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Abstract: In recent years, carbon dioxide hydrogenation leading to synthetic fuels and value-added
molecules has been proposed as a promising technology for stabilizing anthropogenic greenhouse gas
emissions. Methanation or Sabatier are possible reactions to valorize the CO2. In the present work,
thermal CO2 methanation and non-thermal plasma (NTP)-assisted CO2 methanation was performed
over 15Ni/CeO2 promoted with 1 and 5 wt% of cobalt. The promotion effect of cobalt is proven both
for plasma and thermal reaction and can mostly be linked with the basic properties of the materials.
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1. Introduction

Greenhouse gases such as CO2 are responsible for climate change and global warming.
Thus, nowadays their control and utilization are an important subject from a scientific and
economic point of view. CO2 emissions produced from an energy system based on fossil
fuels are the main reason for climate change [1]. To overcome this problem and decrease
these emissions in the atmosphere, several alternatives have been analyzed. Carbon capture
and utilization (CCU) or storage (CCS) are among the solutions which took attention in
the last decade for this aim. These processes will help to either turn CO2 emissions into
valuable chemicals or make a closed cycle of carbon in industries (e.g., cement) where
synthetic natural gas produced from their CO2 emissions through Sabatier reaction could
be re-used for combustion processes [2]. Among the CO2 valorization strategies, CO2-to-
methanol [3,4], Reverse Water Gas Shift (RWGS) reaction [5] and CO2 methanation [6] are
the most studied. Indeed, methanolation and methanation are mature solutions already
industrially implemented [7,8].

Regarding CO2 methanation, different types of metal-supported catalysts have been
reported, with Ni, Ru, Co, Fe, Rh or Pd as the main active metals [9–14]. Among all,
Ni-based catalysts are the most used due to their high activity, their availability, and their
lower cost [15]. However, their catalytic activity depends on different factors, such as
Ni loading, the type of support or the preparation method [16]. In terms of supports
nature, alumina, silica, double layered mixed oxides, zeolites, ceria, or ceria-zirconia have
been studied [6,11,14,17,18]. Among them, ceria (CeO2) can be considered as a promising
support because of its properties such as oxygen mobility, which enhances CO2 activation
and hinders carbon deposition [19,20].

Furthermore, the use of promoters such as Y, Mn, La, Cu or Co was reported as
favorable for improving catalysts’ activity and stability [17,21–24]. Among them, cobalt
incorporation has not been widely explored so far. Indeed, on bimetallic Co-Ni/Al2O3 cat-
alysts, Liu et al. [25] showed that catalytic properties were enhanced for CO2 methanation
by the formation of Co-Ni alloy, leading to a higher surface area and better Ni0 dispersion.
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Moreover, Alrafei et al. [16] also showed that for Co-Ni/Al2O3 catalytic systems, that
the presence of Co improved Ni0 dispersion and Ni species reducibility. Furthermore,
Summa et al. [17] concluded that the addition of cobalt in low amounts (0.5–1 wt%) re-
sulted in an optimum improvement of the surface properties, such as basicity and hydrogen
uptake, which increased the catalytic performance for CO2 methanation.

Besides the improvement of CO2 methanation catalysts formulation, plasma assisted
catalysis has been developed for more than 10 years for improving this process [24,26,27].
Among the types of plasma reported, the dielectric-barrier discharge (DBD) is the most
commonly used for CO2 methanation [24–28]. Moreover, as for thermal methanation, Ni
based catalysts are the most used for methanation under plasma-assisted catalysis condi-
tions [24–28]. In terms of used catalysts, different supports such as titania [29], ceria [19],
zirconia [30], ceria-zirconia [31–34], alumina [35,36], zeolites [6,37,38], metal–organic frame-
works [35] or mixed-oxides derived from hydrotalcites [18] have been reported. In terms
of promoters, only cerium [6–18] and lanthanum [37] appeared to promote Ni-based cat-
alysts performances for the DBD plasma methanation process over different supports.
Accordingly, Chen et al. [37] demonstrated, compared to a non-promoted catalyst, that
the addition of La resulted in an improvement of the turnover frequency and selectivity
towards CH4. More recently, it was shown on DBD plasma using ceria-zirconia-based Ni
catalysts that the promotion of elements such Cu, Co, Mn, La, Y, Gd and Sr can consider-
ably alter both the physicochemical and the electrical features of the catalysts, resulting in
different plasma-catalytic performance. Indeed, authors reported a real improvement with
the studied elements except for Cu and Sr [39].

Furthermore, to our knowledge, so far, no studies have dealt with Co-promoted Ni
catalysts supported on CeO2 for conventional thermal neither for plasma-assisted CO2
methanation. Thus, in this study, the activity and stability of Co-Ni/CeO2 using 2 Co
loadings were investigated for CO2 methanation and a correlation between structure and
activity was proposed.

2. Results and Discussion
2.1. Characterization Results

TPR-H2 profiles are presented in Figure 1. It is worth mentioning that 2 peaks were ob-
served at 330–350 ◦C and 465–510 ◦C for Ni-containing catalysts, which could be attributed,
based on literature, to the support reduction, more precisely to surface oxygen species in
CeO2 and CeO2 bulk reduction, respectively [19].

One can also note that, with the introduction of both Ni and Co, CeO2, peaks shift
towards lower temperatures. Moreover, for all the studied Ni catalysts, a well-defined
peak is found at 200–300 ◦C, which shifts towards higher temperatures with increasing Co
loadings. This peak is generally attributed to easily reducible NiO species [19]. Finally, a
significant reduction peak is observed at ~500 ◦C on 5Co15Ni/CeO2 catalyst, which could
be attributed to the reduction of CoOx or Co cationic species [40]. As reported in Table 1,
the peaks of reduction identified in this study are comparable to those found in previous
works. In addition, total H2 consumptions for the catalysts from this work are also reported
in Table 2, with increasing Co loadings leading to higher values.

Table 1. Comparison of reduction peaks for similar catalysts with different contents with
present study.

Catalyst
First Main Peak

Temperature
(◦C)

Second Main Peak
Temperature

(◦C)
H2 Consumption

[mmol/g] References

CeO2 443 - 504 Present Study

15Ni/CeO2 268 401 1086 Present Study

7.5Ni/CeO2 282 400 - [19]

1Co15Ni/CeO2 274 401 1267 Present Study

5Co15Ni/CeO2 300 426 1575 Present Study

3.75Co3.75Ni/CeO2 295 420 - [19]
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CO2-TPD profiles of the studied samples are shown in Figure 2. The profile of the
reference sample (15Ni/CeO2) presents three main peaks at 138 ◦C, 206 ◦C and 400 ◦C,
which can be ascribed to weak, medium, and strong basic sites, respectively. However,
in the presence of Co only two peaks can be observed. The total basicity and the weak,
medium, and strong basicity repartition are reported in Table 2.

Table 2. Comparison of basicity of the samples in present study.

Catalyst Weak Basic Sites
[µmol/g]

Medium Basic
Sites [µmol/g]

Strong Basic Sites
[µmol/g]

Total Basic Sites
[µmol/g]

CeO2 88 16 - 103
15Ni/CeO2 33 112 159 304

1Co15Ni/CeO2 67 212 - 279
5Co15Ni/CeO2 107 80 - 187
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Figure 1. H2-TPR profiles for calcined samples with different Co content.

It is worth mentioning that Co addition led to a decrease in the total basicity, while
the number of medium-strength basic sites increased in presence of 1 wt% Co and later
decreased with 5 wt% Co. This might indicate that the addition of excess Co may cover
some basic sites, resulting in an adverse effect on the CO2 chemisorption [25]. Addition-
ally, it is observed that desorption peak temperatures shift towards higher values with
the increase in Co content, suggesting a stronger interaction between CO2 and the ac-
tive sites [17]. When compared with the literature, a Ni-Co catalyst supported over an
hydrotalcite (HT1Co20Ni) [17] presented lower medium-strength basic sites compared
to the 1Co15Ni/CeO2 catalyst of this study. As the medium basic sites are the most rel-
evant for CO2 methanation [41], it can be concluded that, among the studied catalysts,
1Co15Ni/CeO2 presents the best basic properties.

In terms of textural properties (Table 3), assessed by N2 adsorption, the incorporation
of metals over ceria support led to a reduction of the total pore volume (VP) and the BET
surface area (SBET). When comparing the samples with 1 and 5 wt% Co, no significant
differences in terms of textural properties were found, suggesting that the variation of Co
loading did not induce a remarkable effect on these parameters.
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Figure 2. CO2-TPD profiles for reduced catalysts with different Co content.

Table 3. Porous volume and external surface area for studied catalysts.

Catalyst VP
(cm3 g−1)

SBET
(m2 g−1)

CeO2 0.19 258
Ni/CeO2 Reduced 0.14 127

Ni-1Co/CeO2 Reduced 0.13 108
Ni-5Co/CeO2 Reduced 0.13 107

In addition, XRD diffractograms of calcined and reduced catalysts are presented in
Figure 3. The presence of CeO2 diffraction lines (28.6, 33.1, 47.5, 56.4, 59.1, 68.1, 76.8 and
79.1◦; JCPDS card 81-0792 [19,42]) is confirmed in all of the catalysts after calcination and
reduction, indicating that Ce species nature was not affected by the reduction process.
Regarding Ni species, NiO diffraction lines were clearly identified in calcined Ni and
Co-Ni catalysts at 37, 43.2 and 62.9◦ (JCPDS card 78-0643) [19], while Ni0 phases were
present after reduction (44.7 and 51.8◦) [19]. We note that no Co3O4 diffraction lines
(JCPDS card 78-1970) were identified in Co-containing catalysts. This could be due to the
low metal loading used (1–5 wt%) or the presence of highly dispersed Co oxy-species
on the catalysts. Based on CeO2 diffraction lines, an average crystallite size of 5 nm
was determined (Table 4). Regarding NiO crystallite sizes, results are shown in Table 5
and suggest that Co incorporation leads to the formation of larger NiO crystallites after
calcination (increase of 5 nm when comparing to 15Ni/CeO2). Furthermore, for reduced
catalysts, the incorporation of 5 wt% Co led to the formation of smaller Ni0 crystallites
(32 nm, lower than the 38–39 nm obtained for 15Ni/CeO2 and 1Co15Ni/CeO2 reduced
catalysts; Table 4), indicating that Co could have an efficient effect in the prevention of
agglomeration processes in Ni0 particles. Furthermore, when compared to other studies, it
is worth mentioning that Benrabbah et al. [43] reported values of ~28 nm after reduction
for 15Ni/CeZrO2. The higher values obtained in this work could be due to the preparation
method, as these authors used a heating rate for calcination of 5 ◦C/min while in this study
this step was carried out by 10 ◦C/min.
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Figure 3. X-ray diffractograms of the studied catalysts.

Table 4. NiO and Ni0 crystallite sizes after calcination, reduction and reaction determined applying
Scherrer equation.

Catalyst dNiO (nm)Calcined dNi
0 (nm)Reduced dNi

0 (nm)spent

15Ni/CeO2 26 38 45

1Co15Ni/CeO2 31 39 38

5Co15Ni/CeO2 31 32 34

Table 5. Comparison between Ni-Co catalysts with different supports (conversion and selectivity are
all considered at 300 ◦C).

Catalyst Conversion
(%)

Selectivity
(%)

GHSV
(h−1) b

Ni0 Size
(nm)

Basicity
(W/M/S) c

(µmol/g)
Ref.

5Co15Ni/Al2O3 74 - 9554 - - - - [16]

5Co20Ni/Al2O3 85 - 9554 13 - - - [16]

10Co10Ni/Al2O3 74 - 9554 31 - - - [16]

3Co10Ni/Al2O3
a 15 100 10,000 3 - - - [25]

2Co8Ni/Al2O3
a 60 93 15,000 - - - - [44]

HT1Co20Ni 77 99 12,000 16 18 66 94 [17]

1Co15Ni/CeO2 82 98 52,000 39 67 212 0 Present study

5Co15Ni/CeO2 79 95 52,000 32 107 80 0 Present study
a Ordered mesoporous alumina; b Gas hourly space velocity; c Weak/Medium/Strong basic sites.
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TEM was then used to analyze the Ni0 dispersion on the support. Figure 4 shows
TEM micrographs of the catalysts from this work with different resolutions. Due to the low
contrast of the support, it was difficult to conclude on the distribution of Ni0 particles, so
that EDS-TEM technique was also carried out (Figure 5). Based on the obtained results, it
could be concluded that cobalt incorporation improves the dispersion of both Ni and Co
species. However, the calculation the particle size distribution was not possible due to the
low contrast between the metals and the support.

2.2. Catalytic Results

Figure 6a reports the CO2 conversion as a function of temperature for the studied
catalysts after a pre-reduction at 500 ◦C. One can note that, at low temperature (250 ◦C), the
15Ni/CeO2 catalyst shows the lower activity with a conversion of CO2 of 16%. However,
1Co15Ni/CeO2 and 5Co15Ni/CeO2 catalysts presents a significantly high conversion of
around 74% and 62%, respectively, at the same temperature. By increasing the temperature,
the conversion for 15Ni/CeO2 reaches 80%. On the other hand, the promoted catalysts
show higher conversions, up to 85%.
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Figure 6. (a) Conversion and (b) selectivity of Co-Ni/CeO2 catalyst in thermal CO2 methanation
with different Co loadings.

Moreover, it is worth noting that the highest conversion was exhibited at 350 ◦C by
1Co15Ni/CeO2. Figure 6b reports CH4 selectivity of all of the samples. For 15Ni/CeO2
and 1Co15Ni/CeO2 catalysts, the selectivity is close to 100% while for 5Co15Ni/CeO2 the
selectivity is around 94% at 250 ◦C and then with the increase in the temperature (350 ◦C)
it reaches 100%. According to the literature, at a high temperature, reverse water gas
shift starts to simultaneously occur with methanation. Then, methanation of CO begins,
resulting in a decrease in CH4 selectivity [5]. Additionally, it could be expected that the
catalyst with the higher H2 consumption has higher activity as H2 chemisorption plays
an important role in CO2 methanation [25]. However, CO2 conversion is much higher
for 1Co15Ni/CeO2 catalyst. Furthermore, there is another factor which has a remarkable
impact. According to the result of number of basic sites, with the increase in Co loading the
number of basic sites decreases, suggesting the covering of some sites by Co species, as
previously discussed [25]. On the other hand, the promotion of 15Ni/CeO2 catalyst with
1% Co enhanced the number of medium strength sites, which present a more beneficial
effect in the reaction [41], which could explain the more favorable performances exhibited
by 1Co15Ni/CeO2 catalyst.

After the tests, catalysts were analyzed by XRD (Figure 3), being only Ni0 diffraction
lines and no NiO phases observed. This indicates that no reoxidation of Ni0 species
occurred during the experiments. Regarding Ni0 crystallite sizes before and after the
reaction (Table 4), the differences (1–2 nm) are negligible for 1 and 5 wt% Co-containing
catalysts, which means that no remarkable sintering processes occurred. On the contrary, for
15Ni/CeO2 catalyst, an increase in the Ni0 crystallite size from 38 nm to 45 nm before and
after reaction, respectively, was observed. This indicates that Co presents a positive effect in
the prevention of Ni0 sintering processes. When comparing to literature for monometallic
Ni catalysts, Mikhail et al. [45] studied 15Ni/CeZrO2 catalysts and found out that Ni0 size
increased from ~24 to ~46 nm after reaction, which was attributed to the occurrence of
sintering. In other studies, regarding Ni-based zeolite catalysts from Guo et al. [46], an
increase in Ni0 particle size from ~14 to ~29 nm was observed for 10Ni/ZSM-5 before and
after reaction, being this again attributed to sintering effects. Consequently, the increase in
the Ni0 crystallite size verified for 15Ni/CeO2 catalyst is in accordance with the results in
the literature.

Spent samples were also analyzed by TGA (Figure 7). As observed, a mass variation
process was observed below 400 ◦C in the catalysts, corresponding to the loss of adsorbed
water in the samples. On the other hand, at higher temperatures (>600 ◦C), where coke
should be decomposed, the mass loss is negligible, indicating that no carbonaceous species
were deposited in the catalysts during the tests [47].



Catalysts 2022, 12, 36 8 of 13

Catalysts 2022, 12, x FOR PEER REVIEW 8 of 14 
 

 

1% Co enhanced the number of medium strength sites, which present a more beneficial 
effect in the reaction [41], which could explain the more favorable performances exhibited 
by 1Co15Ni/CeO2 catalyst. 

After the tests, catalysts were analyzed by XRD (Figure 3), being only Ni0 diffraction 
lines and no NiO phases observed. This indicates that no reoxidation of Ni0 species occurred 
during the experiments. Regarding Ni0 crystallite sizes before and after the reaction (Table 
4), the differences (1–2 nm) are negligible for 1 and 5 wt% Co-containing catalysts, which 
means that no remarkable sintering processes occurred. On the contrary, for 15Ni/CeO2 cat-
alyst, an increase in the Ni0 crystallite size from 38 nm to 45 nm before and after reaction, 
respectively, was observed. This indicates that Co presents a positive effect in the prevention 
of Ni0 sintering processes. When comparing to literature for monometallic Ni catalysts, Mi-
khail et al. [45] studied 15Ni/CeZrO2 catalysts and found out that Ni0 size increased from 
~24 to ~46 nm after reaction, which was attributed to the occurrence of sintering. In other 
studies, regarding Ni-based zeolite catalysts from Guo et al. [46], an increase in Ni0 particle 
size from ~14 to ~29 nm was observed for 10Ni/ZSM-5 before and after reaction, being this 
again attributed to sintering effects. Consequently, the increase in the Ni0 crystallite size ver-
ified for 15Ni/CeO2 catalyst is in accordance with the results in the literature. 

Spent samples were also analyzed by TGA (Figure 7). As observed, a mass variation 
process was observed below 400 °C in the catalysts, corresponding to the loss of adsorbed 
water in the samples. On the other hand, at higher temperatures (>600 °C), where coke 
should be decomposed, the mass loss is negligible, indicating that no carbonaceous spe-
cies were deposited in the catalysts during the tests [47]. 

 
(a) (b) 

Figure 7. TGA analysis with O2 for (a) Mass loss and (b) Heat loss of Co-Ni/CeO2 catalyst with dif-
ferent Co content. 

Furthermore, stability tests were performed for the studied samples, being the results 
presented in Figure 8. Tests were carried out at 250 °C for 5 h with the same conditions used 
in the tests performed at variable temperatures. It can be observed that in the first 20 min all 
samples lose some activity (<9%). However, afterwards, all of the catalysts became stable. 
Moreover, the stability tests showed that 1Co15Ni/CeO2 catalyst presented the higher activ-
ity. 

Figure 7. TGA analysis with O2 for (a) Mass loss and (b) Heat loss of Co-Ni/CeO2 catalyst with
different Co content.

Furthermore, stability tests were performed for the studied samples, being the results
presented in Figure 8. Tests were carried out at 250 ◦C for 5 h with the same conditions used
in the tests performed at variable temperatures. It can be observed that in the first 20 min
all samples lose some activity (<9%). However, afterwards, all of the catalysts became
stable. Moreover, the stability tests showed that 1Co15Ni/CeO2 catalyst presented the
higher activity.

Table 5 presents the results obtained for Co-Ni samples with different supports
under CO2 methanation conditions at 300 ◦C for different catalysts. When comparing
5Co15Ni/CeO2 catalyst to 5Co15Ni/Al2O3 [16], which has the same loadings for the active
metal and promoter, it can be seen that the conversion is higher by 5%, while GHSV for the
catalyst of this study is much higher than that used for the alumina support. This indicates
that 5Co15Ni/CeO2 catalyst presents a higher efficiency.

Moreover, for the 1Co15Ni/CeO2 catalyst, when comparing to HT1Co20Ni [17], higher
conversion with much higher GHSV can be observed. It is worth mentioning that when
comparing the basicity of these two catalysts, the number of basic sites (especially medium
ones) for the 1 wt% Co catalyst of this study is higher, which is in a good agreement with
the reported effect of the catalyst’s basicity on the performances [41].
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2.3. Plasma Assisted Catalytic Methanation

Figure 9a–c report the CO2 conversion as a function of voltage applied in keeping the
frequency constant and equal to 12.3 kHz. We note that for all the studied catalysts that the
conversion of CO2 and the methane selectivity increased with the increase in the voltage;
similarly to the thermal catalysis, as reported in the Figure 9a. the 15Ni/CeO2 catalyst
showed the lower activity with a conversion of CO2 of 16% at low voltage. However,
for higher voltage the conversion of CO2 for 15Ni/CeO2 catalyst is higher than the one
obtained for 5Co15Ni/CeO2 one.
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Furthermore, for all the range of studied voltage from 25 to 29 kV peak to peak which
corresponds to 12.5 kV to 14.5 kV peak voltage in Figure 9, the 1Co15Ni/CeO2 catalyst
exhibited higher conversion (Figure 9b). This conversion is of course increase with the
voltage. Finally, the higher conversion was found to be 75% at 29 kV. The conversion is also
linked with the temperature measured for the different operating conditions. Indeed, the
higher temperature was observed for the higher obtained conversion. It was also already
reported on promoted Ni/CeZrOx catalysts [39] that depending on the type of the promoter,
a modification in the basicity distribution could be observed. Thus, the investigation of
basic properties showed that the addition of the promoters (Gd, Y and Co) not only led to
an increase in the total number of basic sites of the catalyst, but also the number of moderate
basic sites which are reported to be the predominant ones for methanation reaction. In our
study, among the Co promoted materials the 1Co15Ni/CeO2 catalyst exhibited both the
higher number of basic sites but also the higher number of medium basic ones. Thus, in
agreement with thermal methanation, the basic sites presented on our materials play an
important role both in thermal and plasma assisted methanation reaction on Ni-Co/CeO2
catalysts. On the other hand, the synergistic effects are also an important factor regarding
different behavior of catalyst. Furthermore, the plasma can lower the activation barrier
which leads to a faster reaction occurrence. Finally, the plasma can also change the surface
reaction pathway with the presence of excited species which results in a change in the
transition state, as proposed elsewhere [24].

3. Materials and Methods
3.1. Catalysts Synthesis

Ni/CeO2 and Co-Ni/CeO2 catalysts with different cobalt loadings were prepared by
wet impregnation method. For this purpose, a certain amount of Ni nitrate hexahydrate
(Ni(NO3)2·6H2O) was dissolved in distilled water. Following this, a certain amount of
commercial cerium oxide (CeO2) and Co nitrate hexahydrate (Co(NO3)2·6H2O) added to
this solution. Then, the mentioned solution was stirred at 50 ◦C for 4 h and then dried at
100 ◦C overnight. Subsequently, the samples were calcined at 500 ◦C for 4 h in static air.
Table 6 reports the studied catalysts and summarize the nominal metal loadings.



Catalysts 2022, 12, 36 10 of 13

Table 6. Studied catalysts.

Catalyst Metals Loading (% wt)
(Co/Ni/CeO2)

15Ni/CeO2 0/15/85
5Co15Ni/CeO2 5/15/80
1Co15Ni/CeO2 1/15/84

3.2. Characterization Methods

Catalysts were characterized by temperature-programmed reduction with hydrogen
(TPR-H2), temperature-programmed desorption of CO2 (CO2-TPD), N2 adsorption, X-
ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric
analysis (TGA).

TPR-H2 experiments were carried out on a BELCAT-M equipped with a thermal
conductivity detector (TCD) to characterize catalysts’ reducibility (BEL Japan, Inc., Os-
aka, Japan). For this purpose, 60 mg of calcined sample were first degassed in helium
atmosphere at 100 ◦C for 130 min and then reduced in 5% H2/Ar mixture with a heating
rate of 10 ◦C/min starting from 100 ◦C to 700 ◦C. TPD-CO2 was performed after TPR-H2
run, using the same device. CO2 was adsorbed at 80 ◦C for 1 h from a mixture of 10%
CO2/He. Then, helium flow was applied for 15 min in order to desorb weakly adsorbed
CO2. Finally, the materials were heated from 80 ◦C to 800 ◦C in helium to analyze their
basic properties based on the desorption temperature. TPD profiles were deconvoluted into
three Gaussian peaks corresponding to weak, medium, and strong basic sites in agreement
with literature [25].

N2 adsorption was carried out for reduced catalysts on an Autosorb iQ equipment
(Quantachrome, Odelzhausen, Germany) at −196 ◦C. Catalysts (80–100 mg) were degassed
under vacuum prior to the experiments at 90 ◦C (1 h) and 350 ◦C (4 h). Total pore volumes
(VP) were measured at a relative pressure (p/p0) of 0.97 while surface areas (SBET) were
obtained by BET method.

XRD patterns were obtained from a Bruker AXS Advance D8 diffractometer combined
with a 1D detector (SSD 160), using a Ni filter (Bruxer, Oeiras, Portugal). The scanning range
was from 5 to 80◦ (2θ). The step time and step size were 0.5 s and 0.03◦, respectively. CeO2,
NiO and Ni0 average crystallite sizes were calculated in applying the Scherrer equation [47].
For this purpose, the considered diffraction lines were: 28.6, 33.1, 47.5 and 56.4◦ for CeO2;
37.3◦ and 43.3◦ for NiO; and 44.5 and 52.1◦ for Ni0.

High-Resolution TEM was performed using an JEOL JEM-2010 equipment with EDS
to characterize the deposited carbon and to obtain a precise analysis of the planes registered
at the nanometer scale (JEOL, Gmbh, Freising, Germany). The specimens were prepared
by dropwise addition of a colloidal solution in ethanol onto a copper grid covered with
amorphous carbon film [47].

Finally, TGA analysis were carried out using a Setsys Evolution TGA (Setaram instru-
ments, SPECANALITICA LDA, Cracavelos, Portugal). Experiments were carried out for
spent catalysts using a mass of 20 mg and heating the samples from 20 to 800 ◦C (heating
rate = 10 ◦C/min) under air flow [47].

3.3. Catalytic Runs
3.3.1. Thermal Experiments

CO2 methanation reaction was conducted in a tubular fixed-bed glass U-type reactor
(8 mm inner diameter) at atmospheric pressure with a K-type thermocouple inserted in
the catalyst bed. Before reaction, catalysts (15mg) were reduced in situ at 500 ◦C for 1 h
with a flow of 5%H2/Ar. Afterwards, a reaction was performed within the temperature
range of 250–450 ◦C, with each temperature being kept for 30 min to reach steady-state
operating conditions. The heating ramp between each step was 10 ◦C/min. An inlet flow
of 100 mL/min with the composition of CO2/H2/Ar = 1.5/6/2.5 was used, corresponding
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to a GHSV of 52,000 h−1. An online micro-chromatograph (Varian GC4900) equipped
with a TCD was used to analyze the reaction products. Additionally, stability tests were
performed at 250 ◦C for 5 h, using the same operating conditions of the reaction.

3.3.2. Plasma-Assisted Experiments

Plasma catalytic tests were also carried out. Prior to the experiments, catalysts were
reduced ex-situ in the presence of 100 mL/min 5%H2/Ar at 500 ◦C for 1 h. Subsequently,
15 mg of each catalyst was loaded in the DBD plasma reactor, being a cleaning step per-
formed by flowing hydrogen on the surface for 10 min at 12.3 kHz and 21 kV. The same
GHSV was kept for the tests, to allow a proper comparison with the results from the thermal
experiments. Quartz wool was placed on both sides of the catalyst to fix it, by preventing
its mobility. In this study, the feed gas entering the reactor was a H2/CO2 = 4/1 mixture.

In the plasma-catalytic hybrid process, the energy was supplied by a high voltage
30 kHz (MiniPuls 6) and voltages applied ranged from 21 kV to 29 kV (peak to peak). The
applied voltage was measured by a digital picoscope (series 3000, PicoTechnology) with a
probe (ELDITEST GE 3830). A capacitor (3.32 nF) was inserted between the reactor and the
grounded electrode to measure the power provided to the plasma reactor by Q-V Lissajous
method [48]. The temperature was measured by a temperature sensor (Pt 100) placed on
the outer surface of the quartz tube, in the middle of the ground electrode. The outlet flow
was analyzed by a gas chromatograph (Agilent MicroGC 490) equipped with a thermal
conductivity detector (TCD). The flowrate was measured with a bubble flowmeter.

For both thermal and plasma conditions, CO2 conversion (χCO2
) and CH4 selectivity

(SCH4(%)) were calculated by following Equations (1) and (2), respectively.

χCO2(%) =
FCO2inlet − FCO2outlet

FCO2inlet
· 100 (1)

SCH4(%) =
FCH4outlet

FCO2inlet − FCO2outlet
· 100 (2)

which Fi is the molar flow of each component calculated from the total flowrate and the
concentration of gases.

4. Conclusions

Ni-based catalysts are proper materials for CO2 methanation. Adding Co as a pro-
moter significantly increased the catalytic performances, such as conversion and methane
selectivity both in thermal catalytic system and DBD plasma-catalytic one. The increase
in such activity could be explained by the increase in the number of medium basic sites,
which are well known to be a key factor for CO2 methanation. The 1Co15Ni/CeO2 was the
catalyst which presented the higher number of medium basic sites and showed the best
performances both in plasma and non-plasma methanation reaction. A further investiga-
tion on electric parameters of the materials will be carried out in order to determine their
importance in the plasma assisted methanation reaction. Finally, a deep investigation on Ni
dispersion will be carried out by the means of CO chemisorption as reported elsewhere [49]
in order to avoid the H2 adsorption on Ceria support.
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