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Abstract: Mesoporous Cu-Ni/Al2O4 catalyst of high surface area (176 m2g−1) is synthesized through
a simple hydrothermal reconstruction process by using low-cost activated alumina as the aluminate
source without organic templates. The desired mesoporous structure of the catalyst is formed by
the addition of Cu2+ and Ni2+ metal ions in the gel solution of the activated alumina followed by
hydrothermal treatment at 70 ◦C and calcination at temperatures in the range of 600 to 800 ◦C. To
consider the environmental concern, we found the concentration of the Cu2+ and Ni2+ ion in the
residual filtrate is less than 0.1 ppm which satisfies the effluent standard in Taiwan (<1.0 ppm). The
effects of the pH value, hydrothermal treatment time, and calcination temperature on the structure,
morphology and surface area of the synthesized Cu-Ni/Al2O4 composites are investigated as well. In
addition, the Cu-Ni/Al2O4 catalyst synthesized at pH 9.0 with a hydrothermal treatment time of 24 h
and a calcination temperature of 600 ◦C is used for hydrogen production via the partial oxidation
of methanol. The conversion efficiency is found to be >99% at a reaction temperature of around
315 ◦C, while the H2 yield is 1.99 mol H2/mol MeOH. The catalyst retains its original structure and
surface area following the reaction process, and is thus inferred to have a good stability. Overall, the
hydrothermal reconstruction route described herein is facile and easily extendable to the preparation
of other mesoporous metal-alumina materials for catalyst applications.

Keywords: hydrothermal treatment; partial oxidation of methanol; hydrogen production

1. Introduction

Current hydrogen production methods include mainly dry reforming [1], methane
pyrolysis [2], steam reforming [3,4], partial oxidation [5,6], and autothermal steam reform-
ing [7]. Among them, steam reforming has the advantage of a high hydrogen production
yield. However, since it involves an endothermic reaction, it requires the continuous supply
of heat energy to initiate the reaction process and then enable it to proceed. Consequently,
partial oxidation is generally preferred since it is an exothermic process, and hence does
not require the supply of additional heat [8,9].

Many noble catalysts, such as palladium [10] and platinum [11], have been used for
the hydrogenation reaction of oxygen-containing molecules. However, such metals are
expensive, and hence the problem of developing alternative lower-cost metals as catalysts
for hydro-deoxygenation reactions has attracted great attention in the literature [12–14].
Auprêtre et al. [15] found that nickel catalysts provide many advantages for steam recombi-
nation reactions, including a high activity and a low cost. However, the nickel catalyst have
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only a short useable life due to rapid inactivation by the transformation of coke (i.e., carbon
deposition) on the active sites. Tu et al. [16] found that Cu/SiO2 catalysts have an improved
resistance to carbon deposition, and hence provide a longer life. Mariño et al. [17] used
an impregnation method to support Cu-Ni precursors on alumina and used the resulting
material as a catalyst in the production of hydrogen via the steam reforming of ethanol.
The experimental results showed that a conversion rate of around 55% was obtained at
a low reaction temperature of 300 ◦C. Hu et al. [18] synthesized nanoscale copper-cobalt
catalysts on Al2O3 supports for the hydrogenation of acetylene. The results showed that
the bimetallic catalyst improved the conversion compared to that achieved using pure Cu
or Co catalysts through a synergistic effect. Several other recent studies have similarly
shown that Cu-Ni bimetallic catalysts are more effective than single metal catalysts in low
temperature steam reforming processes [19,20]. The aforementioned studies show that
the bimetallic Cu-Ni catalysts with a synergistic effect improve the hydrogen conversion
rate compared to that achieved using pure Cu or Ni catalysts through a synergistic effect.
Here, the Ni-Cu catalysts can effectively promote the electronic effect between Ni and Cu,
and enhance the adsorption and activation abilities of the corresponding catalyst for the
reactant [21–23].

Commercial catalysts used for the production of hydrogen through the partial oxida-
tion of methanol (POM) route have a high conversion rate of around 93~98%. However,
they require a high reaction temperature of 500 ◦C, or more [24,25], and are thus expensive
for large-scale production. Thus, in the present study, the low-cost activated alumina are
used as the aluminate source, and the salts of the Cu, Ni metal precursors and aluminum
hydroxide are then restructured through a simple low-temperature hydrothermal treatment
process performed at 70 ◦C, Finally, the desired highly-dispersed porous Cu-Ni/Al2O4
composites with high-dispersity of the active sites are obtained from a high-temperature
calcination process. Since our proposed synthesis method does not produce wastewater,
which the concentration of the Ni2+ and Cu2+ ion in the residual filtrate is less than 0.1 ppm
which satisfies the effluent standard in Taiwan (<1.0 ppm), it can be used as a basis for
scaling up the production of catalysts. In addition, the proposed method not only avoid
the concern on the residual Cu2+ and Ni2+ ion contents in the filtrate, but also achieves
a hydrogen conversion efficiency of >99% at a low reaction temperature of 315 ◦C, and
therefore significantly reduces the cost of large-scale hydrogen production.

2. Results and Discussion
2.1. Effect of pH on Kinetics of Cu-Ni/Al2O4 Formation

For heterogeneous nucleation and growth of metal hydroxides on the porous matrixes,
the pH value is a key factor in determining the precipitation rate and extent via interaction
match of Cu2+ and Ni2+ precursors with aluminum hydroxide [26,27]. Accordingly, to
determine the optimal pH value for the synthesis of the present Cu-Ni/Al2O4 composites,
the preparation process was performed using a Ni:Cu:Al molar ratio = 1:10:100 at pH
values of 6.0 to 10.0. Table 1 shows the residual quantities of Cu2+ and Ni2+ in the filtrate
following the hydrothermal process under each of the pH conditions. For pH 6.0, pH
7.0 and pH 10.0, the concentrations of Cu2+ and Ni2+ exceed 1.0 ppm. Hence, it is inferred
that the pH conditions fail to bring about the complete precipitation and dispersion of Cu2+

and Ni2+ during the synthesis process. However, at pH 8.0 and pH 9.0, the concentrations
of Cu2+ and Ni2+ ions are so low that they cannot be detected. In other words, both metal
ion precursors combine fully with the aluminum hydroxide. Notably, the N.D. condition
of the Cu2+ and Ni2+ ions implies that both ions have concentrations of less than 0.1 ppm,
and therefore satisfy the effluent standard in Taiwan (<1.0 ppm) [28,29]. Thus, the residual
filtrate can be disposed of directly without the need for expensive and time-consuming
waste treatment processing.
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Table 1. Residual concentrations of copper and nickel ions in filtrate at different pH values.

pH [Cu2+] in Filtrate/ppm [Ni2+] in Filtrate/ppm

6.0 11.24 15.10

7.0 N.D.* 1.83

8.0 N.D. N.D.

9.0 N.D. N.D.

10.0 4.46 N.D.
* N.D. = Not Detected.

To investigate the structure of the as-prepared samples, all of the samples were calcined
at 600 ◦C and then analyzed by XRD. As shown in Figure 1A, the XRD patterns of the
products prepared at pH 6.0 and pH 10 contain sharp diffraction peaks at 2θ = 35 ◦ and
38 ◦ corresponding to CuO. By contrast, the samples prepared at pH 7.0–9.0 show broad
peaks at 2θ = 37 ◦ and 67 ◦ corresponding to Cu-Ni/Al2O4. In other words, within the pH
range of 7.0–9.0, the Cu2+ and Ni2+ ions can incorporate into the alumina structure with
high dispersibility and no self-aggregation of CuO and NiO precipitates occurs. Figure 1B
shows the nitrogen adsorption-desorption isotherms of the product synthesized at pH 9.0.
The isotherms indicate that the Cu-Ni/Al2O4 composite has a type IV characteristic with
H4 hysteresis loops (a sheet structure) and a BET surface area of 176 m2g−1. The TEM
image presented in Figure 2A shows that the Cu-Ni/Al2O4 material prepared at pH 6.0 has
a strong particulate aggregation morphology. However, for pH values in the range of pH
7 to pH 9 (Figure 2B–D), the products have a fine flake structure with mesopores. When the
pH value is further increased to 10.0, the material structure changes from a flake structure
to a rod-like structure with aggregation (Figure 2E). Based on these results above, a reaction
condition of pH 9.0 was used in all the following experiments designed to determine the
optimal synthesis conditions.

Catalysts 2022, 12, 32 3 of 14 
 

 

To investigate the structure of the as-prepared samples, all of the samples were 
calcined at 600 °C and then analyzed by XRD. As shown in Figure 1A, the XRD patterns 
of the products prepared at pH 6.0 and pH 10 contain sharp diffraction peaks at 2θ = 35 ° 
and 38 ° corresponding to CuO. By contrast, the samples prepared at pH 7.0–9.0 show 
broad peaks at 2θ = 37 ° and 67 ° corresponding to Cu-Ni/Al2O4. In other words, within 
the pH range of 7.0–9.0, the Cu2+ and Ni2+ ions can incorporate into the alumina structure 
with high dispersibility and no self-aggregation of CuO and NiO precipitates occurs. 
Figure 1B shows the nitrogen adsorption-desorption isotherms of the product synthesized 
at pH 9.0. The isotherms indicate that the Cu-Ni/Al2O4 composite has a type IV 
characteristic with H4 hysteresis loops (a sheet structure) and a BET surface area of 176 
m2g−1. The TEM image presented in Figure 2A shows that the Cu-Ni/Al2O4 material 
prepared at pH 6.0 has a strong particulate aggregation morphology. However, for pH 
values in the range of pH 7 to pH 9 (Figure 2B–D), the products have a fine flake structure 
with mesopores. When the pH value is further increased to 10.0, the material structure 
changes from a flake structure to a rod-like structure with aggregation (Figure 2E). Based 
on these results above, a reaction condition of pH 9.0 was used in all the following 
experiments designed to determine the optimal synthesis conditions. 

Table 1. Residual concentrations of copper and nickel ions in filtrate at different pH values. 

pH [Cu2+] in Filtrate/ppm [Ni2+] in Filtrate/ppm 
6.0 11.24 15.10 
7.0 N.D.* 1.83 
8.0 N.D. N.D. 
9.0 N.D. N.D. 

10.0 4.46 N.D. 
* N.D. = Not Detected. 

 
Figure 1. (A) XRD patterns of the Cu-Ni/Al2O4 samples synthesized under different pH conditions, 
and (B) nitrogen adsorption-desorption isotherms of the Cu-Ni/Al2O4 samples synthesized under 
pH 9.0. (Note that calcination temperature is 600 °C for all samples). 

30 35 40 45 50 55 60 65 70
0

pH=10

pH=9

pH=8

pH=7

pH=6
CuO
CuAl2O4

♦♦

XR
D

 In
te

ns
ity

2θ / degree

♦

0.0 0.2 0.4 0.6 0.8 1.0

150

300

Vo
lu

m
e 

ad
so

rb
ed

 / 
cm

3 g-1
, S

TP

P/P0

CuNi/Al2O4

CuO
A B

Figure 1. (A) XRD patterns of the Cu-Ni/Al2O4 samples synthesized under different pH conditions,
and (B) nitrogen adsorption-desorption isotherms of the Cu-Ni/Al2O4 samples synthesized under
pH 9.0. (Note that calcination temperature is 600 ◦C for all samples).
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2.2. Optimization of Hydrothermal Treatment Period and Formation Mechanism of Cu-Ni/Al2o4
Composite

In the synthesis route proposed in the present study, hydrothermal processing is per-
formed to improve the structural stability and dispersion of active sites in the synthesized
mesoporous Cu-Ni/Al2O4 products through a dissolution and reconstruction process.
Figure 3 shows the XRD patterns of the Cu-Ni/Al2O4 materials synthesized for different
hydrothermal treatment times of 0 to 72 h followed by calcination at 600 ◦C. Without
hydrothermal treatment, the XRD pattern of the calcined Cu-Ni/Al2O4 material contains
two distinct peaks corresponding to CuO at 2θ = 35◦ and 38◦, respectively. However, for the
hydrothermally treated samples, all the XRD patterns show the existence of the CuAl2O4
amorphous phase with characteristic broad peaks at 2θ = 37◦ and 67◦. In other words,
these results confirm that hydrothermal reaction provides enough energy for the structural
reconstruction between the metal hydroxides and the Al(OH)3 support. In particular, the
Cu2+ and Ni2+ ions can introduce into the Al(OH)3 structure and form the mesoporous
Cu-Ni/Al2O4 composition, as shown in reaction formula (1). In addition, part of the
aluminum hydroxide is dehydrated during the hydrothermal treatment and forms AlOOH
(see reaction formula (2). Finally, after calcination, the aluminum hydroxide and AlOOH
are dehydrated to form γ-Al2O3 (see reaction formula 3) [30].

Cu(OH)2 + 2Al(OH)3 
 CuAl2O4 + 4H2O (1)

Al(OH)3 
 AlOOH + H2O (2)

Al(OH)3 + AlOOH→ Al2O3 + 2H2O (3)
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Figure 3. XRD patterns of the Cu-Ni/Al2O4 samples hydrothermally treated for different times.
(Note that all samples were obtained from a calcination at 600 ◦C).

Figure 4 presents TEM images of the products synthesized using hydrothermal treat-
ment times of 0 to 48 h and then calcined at 600 ◦C. The product calcined without hy-
drothermal processing has a long (400–500 nm) rod-like morphology (Figure 4A). However,
following hydrothermal processing for 12 h, the rod-like structure is replaced with a short,
sheet-like morphology (see Figure 4B). After a longer processing time of 24 h, the mor-
phology transforms to a pure sheet-like structure with no obvious particle aggregation
(Figure 4C). No significant change in the structure is observed at a longer hydrothermal
processing time of 48 h (Figure 4D). Thus, for experimental convenience, and a lower cost,
the optimal hydrothermal reaction time was chosen as 24 h for the following experiments.

Figure 5A shows the XRD patterns of the alumina and copper hydroxide/nickel
hydroxide/alumina mixture, respectively, after hydrothermal reaction. For the alumina
material, the XRD pattern shows distinct diffraction peaks corresponding to Al(OH)3 and
AlO(OH). Hence, it is inferred that the alumina has a high-crystalline structure following
hydrothermal treatment. By contrast, the XRD pattern of the copper hydroxide/nickel
hydroxide/alumina mixture shows weaker diffraction peak intensities of Al(OH)3 and
AlO(OH). Moreover, the related peaks are also significantly broader. In other words, the
addition of Cu2+ and Ni2+ ions to the alumina mixture prompts a structural reorganization
of Al(OH)3 and suppresses the formation of high-crystallinity aluminum oxide, copper
oxide and nickel oxide phases in the hydrothermal process. The TEM image in Figure 5B
shows that, in the absence of metal ion addition, the calcination process prompts the
formation of γ-alumina with a bulk stacked structure in a micrometer scale. By contrast,
for the product with Cu2+ and Ni2+ ion addition, the calcination process transforms the
alumina and the copper and nickel hydroxides into a porous Cu-Ni/Al2O4 structure with
a sheet-like morphology, as shown in Figure 4C.
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The results presented above suggest that the formation mechanism of the present Cu-
Ni/Al2O4 materials. In particular, the activated alumina support dissolves into Al(OH)3
and recrystallizes during the hydrothermal reaction process, and the Cu2+, Ni2+ and
Al(OH)3 then react to form a sheet-like structure under an appropriate pH environment
of 7 to 9. At higher pH values (e.g., pH 10), the self-aggregation reaction of the Cu2+ and
Ni2+ ions is too fast to combine with the Al(OH)3. Consequently, the final product with a
rod-like morphology contains a mixture of the high-crystallinity CuO, NiO and alumina.
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2.3. Effect of Calcination Temperature on Cu-Ni/Al2O4 Composite and Its POM Application

The Cu-Ni/Al2O4 composites synthesized with a Ni:Cu:Al molar ratio of 1:10:100 at
pH value of 9.0, a hydrothermal treatment temperature of 70 ◦C, and a hydrothermal
treatment time of 24 h were found to have a high specific surface area (176 m2g−1) and good
metal dispersibility. However, for catalysis applications, thermal treatment is required to
achieve the essential crystallinity and textile properties [31,32]. Accordingly, the synthesized
composites were further calcined at temperatures in the range of 600 to 800 ◦C in order
to identify the optimal calcination temperature for POM applications. The XRD patterns
presented in Figure 6A show that as the calcination temperature increases from 600 to
800 ◦C, the XRD intensity of the characteristic Cu-Ni/Al2O4 peaks increases. In other
words, the crystallinity increases with an increasing calcination temperature. In addition,
no characteristic XRD peaks ascribed to the NiO or CuO are observed, which confirms
that both metal precursors are well dispersed in the alumina support without aggregation.
Figure 6B shows that these three samples calcined at different temperatures have absorption
peaks in the wavelength range of 1200 to 1700 nm, which implies that the Cu2+ ions have
a tetrahedral coordination in the crystalline phase of the prepared Cu-Ni/Al2O4 [33,34].
The absorbance intensity increases with an increasing calcination temperature that is hence
consistent with the XRD finding of a greater crystallinity at a higher calcination temperature.
Referring to Figure 6C, the composites calcined at temperatures of 600, 700 and 800 ◦C are
found to have specific surface areas of 176 m2g−1, 131 m2g−1 and 82 m2g−1, respectively.
The corresponding pore size varies from ca. 5 nm (600 ◦C) to ca. 11 nm (800 ◦C), as shown
in Figure 6D. Overall, the results presented in Figure 6 confirm that the surface area and
pore size of the Cu-Ni/Al2O4 catalyst can be readily controlled by adjusting the calcination
temperature. Moreover, the results indicate that a calcination temperature of 600 ◦C is
preferred for the POM applications due to the higher specific surface area and suitable
pore size.
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Figure 7 presents a schematic illustration of the POM reaction system used in the
present study to produce hydrogen. For detailed experimental set up, please refer to
Figure S1 (A schematic of the experimental system.) in supporting information. The POM
reaction formula is as follows:

CH3OH(aq) +
1
2

O2(g) 
 2H2(g) + CO2(g)∆H = −192.6 (KJ mol−1) (4)Catalysts 2022, 12, 32 9 of 14 
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Figure 7. Schematic illustration of POM arrangement.

Temporal distributions of reaction temperature, MeOH conversion, H2, CO, CO2, and
CH4 concentrations for POM was shown in Figure 8. Furthermore, Table 2 compares the
POM data for the present Cu-Ni/Al2O4 catalyst to those of two commercial platinum
catalysts (Pt 0.2 wt% supported on Al2O3 & on BN-Al2O3 (boron nitride modified alumina),
Green Hydrotech Inc. Taoyuan, Taiwan). As shown, the Pt/Al2O3 catalyst has a conver-
sion rate of 93.5%, a hydrogen yield of 1.22 mol H2/mol MeOH, and a minimal reaction
temperature of 526 ◦C. Moreover, the catalyst has a carbon dioxide selectivity of 6.20%
and a carbon monoxide selectivity of 5.40%. For the Pt/BN-Al2O3 catalyst, the conversion
rate is increased to 98.35%, the selectivity of carbon dioxide is increased to 6.6%, and the
selectivity of carbon monoxide is reduced to 5.10%. However, the hydrogen yield is also
reduced to 1.18 mol H2/mol MeOH, while the required reaction temperature is increased
to 540 ◦C. For the present Cu-Ni/Al2O4 catalyst, the partial oxidation reaction requires a
temperature of just 315 ◦C to proceed under equilibrium conditions. Notably, the methanol
conversion rate reaches >99%, while the hydrogen yield increases to 1.99 mol H2/mol
MeOH. In addition, the carbon dioxide/carbon monoxide ratio is higher than those of the
two commercial catalysts. In addition to the production of CO and CO2, all three catalysts
produce CH4 in accordance with the reaction.

CO(g) + 3H2(g) 
 CH4(g) + H2O(g) ∆H = −205.9 (KJ mol) (5)
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Figure 8. Temporal distributions of (A) MeOH conversion and temperature; (B) H2, CO, CO2, and
CH4 concentrations for POM.

Table 2. POM test data for different catalysts.

Sample GHSV
(h−1) O2/C CO2 (%) CO (%) CH4

(ppm)
H2
(%)

CH3OH
Conversion

(%)

H2 Yield
(mol/mol)

Temp
(◦C)

Pt/Al2O3 10,000 0.60 6.2 5.4 1887 14.48 93.5 1.22 526

Pt/BN-Al2O3 10,000 0.60 6.6 5.1 1784 13.50 98.4 1.18 540

Cu-Ni/Al2O4 10,000 0.60 9.1 3.3 290 20.46 100 1.99 315

The CH4 production of the Cu-Ni/Al2O4 catalyst (290 ppm) is lower than that of
either the Pt/Al2O3 catalyst (1887 ppm) or the Pt/BN-Al2O3 catalyst (1784 ppm).

The TEM images presented in Figure 9A,B show the morphologies of the Cu-Ni/Al2O4
composite before and after the catalytic reaction process, respectively. It is clearly seen that
no obvious change occurs in the morphology during the reaction process that indicates
the reacted Cu-Ni/Al2O4 composite retains a distinct mesoporous structure. The XRD
patterns in Figure 9C show that the Cu-Ni/Al2O4 composites have characteristic peaks at
2θ = 37◦ & 67◦ both before and after the reaction process, but the reacted sample has
narrower peaks. The nitrogen adsorption and desorption curves presented in Figure 9D
show that the porosity of the Cu-Ni/Al2O4 catalyst do not undergo significant decrease
during the reaction process. For example, the specific surface area reduces only from
176 m2g−1 to 135 m2g−1. Overall, the results presented in Figure 9 indicate that the
Cu-Ni/Al2O4 catalyst has good stability during the POM reaction.
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plots and (D) nitrogen adsorption-desorption isotherms of materials shown in (A,B).

3. Materials and Methods
3.1. Preparation of the Cu-Ni/Al2O4 Composite

Typically, 1.5 g of copper (II) nitrate pentahemihydrate (Cu(NO3)2 2.5H2O, >98%, J. T.
Baker) and 0.196 g of nickel (II) nitrate hexahydrate (Ni(NO3)2 6H2O, >98.5%, Merck) were
dissolved in 100.0 mL of DI water. 2.53 g of activated alumina (Al2O3, Sigma-Aldrich) was
separately dispersed in 80.0 mL of DI water. The copper and nickel ion solution was then
added to the alumina solution. The pH value of the mixed gel solution was adjusted in
the range of 6.0 to 10.0 through the addition of appropriate quantities of 2.0 M NaOH(aq)

(sodium hydroxide 50 wt% in aqueous solution, AR®, Macron Fine Chemicals™). After
stirring for 2.0 h at 40 ◦C, the gel solution was hydrothermally treated at 70 ◦C for different
periods of 0, 3, 12, 24 and 72 h, respectively. Finally, the desired catalyst was obtained by
filtration, drying and calcination at temperatures in the range of 600 to 800 ◦C.

3.2. Characterizations

The Cu2+ and Ni2+ ion contents in the various products were measured by atomic
absorption spectroscopy on an iCE 3300 Atomic Absorption Spectrometer (Thermo Fisher
Scientific Inc., Taipei, Taiwan). The XRD patterns were taken with an X-ray diffractometer
(Rigaku MultiFlex) (40 kV, 20 mA) using Cu Kα radiation. The N2 sorption measurements
were acquired using a surface area analyzer (Micromeritics TriStar II). In addition, the
transmission electron microscope (TEM) observations were performed using a Hitachi
H7500 microscope (80 kV). Finally, the interactions of the metal ions with the alumina
matrix in the various samples were measured using a diffuse reflectance ultraviolet visible
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spectroscope (DR-UV-vis, Hitachi U-4100). The gas analysis unit included a GA (gas
analyzer, Fuji ZRJF5Y23-AERYR-YKLYYCY-A) and a GC (gas chromatography, SRI 310C
TCD) to measure the volumetric concentrations of CO, CO2, CH4, and H2.

3.3. Catalytic Tests

The POM reaction experiments were performed using a methanol flow rate of
1 mL min−1, an O2/C feed ratio of 0.6, and a gas hourly space velocity (GHSV) of 10,000 h−1.
Based on the flow rate and concentrations of CO, CO2, and CH4, methanol conversion rate
can be calculated by the following Equation (6):

CH3OH conversion (%) =

( .
nCO2,out +

.
nCO,out +

.
nCH4,out

.
nCH3OH,in

)
× 100 (6)

where
.
n stands for the molar flow rate (mol min−1) and the subscripts “in” and “out”

designate inflow and outflow, respectively. The H2 yield can be estimated from the molar
flow rate of hydrogen (mol min−1) and

.
nH2 by the following Equation (7):

H2 yield (mol/mol CH3OH) =

( .
nH2

.
nCH3OH

)
(7)

4. Conclusions

This study has presented a simple and green process for the preparation of the meso-
porous Cu-Ni/Al2O4 composite material with a large surface area (>150 m2g−1). It has been
shown that the mesoporous Cu-Ni/Al2O4 with a sheet-like morphology can be obtained
at pH values in the range of 8.0~9.0 through hydrothermal treatment at 70 ◦C for 24 h
followed by calcination at 600 ◦C. In line with the concept of green chemistry, the residual
Cu2+ and Ni2+ ion concentrations in the filtrate solution following hydrothermal treatment
are less than 1.0 ppm, and are hence consistent with the Taiwan effluent standard. Without
the production of wastewater, this green synthetic method is suitable for the preparation
of mesoporous Cu-Ni/Al2O4 catalysts. Finally, in the POM production of hydrogen, the
Cu-Ni/Al2O4 catalyst achieves a high conversion efficiency (>99%) at a low reaction tem-
perature of 315 ◦C. Overall, the synthesis method proposed herein provides a facile, green
and scalable route for the production not only of Cu-Ni/Al2O4 catalysts, but also other
mesoporous metal-alumina catalysts.
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