗oH2
to

form krO2
, koO2

, koCO , and koH2
, respectively. The cathodic and anodic reaction rates (jc, jaH2

and jaCO ) can thus be written as follows:

jc = C̃
ωO2
O2
· krO2

· e
(
− A

kBT

)
− koO2

· e
(
− A+∆gc−Uce0Zc

kBT

)
, (9)
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jaCO = C̃
ωCO2
CO2

· krCO · e
(
− B+∆gCO−Uae0Za

kBT

)
− C̃ωCO

CO · koCO · e
(
− B

kBT

)
, (10)

jaH2
= C̃

ωH2O
H2O · krH2

· e

(
−

D+∆gH2
−Uae0Za

kBT

)
− C̃

ωH2
H2
· koH2

· e
(
− D

kBT

)
. (11)

The expressions of the net reaction rates obtained are functions of the potential Uc for
the cathode and Ua for the anode side. These potentials are functions of their respective
over-potentials and open-circuit voltages that can be written as follows:

Uc = UOC
c + ηc, (12)

Ua = UOC
CO + ηCO = UOC

H2
+ ηH2 . (13)

By inserting Equations (12) and (13) into Equations (9)–(11), an alternative expression
for net reaction rates can be obtained:

jc = C̃
ωO2
O2
· krO2

· e

(
− A0+αc(UOC

c +ηC)e0Zc
kBT

)
− koO2

· e

(
− A0+∆gc−(1−αc)(UOC

c +ηC)e0Zc
kBT

)
, (14)

jaCO = C̃
ωCO2
CO2

· krCO · e

(
−

B0−(1−αa)(UOC
CO+ηCO)e0Za+∆gCO

kBT

)

−C̃ωCO
CO · koCO · e

(
−

B0+αa(UOC
CO+ηCO)e0Za

kBT

)
,

(15)

jaH2
= C̃

ωH2O
H2O · krH2

· e

(
−

D0−(1−αa)(UOC
H2

+ηH2
)e0Za+∆gH2

kBT

)

−C̃
ωH2
H2
· koH2

· e

(
−

D0+αa(UOC
H2

+ηH2
)e0Za

kBT

)
.

(16)

When the fuel cell is disconnected from an electrical circuit and if sufficient time has
passed so that all gradients in temperature, concentration, and potential fields disappear,
the open circuit voltage is achieved. When this state is achieved, all over-potentials are 0,
and by definition, the current is also zero (jc → 0 , ηc → 0 ; ηaCO → 0 , jaCO → 0 ; ηaH2

→
0 , jaH2

→ 0). After minor rearranging, the expressions in Equations (14)–(16) give the
Nernst equations for open circuit voltage on both electrodes, where the net reaction rates
of reduction and oxidation on both electrodes are in equilibrium. Therefore the equations
describing open-circuit voltage can be written as follows:

UOC
c =

kBT
e0Zc

ln(C̃
ωO2
O2

) +
kBT
e0Zc

ln

(
krO2

koO2

)
+

∆gc

e0Zc
, (17)

UOC
aCO

=
kBT
e0Za

ln(C̃ωCO
CO · C̃

−ωCO2
CO2

) +
kBT
e0Za

ln
(

koCO

krCO

)
+

∆gCO

e0Za
, (18)

UOC
aH2

=
kBT
e0Za

ln(C̃
ωH2
H2
· C̃−ωH2O

H2O ) +
kBT
e0Za

ln

(
koH2

krH2

)
+

∆gH2

e0Za
. (19)

Inserting the expression for open circuit voltages obtained into Equations (14)–(16)
and using the sinus hyperbolicus definition with the transfer coefficient α being 0.5, as
proposed in [13] on the expressions obtained for net currents, gives the following:

jc = e
(
− A0

kBT

)
e
(
− 0.5∆gc

kBT

)
krO2

(
krO2

koO2

)−0.5

C̃
0.5ωO2
O2

· 2 sinh
(
− e0Zcηc

kBT

)
, (20)
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jaCO = e
−B0
kBT e−

0.5∆gACO
kBT

(
koCO

krCO

)−0.5
koCO(C̃

0.5ωCO
CO C̃

0.5ωCO2
CO2

)ξaCO

·2 sinh
(

e0Zaηa

kBT

)
,

(21)

jaH2
= e

−D0
kBT e−

0.5∆gaH2
kBT

(
koH2

krH2

)−0.5

koH2
(C̃

0.5ωH2
H2

C̃
0.5ωH2O
H2O )ξaH2

·2 sinh
(

e0Zaηa

kBT

)
.

(22)

The activation energy can be written for all three equations as follows:

E0O2
= A0 + 0.5∆gc, (23)

E0CO = B0 + 0.5∆gACO , (24)

E0H2
= D0 + 0.5∆gaH2

, (25)

The intrinsic exchange flux is as follows:

j0c = krO2

(
krO2

koO2

)−0.5

, (26)

j0aCO
= koCO

(
koCO

krCO

)−0.5
, (27)

j0aH2
= koH2

(
koH2

krH2

)−0.5

. (28)

When used in Equations (20)–(22), this gives the following:

jc = j0c · e

(
−

E0O2
kBT

)
(C̃

ωO2
O2

)0.5 · 2 sinh
(
− e0Zcηc

kBT

)
, (29)

jaCO =

ξaCO︷ ︸︸ ︷
j0aCO
· e

(−E0CO
kBT

)
(C̃0.5ωCO

CO C̃
0.5ωCO2
CO2

) ·2 sinh
(

e0Zaηa

kBT

)
,

(30)

jaH2
=

ξaH2︷ ︸︸ ︷
j0aH2
· e

(
−E0H2

kBT

)
(C̃

0.5ωH2
H2

C̃
0.5ωH2O
H2O ) ·2 sinh

(
e0Zaηa

kBT

)
.

(31)

For two reactant species consumed at the anode side, the overall net flux can be written
as a summation of those two individual fluxes:

ja = jaCO + jaH2
. (32)

At the same time, the potential of the anode side is the same for both species. Therefore,
the following expression can be written:

UaCO = UaH2
,

ηaCO + UOC
aCO

= ηaH2
+ UOC

aH2
,

ηaCO = ηaH2
+ UOC

aH2
−UOC

aCO︸ ︷︷ ︸
UOC

Diff

.
(33)
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If the difference between open circuit voltages is small enough, both species have
approximately the same over-potentials. This follows directly from the fact that the term
UOC

Diff is always smaller than 0.01 V when the CO molar fraction is 1% or less in a fuel
consisting of only CO and H2, and the SOFC operating temperature is between 650 ◦C and
1086 ◦C.

In the next derivation step, Equations (30) and (31) are inserted into Equation (32),
which can be written as follows:

ja = ξaCO sinh(εηCO) + ξaH2
sinh(εηH2), (34)

where εa = e0Za
kBT . Using the expression from Equation (33) for interconnecting the over-

potentials and, at the same time, utilising the trigonometric addition formulas give the
following expression:

ja = ξaCO(sinh(εaηH2) cosh(εaUOC
Diff)± cosh(εaηH2) sinh(εaUOC

Diff))

+ξaH2
sinh(εaηH2).

(35)

If the difference in UOC is up to a few 10 mV, the expression given in Equation (35)
simplifies with a small error of approximation using a Taylor series expansion and the first-
order approximation of cosh and sinh functions with the UOC

Diff term. This approximation
has a negligible effect when the CO fraction is equivalent or smaller than 1% (as shown in
Figure A1b), which is common for steam reformates passed through watershift reactors [50].

ja = sinh(εaηH2) · (ξaH2
+ ξaCO). (36)

The expression obtained represents an innovative contribution to system level multi-
species electrochemical models since it is easily invertible to express the reaction kinetics
over-potential for the anode side and, by this, omits the otherwise necessary iterative
approach of calculating the aforementioned over-potential. Additionally, it retains the
possibility of model parametrisation based on known values of reaction rates and activation
energies from the literature due to its thermodynamically consistent modelling basis.

The aforementioned inversion of the expression (36) for the over-potential leads to the
following:

ηH2 =
1
εa

arcsinh

(
ja

ξaH2
+ ξaCO

)
, (37)

Equivalently, by inverting the expression in (29), the expression for the cathode over-
potential can be obtained:

ηc = −
1
εc

arcsinh

 jc
2j0c

e

(
E0O2
kBT

)
(C̃

ωO2
O2

)−0.5

. (38)

Here, it is necessary to mention that Equations (29)–(31) return a net rate of the reaction
on the cathode and anode sides. The expressions utilising current densities instead of the
net rate of the reactions are fully analogous to the newly devised expressions if they are
multiplied with the factor ZF

S , where Z is number of electrons transferred in the electro-
chemical reaction, F is Faraday constant, and S is the FC surface area. The same can be
performed for the net current of the cathode and anode, when Equations (29)–(31) are multi-
plied by the factor ZF. Therefore, by inserting expressions from Equations (37) and (38) for
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over-potentials and from Equations (17) and (19) for open circuit voltage into Equation (1),
the final voltage equation can be devised as follows:

U =
1
εc

ln(C̃
ωO2
O2

) +
∆gc

e0Zc
+

xH2 ∆gH2

e0Za
+

xCO∆gCO

e0Za
+

1
εc

ln

(
krO2

koO2

)
− xCO

εa
ln(C̃ωCO

CO · C̃
−ωCO2
CO2

)−
xH2

εa
ln(C̃

ωH2
H2
· C̃−ωH2O

H2O )

+
xH2

εa
ln

(
koH2

krH2

)
+

xCO

εa
ln
(

koCO

krCO

)
− RI

− 1
εc

arcsinh

 I
2I0

c
e

(
E0O2
kBT

)
(C̃

ωO2
O2

)−0.5


− 1

εa
arcsinh

 I

ZF
(

ξaH2
+ ξaCO

)
,

(39)

where xH2 and xCO are molar ratios of hydrogen and carbon monoxide, respectively.
Besides application in system level models, the obtained expression can be also applied
as an electrochemical model in higher fidelity models such as 2D and 3D, since it offers a
closed-form solution for the electrochemical co-oxidation of CO and H2.

2.2. Simplified 1D Transport of Gaseous Species in the GDL

The expression obtained in Equation (39) returns the voltage output appropriately
if the concentrations are obtained on the 0D catalyst layer. To obtain the aforementioned
concentrations, concentration fields throughout the SOFC should be taken into account. The
latter influences the concentration losses that can be attributed to the transport of species
in the GDL , which should be incorporated in Equation (39) if only the concentrations on
the inlet of the SOFC are known. This can be performed via a simplified model for the
transport of gaseous species in 1D, as presented in [13,47,51]. The main modelling idea in
this simplified transport model is that the direct functional dependency can be defined. It
connects the concentration of reactants on the catalyst layer (CRCL ), the limiting current (IL),
and current (I) as follows:

CRCL = CRchan

(
1− I

IL

)
, (40)

where CRchan is the concentration of reactants in the channel. The limiting current can, on
the other hand, be written as a function of constants and physical properties of the GDL:

IL = ZFSDRR
CRchan

δGDL
= CD · CRchan , (41)

where CD stands for the combined effective diffusivity parameter. For the anode side,
the expression presented in Equation (40) is a bit more complicated since only part of the
overall current comes from the utilisation of either hydrogen or carbon monoxide. To
successfully model this phenomena, the ratio of utilisation of each of the reactant species is
introduced in Equation (40), which results in the following expression:

CRCL = CRchan

(
1− ζR I

IL

)
. (42)
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If the relation between the concentration in the channel and the concentration on the
GDL–catalyst layer interface provided by Equation (42) is inserted into Equation (39) for
SOFC voltage, the following equation is obtained:

U =
1
εc

ln
((

C̃O2

(
1− I

ILc

))ωO2
)
+

∆gc

e0Zc
+

xH2 ∆gH2

e0Za
+

xCO∆gCO

e0Za

− xCO

εa
ln

((
C̃CO

(
1− ζCO I

ILCO

))ωCO
(

C̃CO2

(
1 +

ζCO I
ILCO

))−ωCO2

CO2

)

−
xH2

εa
ln

(C̃H2

(
1−

ζH2 I
ILH2

))ωH2
(

C̃H2O

(
1 +

ζH2 I
ILH2

))−ωH2O


+
xH2

εa
ln

(
koH2

krH2

)
+

xCO

εa
ln
(

koCO

krCO

)
+

1
εc

ln

(
krO2

koO2

)
− RI

− 1
εc

arcsinh

 I
2I0

c
e

(
E002
kBT

)(
C̃O2

(
1− I

ILc

))−0.5ωO2


− 1

εa
arcsinh

 I

ZF
(

ξ̃aH2
+ ξ̃aCO

)
,

(43)

where ζH2 and ζCO are the ratios of utilisation of hydrogen and carbon monoxide, respec-
tively. Whereas the terms in Equations (30) and (31) ξ̃aCO , ξ̃aH2

are enhanced to accommo-
date the 1D transport of species in the anode GDL:

ξ̃aCO = I0
aCO
· e

(−E0CO
kBT

)(
C̃CO

(
1− ζCO I

ILCO

))0.5ωCO
(

C̃CO2

(
1 +

ζCO I
ILCO

))0.5ωCO2
, (44)

ξ̃aH2
= I0

aH2
· e

(
−E0H2

kBT

)(
C̃H2

(
1−

ζH2 I
ILH2

))0.5ωH2
(

C̃H2O

(
1 +

ζH2 I
ILH2

))0.5ωH2O

. (45)

The newly derived expression in Equation (43) incorporates simplified modelling
of gaseous species transport in 1D, which enables the determination of concentrations
on the catalyst layers and thus the appropriate determination of the concentration losses
throughout all operating points of the SOFC.

2.3. Closed-Form Determination of Relative Reactant’s Utilisation Ratios

The relative reactant’s utilisation ratios (ζCO and ζH2 ) is the ratio between the individ-
ual utilisation ratios defined in [52]; thus, they represent the CO and H2 contribution to
the overall net rate on the anode side (Equation (36)). The utilisation ratios are a function
of concentration fields, which are defined by net molar fluxes, which define the reac-
tant utilisation ratios that forms a closed loop. This loop can be solved in a closed-form
without any iterative approaches. The reasoning is that the proposed 1D transport of
species, which is defined by limiting currents and utilisation ratios and was introduced in
Equations (40) and (42), inherently defines the concentration fields, thus reducing the set
of unknowns and leading to a relatively simple closed-form solution for reactant utilisa-
tion ratios:

ζH2 =
I0
CO(I − ILCO)ILH2

pCOan − I0
H2

ILCO(I + ILH2
)pH2an

+
√

γ1 + γ2

2I(I0
CO ILH2

pCOan − I0
H2

ILCO pH2an
)

, (46)

ζCO =
I0
CO(I + ILCO)ILH2

pCOan + I0
H2

ILCO(ILH2
− I)pH2an

−
√

γ1 + γ2

2I(I0
CO ILH2

pCOan − I0
H2

ILCO pH2an
)

, (47)



Catalysts 2022, 12, 56 10 of 24

where γ1 and γ2 are abbreviation functions defined as follows:

γ1 = 4I0
H2

I ILCO ILH2
pH2an

(I0
CO ILH2

pCOan − I0
H2

ILCO pH2an
), (48)

γ2 = (I0
CO(ILCO − I)ILH2

pCOan + I0
H2

ILCO(I + ILH2
)pH2an

)2. (49)

The solution obtained presents a competitive advantage with respect to other known
system-level multi-reactant species electrochemical models from the literature, since it en-
ables not only the calculation of the over-potential for multi-reactant species and determines
the reactant utilisation ratios in a closed-form but also incorporates 1D transport of gaseous
species through the GDL, which enables faster and easier parametrisation and poses a
significantly smaller computational burden in comparison with full blown modelling of
the transport of species with a standard ODE approach.

3. Material and Methods

The determination of the optimal set of calibration parameters is one of the key
prerequisites both for calibrating the time reduction in the system level obtained that
is thermodynamically consistent with a reduced dimensionality multi-reactant species
electrochemical model and for ensuring high-quality model calibration. This section
therefore presents the determination of the optimal set of calibration parameters and the
calibration procedure of the model against the experimental data.

3.1. Determination of Calibration Parameters

First, known data from the literature such as known physical constants and operating
conditions were inserted into the newly obtained expression presented in Equation (43).
This step is instrumental to avoiding over-calibrating the model and to achieving the highest
possible prediction capability and generality within the given optimisation constraints.
The aforementioned over-calibration should be avoided as it can easily result in reduced
generality of the newly derived model and thus hinder its extrapolation capabilities. The
remaining undefined parameters represent the set of calibration parameters (krO2

, koO2
, koCO ,

krCO , koH2
, krH2

, E0O2
, E0CO , E0H2

, R, CDO2 , CDCO, CDH2). Even though the values of these
parameters can be found in the literature and their values are presented in Appendix B,
these values serve only as an initial estimate of the parameter values in the optimisation
procedure (presented in detail in Section 3.4). If the electrochemical model, provided with
Equation (39) was to be utilised in a 3D CFD environment, only parametrisation with
known values of the reaction rates and activation energies from the literature would be
needed, while providing a closed-form solution for the electrochemical model utilising
both CO and H2 in the electrochemical reaction. However, as high fidelity models do
not comply with the low computational time requirement, this manuscript proposes an
advanced 1D model solved in closed-form to capture the main physicochemical phenomena
in the direction perpendicular to the catalytic layer. The model incorporates a simple 1D
steady state model for the transport of species, which extends Equation (39) to showcase
the electrochemical model capabilities and results in Equations (43)–(47). For this kind of
utilisation, some calibration is needed to accommodate for the reduced dimensionality of
the model. The calibration needs to take into account the variation of parameters along
the channels and in the GDLs, which change with varying operating conditions and fuel
composition. However, it should be pointed out that it is extremely important that the
model parameters feature very small variations, which confirms the hypothesis from the
previous sentence. Additionally, all sets of model parameters still comply with the ranges of
parameters provided in the literature, which proves the adequate thermodynamic basis of
the model. Furthermore, owing to the aforementioned thermodynamically consistent basis
of the multi-species RDEM, the calibration parameters exhibit direct correlation with the
intrinsic parameters of the SOFC. CDO2 , CDCO, and CDH2 have direct correlations to the
transport properties of the GDL such as porosity and tortuosity; R directly correlates to the
effective membrane conductivity; and krO2

, koO2
, koCO , krCO , koH2

, krH2
, E0O2

, E0CO , and E0H2
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correlate to the intrinsic exchange current densities as defined in Equations (29)–(31), which
directly correlates to electrochemically active surface area. More detail on the mapping
between the calibration parameters and intrinsic parameters of the FC are provided in [53].

3.2. Parameter Sensitivity Analysis and Error of Calibration

The set of calibration parameters determined in the previous section enables the
application of a parametrised version of the newly devised electrochemical model, which
can be based on the functional dependencies written as the following equation:

U = f (θ, u), (50)

where the model output is the voltage U and u is the vector of inputs to the model:

u =
[
C̄O2 C̄H2 C̄H2O C̄CO C̄CO2 T

]T . (51)

The calibration parameter vector for the model is as follows:

θ =

[
krO2

koO2
koCO krCO koH2

krH2
E0O2

...
... E0CO E0H2

R CDO2 CDCO CDH2

]T

. (52)

As the measurement errors εU are assumed to be Gaussian, the obtained estimate of
the parameter vector is a stochastic variable, which means that, if the estimator is consistent,
the expected value of the calibration parameter estimation is equal to the intrinsic parameter
(E(θ̂) = θ). In reality, it is often impossible to numerically approximate E(θ̂) as it requires
a vast amount of experimental data. Therefore, in order to evaluate the confidence of
the estimated parameters obtained on the given data set, it is necessary to determine the
associated parameter covariance σθ using the Cramér–Rao inequality [54]:

Cov(θ̂) ≥ F−1, (53)

where F is the Fisher information matrix, which is determined as follows:

F =
1
σ2

ε

N

∑
k=1

Fk =
1
σ2

ε

N

∑
k=1

φT
k φk, (54)

as the present model is static. Therefore, the parametric output sensitivity can be written as
follows:

φk =
∂yk
∂θ

=
[

∂ f (θ,uk)
∂θ1

. . . ∂ f (θ,uk)
∂θn

]
,

where N is the number of experimental data points {uk, yk} and k is formally an element of
the interval k ∈ [1, . . . , N].

3.3. Experimental Data

Ideally, the experimental data used in any parametrisation procedure would contain
information about all calibration parameters of the model to enable their determination
with high certainty. Even though theoretically this kind of data set exists in the case of a
model with uniquely determinable calibration parameters, in reality, it is almost impossible
to obtain due to the time and effort required to perform all the necessary experiments.
Therefore, the models are usually parametrised on experimental data obtained with several
different variations of most influential operating parameters. With the aim of demonstrating
the capabilities of the newly developed model to replicate experimental data obtained
under a vast variety of operating conditions, a previously published experimental data
set in [45] was digitalised and used in the parametrisation procedure. Experimental data
were obtained on a single cell with the porous cathode interlayer made from a composite



Catalysts 2022, 12, 56 12 of 24

of 50 wt% strontium-doped lanthanum cobalite-LSC (La1−xSrxCoO3−δ, x = 0.3–0.7) and
50 wt% Sm-doped CeO2 (SDC). The thickness of the interlayer after firing was 20 µm. On
the anode side, the Ni+YSZ interlayer was 20 µm thick. The effective electrode area was
1.1 cm2 [45]. The experimental data consisted of 13 polarisation curves and were acquired
at 800 ◦C, under atmospheric pressure and at predetermined constant total flow rates of
fuel or a fuel mixture and of air. The fuel flow rate was maintained at 140 mL/min, and the
air flow rate was maintained at 550 mL/min in all experiments [45]. The only operating
condition that was varied was the fuel and fuel mixture compositions provided in the mole
fraction of the gaseous species presented in Table 1.

Table 1. Fuel mixture compositions in mole fractions of gaseous species.

No. xH2 xCO xH2O xCO2

1 0.86 0.14 0.00 0.00
2 0.68 0.32 0.00 0.00
3 0.54 0.46 0.00 0.00
4 0.45 0.55 0.00 0.00
5 0.32 0.68 0.00 0.00
6 0.20 0.80 0.00 0.00
7 0.00 0.32 0.00 0.68
8 0.00 0.44 0.00 0.56
9 0.00 1.00 0.00 0.00

10 0.20 0.00 0.80 0.00
11 0.34 0.00 0.66 0.00
12 0.50 0.00 0.50 0.00
13 0.85 0.00 0.15 0.00

3.4. Calibration Procedure

The described experimental data retains certain information about the calibration
parameters. To extract this information, the calibration procedure is utilised by means
of minimalisation of the cost function value. The cost function used is the sum of the
squared difference between the model output and the measured data. The initial values
of the calibration parameters were obtained from the literature (provided in Appendix B).
Calibration is needed as, in general, literature data cannot lead to a nearly full agreement
with experimental data due to some differences in the performances of the components,
e.g., catalysts, membranes, and GDLs. To address this challenge, which is generic and not
related only to this specific model, a comprehensive model parametrisation methodology in
combination with the developed model is proposed, which forms a beyond state-of-the-art
tool chain. It enables us to obtain a closer agreement of simulation and experimental data,
where the model parameters that were obtained though the parametrisation procedure
still fall in literature-provided parameter ranges due to the physically plausible constraints
introduced on the calibration parameters. This further supports the applicability of the
proposed tool chain and the adequacy of the proposed thermodynamically consistent model.
Since the innovative model is highly nonlinear, a global optimisation algorithm was applied
in the first step of the optimisation. The algorithm used was differential evolution (DE) [55],
which was parallelised to reduce computational time. DE is an evolutionary algorithm
that does not need the optimisation to be differentiable. This inherently means that it is
less prone to becoming stuck in local minima. After 500 generations with a population size
ten times that of the length of the calibration parameter vector, the DE was replaced with
the Nelder–Mead method (’fminsearch’ [56]), which is a usually a faster approach in the
vicinity of the global minima, since it relies on the gradient descent approach. With the
latter, the final values of calibration parameters were obtained.
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4. Results and Discussion

The physicochemically consistent derivation of the electrochemical model and the
determination of calibration parameters and their values ensures a consistent analytically
derived expression for the polarisation curve throughout all operating regimes and current
density regions. However, to achieve the highest possible generality of the model and
consequentially its prediction capability, the model parameters have to be optimised with
the most suitable optimisation algorithm not only to obtain the best possible fit quality but
also to unlock its full potential in the area of convergence speed optimisation.

4.1. Calibrating the Model to Experimental Data

The results of the calibrated thermodynamically consistent RDEM show very good
agreement with multiple experimental data set used for calibration at once, as shown in
Figure 1. The model was calibrated on all 13 polarisation curves obtained with different
fuel compositions with a single set of calibration parameter values. Overall, the R2 obtained
in this procedure has a very high value of 0.9976 and the root mean square deviation
(RMSD) value is low at only 0.00815. In comparison with other developed models utilising
the same set of experimental data set for validation [25,26,39,42–44], the newly devised
thermodynamically consistent RDEM obtains a significantly better fit quality, as discussed
in detail in Section 4.4. The aforementioned quality of replication of experimental data
is especially high in the area of activation losses (low current density regions), where
the thermodynamically consistent modelling basis taking into account both forward and
backward reactions plays an instrumental role in an appropriate description of the under-
lying phenomena. Additionally, the results also clearly indicate that the majority of the
small deviations between experimental data and the output of the model are in the area
of concentration losses (high current density region) where the model’s dimensionality
plays an important role due to the channel/rib distributions and ratios, which are not taken
into account in this work for the sole purpose of achieving a low computational burden
due to intended application of the model. This reasoning is confirmed by higher but still
reasonable deviations from known values from the literature (Table A1) of the calibration
parameters for diffusion coefficients, which can be observed in Table 2.

Figure 1. Results of the calibrated model with a single set of calibration parameter values for multiple
polarisation curves.
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Table 2. List of model calibration parameters and their values.

Parameter Value Units Description
KH2 1.9284 × 1011 RT/F A/cm2 Reaction rate H2
KCO 0.7534 × 1011 RT/F A/cm2 Reaction rate CO
KO2 0.21697 × 1010 RT/F A/cm2 Reaction rate O2
E0H2

136,167 units RT Activation energy H2

E0CO 118,311 units RT Activation energy CO
E0O2

113,149 units RT Activation energy O2

DH2 6.3843 cm2s−1 Difussion coefficient H2
DCO 1.2438 cm2s−1 Difussion coefficient CO
DO2 0.7457 cm2s−1 Difussion coefficient O2

4.2. Parameter Sensitivity and the Standard Error of Parameter Values

The goodness of fit provides us with the information of how accurately the model
replicates the training data set. It should be noted, though, that achieving a high goodness
of fit does not necessary mean that the calibration parameter values are well defined, as
each individual experimental data set possesses only a particular amount of information
about the individual calibration parameters, which in return defines both parameter sen-
sitivity and the standard error of the parameter’s values. The results of the FIM analysis
are presented in Figure 2. After careful observation, it can be noticed that the cathode
parameters are not uniquely determinable on the given data set. The reasoning for this
behaviour can be explained by the fact that the experiments were carried out with a very
high volume flow and thus stoichiometry, which leads to the decreased influence of these
parameters on the overall output of the model. The other calibration parameter values are
relatively well defined on the given data set, with the membrane ohmic resistivity being
the best defined one. The latter is to be expected since the membrane ohmic resistivity
has a linear dependence on the influential operating parameters and, as such, is easier to
be determined in comparison with the other calibration parameters, which have highly
non-linear contributions to the voltage output of the model. The FIM of results obtained is
nearly singular and thus potential reductions of the model should be only considered if the
model is utilised in these or similar operating conditions, as is shown.

Figure 2. The logarithm of the absolute values of the FIM obtained for the model calibrated on the
full experimental data set.
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Nonetheless, the inverse of the FIM can be obtained. Using the correlation between the
variance and the standard error, the latter can be obtained for each individual calibration
parameter. The results obtained are as follows:

Σθ =

[
krO2

koO2
koCO krCO koH2

krH2
E0O2

. . .
. . . E0CO E0H2

R CDO2 CDCO CDH2

]T

=

[
4.34× 107 4.34× 107 3.717 3.717 7.327 7.327 6.43× 106 . . .

. . . 9.33× 104 2.468 0.2713 5.812× 102 0.4224 0.8044

]T
(55)

and show that the lowest standard errors are obtained for ohmic resistivity and the com-
bined diffusivities of CO and H2, while they are significantly higher for the reaction rate
parameters. Parameters that have a high standard error, namely the reaction rates on the
cathode kRDC, kOXC are hard to uniquely determine. This can be due to the fact that their
influence on the output of the model is under the given operating conditions less signif-
icant or because they cannot be uniquely determined due to the calibration parameters’
mathematical inter-connectivity. In both cases, it is completely meaningful to propose the
following reduction in the set of calibration parameters based on physical reasoning:

e
−αc ·ln

(
kRDC
kOXC

)
kRDC → KO2 , (56)

since for a common cathode material, the dissociation of adsorbed oxygen molecules is
the rate-determining electrochemical reaction step [57]. Furthermore, analogue reductions
can also be performed for both electrochemical co-oxidations on the anode side, thus
replacing koCO , krCO , koH2

, and krH2
with KCO and KH2 . The aforementioned reductions lead

to a reduced set of calibration parameters, which are more uniquely identifiable. This
can be observed when comparing Figures 2 and 3, where the FIM in Figure 2 has smaller
values of FIM and thus higher standard errors in comparison with the Figure 3, which was
obtained with the reduced set of calibration parameters, where the values of FIM and are
significantly larger and thus the standard errors are lower. As before, these are obtained
using the inverse of the FIM and the correlation between variance and the standard error.

Figure 3. The logarithm of the absolute values of the FIM obtained for the model calibrated on the
full experimental data set with the reduced set of calibration parameters.



Catalysts 2022, 12, 56 16 of 24

The obtained results can be written as follows:

Σθ =

[
KO2 KH2 KCO E0O2

E0
H2

. . .
. . . E0

CO R CDO2 CDCO CDH2

]T

=

[
0.8139 2.206 3.642 1.896 4.596 . . .

. . . 11.56 0.2713 2.076× 102 0.3376 0.5100

]T

.

(57)

This confirms the higher unique identifiability of the calibration parameters. However,
due to the reciprocity of estimator variance and the FIM, the increase in the FIM and, thus,
information corresponds to the decrease in the variance and consequentially in the standard
error. Furthermore, since the performed reduction is physically meaningful, the increase in
the model output deviation from the experimental data is small, increasing the RMSD from
0.00815 to 0.0116 and decreasing the R2 value from 0.9976 to a still extremely high value of
0.9952. Based on the encouraging results of this analysis, the reduced version of the model
was utilised in the rest of the performed tests.

Validation with Known Values of Calibration Parameters from the Literature

The reduced modelling basis obtained in the previous subsection is still thermody-
namically consistent due to the physical reasoning of the reduction. Therefore, the model
should return meaningful results when parametrised with known data from the literature.
To test this, the values for reaction rates were taken from [32], the activation energies were
taken from [32], and the diffusivities for each individual species were taken from [58].
Their values are presented in Appendix B, and as explained in the Section 3.4, they were
used as a basis for the calibration procedure. However, even without using the calibration
procedure, the model, using these values, achieved good agreement with the experimental
data, with an R2 value of 0.9853 and an RMSD value of 0.0202, as shown in Figure 4.
Therefore, the modelling framework is fully capable of utilising known parameter values
from the literature for the reaction rates and the activation energies to produce physically
meaningful results, which is a clear merit of this system level model. It should be pointed
out that, if the model is utilised under untypical operating conditions, it could generate a
higher error, as discussed in more detail in Appendix A.

Figure 4. The results of the model calibrated with known values of calibration parameters from the
literature as given in Appendix B for multiple polarisation curves.
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4.3. Extrapolation Validation

Besides the possibility of adequately simulating the operating points outside of the
calibration space of parameters, the enhanced extrapolation capabilities together with the
good prediction capabilities and the generality of the model enable the use of significantly
smaller data sets to determine the calibration parameters values with a low standard error.
With the aim of testing the prediction and extrapolation capabilities of the model, the
experimental data set was divided into a training data set and a validation data set. For the
first test, the polarisation curves numbered 1 to 6 in Table 1 were used as the training data
set and the polarisation curves from numbered 7 to 13 were used as the validation data set.
In the second test, the last seven polarisation curves were used for training and the first six
were used for validation.

The results of the first test of extrapolation validation are shown in Figure 5 and exhibit
a slightly higher R2 value of 0.9982 in comparison with using all available experimental
data, with a corresponding RMSD value of 0.007337 for the training data set and an R2

value of 0.9908 with a corresponding RMSD value of 0.1546 for the validation data set. An
in depth analysis reveals slightly higher RMSD values for the H2 and H2O polarisation
curves of 0.07439 and even a bit higher RMSD value for the CO and CO2 polarisation curves
of 0.2365 in comparison with the trained values of 0.0108 and 0.0156. This is confirmed
with lower R2 values of 0.9974 for the H2 and H2O polarisation curves and of 0.9832 for
the CO and CO2 polarisation curves, which is an expected result based on the modelling
assumptions and modelling depth of the framework at hand, especially since most of
the deviations comes from the high current density region, where the model’s reduced
dimensionality begins to show its limits.

Figure 5. The first test in the scope of extrapolation validation; the results of the calibrated model on
(a) the training data set consisting of the first six polarisation curves and (b) the validation data set
consisting of the last seven polarisation curves.

To confirm the results obtained the extrapolation capabilities of the thermodynamically
consistent RDEM were also assessed in the opposite direction with the second test. There,
the model was calibrated on the polarisation curves obtained with mixtures of either H2
and H2O, or CO and CO2 and then used to simulate the six polarisation curves that were
obtained with different mixtures of CO and H2. The results presented in Figure 6 show a
very good replication of the experimental data for both cases. For the training data set, the
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R2 value is 0.9923 and the RMSD value is 0.01414, which confirms a better fit of the model
to the experimental data in comparison with the first analysed case. The analysis of the
extrapolation capabilities show extremely good results with an R2 value of 0.9974 and am
RMSD value of 0.004014. The presented results confirm that the model is not only very
accurate but also exhibits extremely good extrapolation and predictive capabilities.

Figure 6. The second test in the scope of the extrapolation validation; the results of the calibrated
model on (a) the training data set consisting of the last seven polarisation curves and (b) the validation
data set consisting of the first six polarisation curves.

4.4. Comparison with Other Known Models from the Literature

A literature review showed that several computationally fast, reduced dimensionality
models are used in the system level applications. As the performance of these reduced
dimensionality models depends also on the experimental data set utilised in the calibration
procedure, it is meaningful to compare only the models that were validated and trained
on the same experimental data set. Therefore, the comparison of the newly developed
thermodynamically consistent multi-species electrochemical model was carried out with
the six system level models [25,26,39,42–44], which utilised the experimental data provided
in [45] as their validation data set. For each of the models, the fit quality was assessed
by means of an RMSD value calculated on each of the polarisation curves. The results
obtained in the scope of this analysis are presented in Table 3. The results show that the
newly developed thermodynamically consistent multi-species electrochemical model has
the smallest deviations from the validation data set. The highest deviation is achieved
when the SOFC is fuelled with 32% of CO and 68% of the CO2, where the model obtained
in [43] obtains comparable RMSD values. For all of the other operating points, the newly
developed model has smaller RMSD values than all known system level models from the
literature, clearly positioning it as the current state-of-the-art.
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Table 3. Comparison of RMSD values for individual polarisation curves obtained with known system
level models of similar modelling depth from the literature.

Composition [%] [43] [42] [44] [25] [39] [26] Our Model
85 H 2-15 H2O 0.1099 0.1516 0.1587 / 0.1755 0.1361 0.02175
50 H2-50 H2O 0.1189 0.1010 0.1074 0.1529 0.1901 0.1928 0.04116
34 H2-66 H2O 0.1228 0.09958 0.1761 0.1399 0.2150 0.2114 0.02212
20 H2-80 H2O 0.1483 0.1813 0.3999 0.1625 0.1499 0.2041 0.04556
97 CO-3 CO2 0.1507 0.1572 0.1285 / 0.2267 / 0.02556
44 CO-56 CO2 0.2158 0.1731 0.1663 / 0.1634 / 0.03037
32 CO-68 CO2 0.1491 0.2629 0.3245 / 0.3714 / 0.1208
86 H2-14 CO 0.1541 0.1224 0.1593 / 0.3025 / 0.04165
68 H2-32 CO / 0.3464 0.1532 / 0.2076 / 0.03675
54 H2-46 CO / / / / 0.2298 / 0.03629
45 H2-55 CO 0.1794 0.1314 0.1339 / 0.3478 / 0.01652
32 H2-68 CO / 0.1780 0.3140 / 0.1771 / 0.02496
20 H2-80 CO 0.2914 0.1753 0.2229 / 0.2648 / 0.02117

5. Conclusions

The presented study fills the knowledge gap in the area of thermodynamically consis-
tent reduced dimensionality multi-species electrochemical models. It provides, for the first
time, the closed-form solution for the anode over-potential of multiple species with the
electrochemical co-oxidation of CO and H2 and thus provides an easily invertible solution
for the voltage or the net current of fuel cells fuelled with multi-species fuel. The expression
obtained is valid for all current density regions and consistently features the reduction and
oxidation reactions for both the cathode and the anode side of the SOFC. The presented
results show the validation process of the model on polarisation curves obtained with
different fuel mixtures resulting in an extremely high R2 value of 0.9952, thus confirming
the capability of the newly developed model to replicate experimental data. A fitness
function analysis further confirms that the thermodynamically consistent multi-species
electrochemical model exhibits very good extrapolation capabilities for operating condi-
tions outside the calibrated variation space of the parameters, thus proving its robustness.
The model under these tests achieves an R2 value of 0.9994 when trained on the CO/CO2
and H2/H2O individually and validated on the mixture of CO and H2, and an R2 value
of 0.9908 when trained on the mixture of CO and H2 and validated on the individual fuel.
Furthermore, owing to its thermodynamically consistent basis, the modelling framework
can be parametrised using solely known values of the calibration parameters from the litera-
ture, resulting in an extremely high R2 value of 0.9853 when validated on all 13 polarisation
curves obtained with different fuel mixtures. The R2 value obtained is especially high for
any non-calibrated reduced dimensionality model. Furthermore, the newly developed
model obtains in comparison with the other known models from the literature on average
for smaller RMSD values on the training data set. Therefore, the proposed modelling frame-
work represents significant progress in the area of system-level electrochemical models
for control applications. Furthermore, it can serve as a model basis of digital twins and
model-based DoEs as well assists in the model supported development of SOFC. These
key features confirm the modelling framework as a beyond state-of-the-art tool for the
model-endorsed development of advanced clean energy conversion technologies. As such,
it offers a good basis for the development of a tool for combined service and lifetime opti-
misations, when coupled with the intertwined degradation modelling framework, which
proves to be incredibly demanding task and will be tackled in future research.
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Abbreviations
The following abbreviations are used in this manuscript:

a Anode
BV Butler– Volmer
c Cathode
FC Fuel Cell
GDL Gas Diffusion Layer
LT Low Temperature
o Oxidation reaction
PEM Proton Exchange Membrane
r Reduction reaction
R Reactants
ref Reference
SoF State of Function
SoH State of Health
SoOC State of Operational Conditions
TC Thermodynamically Consistent
A Energy needed to arrive at the transition state—cathode
B Energy needed to arrive at the transition state—carbon monoxide
C Concentration
C̃ Specific concentration
CD Combined diffusive parameter
CO Carbon Monoxide
D Energy needed to arrive at the transition state—hydrogen
E Energy
g Specific Gibbs free energy
H2 Hydrogen
H2O Water
i Current density
I Current
I0 Intrinsic exchange current
j Molar flux
k Reaction rate
K Lumped reaction rate
O2 Oxygen
R Resistance
s Specific Entropy
T Temperature
U Voltage
UOC Open circuit voltage
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Z Number of electrons transferred in the electrochemical reaction
α Charge transfer coefficient
δ Width
∆ Change, difference
η Over-potential
λ Stoichiometric ratio
ω Kinetic reaction orders
e0 Basic charge
F Faraday constant
kB Boltzmann constant
Rg Gas constant

Appendix A. Estimation of the Modelling Error for the Untypical Operating Conditions

Using the first-order Taylor polynomial of Equation (35) results in an easily invertible
expression for over-potential given with Equation (36). This approximation is negligible
when the CO fraction is 1% or less (as shown in Figure A1b), which is common for steam
reformates passed through watershift reactors [50]. In these cases, the values of the calibra-
tion parameters can be taken from the literature due to the thermodynamically consistent
modelling basis of the model. However, in the case that the CO fraction is significantly
higher or that the operating temperatures deviates from the well-defined interval between
650 and 1086 ◦C, the approximation starts to notably deviate from the full version of the
equation (as shown in Figure A1a). Under these untypical and nonstandard operating
conditions, the known values of calibration parameters from the literature would lead to a
physically implausible over-potential or net current. To accommodate this deviation, the
activation energies and reaction rates need to be changed accordingly, which calls for the
utilisation of the calibration procedure, e.g., the one presented in Section 3.4. However,
with the aim of testing the deviation, the modelling error in the case of the utilisation of
known values of activation energies and reaction rates from the literature was tested and
the results of these tests are presented in Figure A1a.

Figure A1. Estimation of the modelling error in comparison with the full blown solution presented
in Equation (35) (a) in case of untypical and nonstandard operating conditions with the high molar
ratio of CO in the fuel mixture at an over-potential level of 0.3 V and (b) in case of the molar ratio of
CO being 1% of the fuel mixture.

Appendix B. Values of the Model Parameters

The values of material parameters used in the model, such as material densities,
surface tensions, and molar masses, obtained from the literature, are listed in Table A1,
alongside the source from which the value was taken.
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Table A1. List of model calibration parameters obtained from the literature.

Parameter Value Units Description Source
dclc 20 µm Thickness of interlayer [45]
dcla 10 µm Thickness of interlayer [45]
S 1.1 cm2 Effective electrode area [45]
ε 0.54 unitless Porosity [45]
τ [ here. 4.89–9] unitless Tortuosity [45]
AV 70 × 106 m2m−3 EASA-to-volume-ratio [59]
KeqH2

1.66 × 108 atm−0.5 H_2 equilibrium constant [32]
KeqCO 1.07 × 108 atm−0.5 CO equilibrium constant [32]
KH2 2.1 × 1011 RT/F A/cm2 Reaction rate H2 [32]
KCO 0.84 × 1011 RT/F A/cm2 Reaction rate CO [32]
KO2 0.25 × 1010RT/F A/cm2 Reaction rate O2 [32]
E0H2

130,000 units RT Activation energy H2 [32]
E0CO 120,000 units RT Activation energy CO [32]
E0O2

120,000 units RT Activation energy O2 [32]
DH2 [3.858–5.677] cm2s−1 Difussion coefficient H2 [45]
DCO 0.958 cm2s−1 Difussion coefficient CO [45]
DO2 1.9844 cm2s−1 Difussion coefficient O2 [58]
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