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Abstract: A new class of axial-chiral biisoquinoline N,N′-dioxides was evaluated as catalysts for
the enantioselective hydrosilylation of acyl hydrazones with trichlorosilane. While these catalysts
provided poor to moderate reactivity and enantioselectivity, this study represents the first example of
the organocatalytic asymmetric reduction of acyl hydrazones. In addition, the structures and energies
of two possible diastereomeric catalyst–trichlorosilane complexes (2a–HSiCl3) were analyzed using
density functional theory calculations.

Keywords: Lewis base catalysis; trichlorosilane; hydrosilylation; hydrazone; computational chemistry

1. Introduction

The chiral hydrazine is an important structural motif found in pharmaceuticals, agro-
chemicals, natural products, synthetic chiral catalysts, etc. and the catalytic asymmetric
reduction of readily available, bench-stable acyl hydrazones provides direct access to such
chiral hydrazine derivatives in an enantio-enriched form [1–24]. In 1992, Burk and Feaster
reported the first example of the catalytic enantioselective hydrogenation of acyl hydrazones
by employing a rhodium/DuPhos catalyst [13]. Since this initial breakthrough, many excel-
lent transition metal-catalyzed methods for the asymmetric reduction of hydrazones have
been developed. The majority of these examples utilized rhodium-based catalysts [3–13]
but palladium- [14–17], iridium- [18], ruthenium- [19], nickel- [20–23] and cobalt- [24] based
catalysts are also reported (Scheme 1, Equation (1)). While their reaction scopes are impres-
sive, no metal-free ‘green’ counterpart (i.e., organocatalysis method) has been reported to
the best of our knowledge, except for two scattered examples. There is a patent literature
that described one example of the asymmetric hydrosilylation of a tosylhydrazone with
trichlorosilane catalyzed by a chiral N-formylpyrrolidine (4-methylbenzensulfonic acid 2-
(1-phenylethylidene)hydrazide was reduced to the corresponding hydrazine in 94% yield
with 36% ee) [25]. The other example is reported by Wang and Sun [26]. Here, it was
the trichlorosilane-mediated reductive amination of acetophenone with phenylhydrazine
catalyzed by a chiral bis-sulfinamide, which afforded the corresponding 1,1-disubstituted
hydrazine in 93% yield with 74% ee.

Among the reported reducing agents that are amenable for organocatalysis (selected
reviews; [27–29]), trichlorosilane is particularly attractive because it is a readily available,
inexpensive and easy-to-handle liquid (selected reviews; [30–32]). Furthermore, it only pro-
duces innoxious NaCl and SiO2 as by-products upon quenching with aqueous NaOH or
NaHCO3 solutions, which are easily separable from the reaction products (i.e., organic com-
pounds). Trichlorosilane reversibly forms a hypervalent silicon complex with Lewis-bases
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that is believed to be the active reducing species. Since Matsumura’s seminal work, that em-
ployed N-formylproline-derived catalysts [33,34], and the milestone achieved by Malkov and
Kočovský with their N-methyl-L-valine-based catalysts [35–37], numerous chiral Lewis-base
catalysts have been reported for the asymmetric hydrosilylation of ketimines with trichlorosi-
lane (selected reviews; [30–32], selected references; [38–45]). While the majority of these
catalysts are amide-based Lewis-bases, other kinds of Lewis-bases are also reported, which
includes pyridine N-oxides (selected references; [46–51]), phosphine oxides (selected refer-
ences; [52–54]), and sulfinamides (selected references; [55,56]). Despite a plethora of reports
in this area, the Lewis-base-catalyzed trichlorosilane-mediated reduction of ketimines cur-
rently remains limited to N-aryl and alkyl protected ones (Scheme 1, Equation (2)). The lack
of acyl hydrazones as substrates for this method is presumably because their N–C=O unit
could possibly bind trichlorosilane competitively with amide-based catalysts to produce
racemic products. As a matter of fact, the only examples of the hydrazones that were
enantioselectively reduced with chiral Lewis-bases and trichlorosilane are N-tosyl- and
N-phenylhydrazones as mentioned above [25,26]. In this context, we became interested
in evaluating axial-chiral 3,3′-triazolyl biisoquinoline N,N′-dioxide catalysts [57] for the
hydrosilylation of acyl hydrazones with trichlorosilane (Scheme 1, Equation (3)). Herein
describes our preliminary investigations in this area.
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Scheme 1. Catalytic asymmetric reduction of C=N bonds.

2. Results and Discussion

We recently developed the modular method to synthesize axial-chiral 3,3′-triazolyl bi-
isoquinoline N,N′-dioxides from readily available triazoles and optically pure 3,3′-dibromo-
biisoquinoline N,N′-dioxide [57] as part of our longstanding interests in developing new
chiral Lewis-bases [58–62]. Since this new class of catalysts was found capable of activating
trichlorosilane at relatively low temperatures, we envisioned that they might be able to
catalyze the reduction of acyl hydrazones under conditions where no background reaction
would take place. We set out on our investigation by employing benzoyl hydrazone 1a as a



Catalysts 2021, 11, 1103 3 of 10

model substrate (Scheme 2). To our delight, the background reaction was found negligible
at −40 ◦C, and catalyst 2a provided hydrazine (R)-3a in 48% yield with 53% ee (entries 1
and 2). Next, we looked at several solvents that are commonly used for trichlorosilane-
mediated reactions. Chloroform provided the product with a lower yield but with a slightly
higher enantioselectivity (34% yield, 66% ee). Acetonitrile gave 3a in a comparable yield but
with a lower ee of 32%. The reaction in tetrahydrofuran afforded the opposite enantiomer
(S)-3a with a much lower yield and selectivity (entry 5). Overall, dichloromethane was
found optimum. We tested with twice as much solvent since benzoyl hydrazone 1a was
not fully dissolved under the reaction conditions (entry 6). However, it did not improve the
result. Previously, we found that 4 Å molecular sieve was an effective acid scavenger for
adventitious HCl in trichlorosilane [63], but its use did not positively impact the outcome
in the present case (entry 7). The use of 3.0 equivalent of trichlorosilane did not improve
the yield, either (entry 8). As the protecting groups on hydrazones are known to influence
their reactivities and enantioselectivities in many cases (e.g., see; [19]), we evaluated the
Boc and Cbz protected hydrazones (1b and 1c in entries 9 and 10, respectively). While
enantiomeric excesses of the corresponding products were slightly higher than that of the
benzoyl counterpart, both Boc and Cbz protecting groups adversely affected the yields.
Since the C=O unit of Boc or Cbz group is more Lewis basic than that of the benzoyl
counterpart, we tested a less Lewis basic hydrazone (1d). However, the yield decreased to
14% albeit with a slightly higher enantioselectivity (entry 11). Overall, the present method
was found to be quite sensitive to reaction solvents and the hydrazone protecting groups.
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Next, we evaluated different triazolyl groups on the biisoquinoline that are expected
to play important roles on the catalyst’s reactivity and selectivity (Scheme 3, entries 1–
4). Catalyst 2a was clearly superior to the other three catalysts (2b–d) in terms of their
reactivity. Catalyst 2c was more enantioselective than others, albeit with a low yield.
These results indicate that the reactivity and selectivity of this new class of catalysts can
be tuned by changing the triazolyl groups. We also compared these triazolyl catalysts
to conventional 3,3′-substituted biisoquinoline N,N′-dioxides (entries 5 and 6). To our
surprise, neither 2e nor 2f promoted the reaction although 2f was as reactive as 2b–d for
the hydrosilylation of an N-phenyl ketimine with trichlorosilane [57]. Nonetheless, these
results clearly demonstrated that this new class of axial-chiral biisoquinolines is indeed
complementary to the existing Lewis-base catalysts and bode well for the development of
their applications.

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 11 
 

 

 
Scheme 3. Evaluation of 3,3′-substituents of axial-chiral biisoquinoline catalysts. 

As we determined the basic reaction parameters, we proceeded to evaluate the extent 
to which the present catalytic system could enantioselectively promote the hydrosilyla-
tion of various benzoyl hydrazones with trichlorosilane (Scheme 4). To our surprise, a 
para-methyl substitution (3e)—which is a minimal change from the model substrate 
(3a)—had a detrimental effect on the chemical yield while the corresponding meta-substi-
tution (3f) did not. An ortho-methyl substitution (that is known to push the aromatic ring 
out of conjugation with a C=N bond) completely shut down the reaction (3g). Eventually, 
it was gleaned that the para-substitutions have adverse effects on the reactivity but not 
much on the enantioselectivity regardless of their electronic nature (3e, 3h–m) (these en-
antioselectivities are approximately the same). A heteroaromatic hydrazone was moder-
ately less reactive and selective than the model substrate (3n). Although an ethyl group at 
the C=N bond is in general expected to lead to an increased steric demand in the TS, it did 
not affect the reactivity in the present case (3o). It is noteworthy that a cyclohexyl coun-
terpart provided the opposite sense of enantioselection to the model substrate (3p). Dif-
ferentiation of the two similar alkyl groups franking the C=N bond was difficult by the 
present catalytic system (3q). Unreacted hydrazones and corresponding ketones were the 
major components of the crude reaction mixtures besides the desired products, and no 
significant amounts of by-products were observed for 1a–1q. An α,β-unsaturated hydra-
zone was not a viable substrate for this method as the conjugate reduction took place (3r) 
[64]. 
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As we determined the basic reaction parameters, we proceeded to evaluate the extent
to which the present catalytic system could enantioselectively promote the hydrosilylation
of various benzoyl hydrazones with trichlorosilane (Scheme 4). To our surprise, a para-
methyl substitution (3e)—which is a minimal change from the model substrate (3a)—had
a detrimental effect on the chemical yield while the corresponding meta-substitution (3f)
did not. An ortho-methyl substitution (that is known to push the aromatic ring out of
conjugation with a C=N bond) completely shut down the reaction (3g). Eventually, it was
gleaned that the para-substitutions have adverse effects on the reactivity but not much
on the enantioselectivity regardless of their electronic nature (3e, 3h–m) (these enantios-
electivities are approximately the same). A heteroaromatic hydrazone was moderately
less reactive and selective than the model substrate (3n). Although an ethyl group at the
C=N bond is in general expected to lead to an increased steric demand in the TS, it did not
affect the reactivity in the present case (3o). It is noteworthy that a cyclohexyl counterpart
provided the opposite sense of enantioselection to the model substrate (3p). Differentiation
of the two similar alkyl groups franking the C=N bond was difficult by the present catalytic
system (3q). Unreacted hydrazones and corresponding ketones were the major components
of the crude reaction mixtures besides the desired products, and no significant amounts
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of by-products were observed for 1a–1q. An α,β-unsaturated hydrazone was not a viable
substrate for this method as the conjugate reduction took place (3r) [64].
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We also tested a 1.0 mmol scale reaction with the model substrate. To our delight, it
provided essentially the same result (Scheme 5), demonstrating a potential robustness of
the method. Furthermore, catalyst 2a was quantitatively recovered after a flash column
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chromatography on silica gel (see Supplementary Materials for details). The recovered
catalyst promoted the model reaction (1a on 0.25 mmol scale) with no loss in reactivity and
enantioselectivity.
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The structure of the active reducing species generated from a chiral catalyst and HSiCl3
is considered to play a central role for the enantioselectivity of a reaction. Even with notable
advances made in this area (selected references; [35–45]), it remains largely elusive and
significantly challenging to control the relative populations and reactivities of diastereomeric
reducing species that are reversibly produced from a chiral Lewis-base and trichlorosilane. C2-
symmetric 2a and HSiCl3 can give rise to two diastereomeric complexes that are expected to
have different enantioselectivities (as long as 2a acts as a bidentate Lewis-base). Therefore, the
binding geometry of 2a to HSiCl3 was investigated computationally with the aim of shedding
some light on the structure of the active reducing species. To our delight, 2a was found to bind
to HSiCl3 through its two oxygen atoms (i.e., a C2-symmetric bidentate ligand), generating
two diastereomeric complexes (Figure 1). Complex 1 was found to be 1.91 kcal/mol lower in
energy than the complex 2. The analysis of their electrostatic potentials revealed an anion–
π-type interaction between the hydrogen atom in complex 1 or one of the chlorine atoms
in complex 2 and the phenyl ring. It should be mentioned that a pileup of electron density
occurs at the peripheral atoms of a hypervalent silicon complex of this kind [59,65,66]. This
anion–π-type interaction appears to effectively lock the conformation of the benzyl group
at least at the ground state, leading to a well-defined chiral pocket around the hypervalent
silicon atom. This computationally identified non-covalent attractive interaction could offer a
possible basis to rationalize why 2a (benzyl) was as enantioselective as 2d (1-adamantyl), and
why 2c (benzhydryl) was substantially more enantioselective than 2d (53% ee, 54% ee and
74% ee, respectively; Scheme 3).
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3. Conclusions

Axial-chiral 3,3′-triazolyl biisoquinoline N,N′-dioxides offer potential for functioning
as effective catalysts for the asymmetric hydrosilylation of acyl hydrazones with trichlorosi-
lane. Since catalyst’s triazolyl units indeed tuned the reactivity and enantioselectivity of
the reaction and our modular synthesis allows ready access to a variety of 3,3′-triazolyl
biisoquinoline N,N′-dioxides, potential for the identification of more effective catalysts
than those presented herein clearly exits.
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