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Abstract: Acyclic diene metathesis (ADMET) copolymerization of dianhydro-D-glucityl bis(undec-
10-enoate) (M1) with 1,9-decadiene (DCD) using ruthenium-carbene catalyst, RuCl,(IMesH;)(CH-
2-O'Pr-C¢Hy) [IMesH, = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene, HG2], afforded un-
saturated polyesters (Mn = 9300-23,400) under the optimized conditions. Subsequent tandem
hydrogenation (H; 1.0 MPa, 50 °C) with the addition of a small amount of Al;O3 resulted in the
saturated polymers having a melting temperature of 71.7-107.6 °C, depending on the molar ratio of
M1 and DCD.

Keywords: olefin metathesis; polymerization; ruthenium catalyst; biobased; tandem synthesis;
acyclic diene metathesis; copolymerization; hydrogenation

1. Introduction

Development of advanced polymers from renewable feedstocks, as an alternative to
petroleum-based polymers, attracts considerable attention, especially in terms of green
sustainable chemistry [1-7]. Polyesters from bioderived monomers have been recognized
as an important subject [7-12], and plant oils such as triglycerides of fatty acids are known
as useful feedstock for synthesis of the aliphatic polyesters [7,9-12]. Two pathways, (i) poly-
condensation of the dicarboxylic acids with diols (mostly derived from the diacids by
reduction) [11] and (ii) acyclic diene metathesis (ADMET) polymerization of o,w-dienes
(prepared by transesterification) have been considered as effective synthetic methods for
the purpose [7].

ADMET polymerization has been an efficient method for synthesis of advanced
functional polymeric materials with various architectures [7,13-16]. Synthesis of polyesters
by adopting the polymerization of «,w-dienes [7,17-28], especially derived from bio-
based unsaturated fatty acids (such as w-undecenoate, which consists of terminal olefinic
double bond and carboxylate), is known. We recently reported one-pot synthesis of
aliphatic polyesters by ruthenium-catalyzed tandem ADMET polymerizations of o,w-
dienes (prepared from castor oil and sugars by transesterification) and hydrogenation under
mild conditions (Scheme 1) [28]. Moreover, depolymerization of the resultant unsaturated
polymers by olefin metathesis with ethylene (as a reverse reaction of polycondensation)
was demonstrated [28].

Synthesis of long chain aliphatic polyesters placing ester functionalities in different
methylene spacing units by adopting ADMET copolymerization of undec-10-en-1-yl undec-
10-enoate and undeca-1,10-diene (M, = 7000-10,300, before hydrogenation) followed by
hydrogenation of the olefinic double bonds in the presence of two different ruthenium cata-
lysts (Scheme 2, top) has been reported [20]. The melting temperature (T ) of the resultant
polymer was depended upon the number of the methylene units employed. Hydrogenation
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of the isolated unsaturated copolymers by RuHCI(H,)(PCys3), (Cy = cyclohexyl) catalyst re-
quired severe conditions (40 bar, 110 °C, 2 days) [20]. As in Scheme 1 above, we established
a tandem system (one pot synthetic method) under mild conditions, and demonstrated
one pot synthesis of bio-based saturated polyesters by tandem ADMET copolymerization
of M1 with 1,9-decadiene (DCD) and subsequent hydrogenation (Scheme 2, bottom).

(i) Ru cat.
ADMET polymerization
in CHCI3, 50 °C, 24 h

(ii) tandem hydrogenation
A|203 (1 .7or1.0 Wt%v)
™ N H,1.0MPa 50°C,3h
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Scheme 1. One pot synthesis of bio-based long chain aliphatic polyesters by tandem ADMET
polymerization and hydrogenation [28].
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Scheme 2. (Top) Synthesis of aliphatic polyesters by copolymerization undec-10-en-1-yl undec-10-enoate and undeca-
1,10-diene and subsequent hydrogenation [20]. (Bottom) One pot synthesis of polyesters by ADMET copolymerization of
dianhydro-D-glucityl bis(undec-10-enoate) (M1) with 1,9-decadiene (DCD) and tandem hydrogenation (this report).

2. Results and Discussion
2.1. One Pot Synthesis of Long Chain Polyesters by ADMET Copolymerization of
Dianhydro-D-Glucityl bis(undec-10-enoate) (M1) with 1,9-Decadiene (DCD) and
Tandem Hydrogenation

According to the reported procedure, ADMET copolymerizations of dianhydro-D-
glucityl bis(undec-10-enoate) (M1) [18,28], with 1,9-decadiene (DCD) were conducted in the
presence of Ru-carbene catalysts, RuCly(IMesH;)(CH-2-O'Pr-C¢Hy) [HG2; IMesH; = 1,3-
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bis(2,4,6-trimethyl- phenyl)imidazolin-2-ylidene], which yielded high molecular weight
unsaturated polyesters [7,16,26,28]. The polymerizations were conducted in a small amount
of CHCl3 using a sealed Schlenk tube equipped with a high-vacuum valve. The reaction
tube was heated at 50 °C, and ethylene by-produced in the polycondensation was removed
by cooling the solution with a liquid nitrogen bath followed by connecting a vacuum line
(details, see Experimental section) [26,28]. The efficient ethylene removal is important for
obtaining high molecular weight polymers in this type of polycondensation [16]. The results
are summarized in Table 1. Selected GPC traces in the resultant polymers are also shown
in Figure 1.

It was revealed that, as reported in the homopolymerization of M1, the average molec-
ular weight (M) in the resultant copolymer, expressed as poly(M1-co-DCD), increased
over the time course (runs 1-3, Figure 1a). The resultant copolymers possessed rather high
molecular weights with unimodal molecular weight distributions (runs 2,3: My = 9300,
10,600, My, /My = 1.78, 1.56, respectively). It was also revealed that the M, values were
affected by the amount of HG2 loaded in the reaction mixture (run 2 vs. runs 4-6), as re-
ported previously [26,28]. Although the polymerization of M1 yielded the high molecular
weight polymer (My = 15,900), the M, values in the copolymers were rather low and were
somewhat affected by the M1:DCD molar ratios (runs 2,7,8, Figure 1b). The molar ratios
(compositions) in the resultant polymers estimated by 'H NMR spectra were close to the
initial M1:DCD molar ratios (DCD/M1 = 9.9 (run 2), 4.8 (run 7), 2.1 (run 8), respectively),
suggesting that the reaction took place with complete monomer conversion, as usually
observed in the condensation polymerizations of this type [7,16-32].

It was noted that the M}, value increased when chloroform solvent in the reaction
mixture was replaced during the polymerization (every 30 min), and repetitive replacement
seemed more effective for obtaining high molecular weight copolymers (run 2 vs. runs 9-14,
Table 1, Figure 1b). The effect was due to removal of ethylene that remained in the mixture
by replacement of the solvent. The My, value of 23,400 (M., /My = 1.48) was attained by
replacement of the solvent six times, although this is not be a productive method from a
practical viewpoint.

Figure 2b shows the 'H NMR spectrum (in CDCl3 at 25 °C) for the resultant poly(M1-
co-DCD), and the spectrum for poly(M1) is also placed for comparison (Figure 2a). Reso-
nances assigned to protons of the internal olefins were observed at 5.29-5.38 ppm, whereas
those assigned to the terminal olefins (at 4.84, 4.91, and 5.72 ppm) in M1 and DCD were
no longer seen and other resonances were remained (resonances ascribed to protons in
the internal olefins (5.29-5.38 ppm), protons adjacent to olefins (1.94 ppm) and methy-
lene (1.43-1.21) overlapped with DCD, the other resonances corresponded to the protons
from M1; details, see Materials and Methods). This result clearly indicates formation of
polymers by the ADMET polymerization [13-28]. Moreover, resonances ascribed to the
olefinic double bonds, and those to protons adjacent to the double bond (-CH,-CH=CH-),
disappeared in the sample after hydrogenation. The results also suggest conversion to the
hydrogenated polymers.

We reported that the resultant polymer prepared by ADMET polymerization of M1
could be hydrogenated under mild conditions (1.0 MPa, 50 °C), compared to those reported
previously (such as 4.0 MPa, 110 °C, 2 days, two-step process) [20,29-32], without isolation
of unsaturated polymers, by adding small amount of alumina (Al,O3) into the reaction
mixture. As reported previously [28], the completion of the hydrogenation of olefinic
double bonds should be monitored (confirmed) by DSC thermograms (observed as single
melting temperature with uniform composition), although disappearance of resonances
ascribed to olefinic protons was observed after a short period [28]. Since we need to
check whether the hydrogenation of the copolymer was complete under similar conditions,
tandem hydrogenations were conducted under various conditions (hydrogen pressure,
time; runs 9-11).

Figure 3 shows DSC thermograms of the resultant poly(M1-co-DCD)s (molar ratio
of M1:DCD = 1:10) prepared under various conditions. It turned out that no significant
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differences in the thermograms, or the T, (melting temperature) values, were observed
irrespective of the hydrogenation conditions, clearly suggesting that the hydrogenation
reached completion even after 3 h under 1.0 MPa of hydrogen in this catalysis (in the
presence of Al,Os at 50 °C). The resultant copolymers were, however, insoluble for ordinary
GPC analysis (in THF at 40 °C, in ortho-dichlorobenzene at 145 °C), and were poorly soluble
in chloroform in conventional NMR analysis.

Table 1. ADMET copolymerization of M1 with 1,9-decadiene (DCD) “.

ADMET Polymerization Hydrogenation
Run DCD Cat. No. Solvent Yield € Time P P H, Time Tm ©
/mmol  /mol%  Exchange® 1% /h Mn Mw/Mn /MPa /h e
1 3.25 1.0 0 80.0 6 7000 1.46 1.0 24 100.9
2 3.25 1.0 0 65.5 24 9300 1.78 1.0 24 104.5
3 3.25 1.0 0 82.7 48 10,600 1.56 1.0 24
4 3.25 2.0 0 70.9 24 5000 1.53 1.0 24 104.0
5 3.25 0.50 0 71.3 24 3100 1.47 1.0 24 103.4
6 3.25 0.25 0 52.1 24 3500 1.45 1.0 24 103.3
7 1.63 1.0 0 76.0 24 7300 1.66 1.0 24 98.2
8 0.65 1.0 0 722 24 9600 1.67 1.0 24 71.7
9 3.25 1.0 1 87.0 24 12,600 1.77 1.0 3 107.6
9-2f 2.0 3 105.1
10 3.25 1.0 1 90.5 24 9800 1.61 1.0 6 105.9
10-2f 1.0 24 106.8
11 3.25 1.0 1 70.1 24 9500 1.64 1.0 3 104.9
11-2f 2.0 24 105.7
12 3.25 1.0 1 88.2 24 11,400 1.68 1.0 24 106.6
13 3.25 1.0 4 72.1 24 19,200 1.66 1.0 24 105.5
14 3.25 1.0 6 85.6 24 23,400 1.48 1.0 4 106.8

? Conditions (ADMET polymerization): M1 0.325 mmol, CHCl3 0.14 mL, 50 °C (see details in the Experimental section). Hydrogenation:
addition of Al,O3 5 mg, 50 °C. * Number of solvent replacements during the polymerization (see details in Experimental section). ¢ Isolated
yields as MeOH insoluble fraction. ? GPC data in THF vs. polystyrene standards (sample before hydrogenation). ¢ By DSC thermograms
(after hydrogenation). f Tandem hydrogenation under different conditions.

run 7, M, = 7300,
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Figure 1. GPC traces in the resultant poly(M1-co-DCD)s. (a) Time course (runs 1-3), (b) effect of
M1/DCD molar ration including GPC trace in run 13 (polymer after solvent exchange).
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Figure 2. H spectra (in CDClj at 25 °C) for (a) poly(M1), (b) poly(M1-co-DCD) (before hydrogenation,
run 6), and (c) hydrogenated poly(M1-co-DCD) (run 6). Resonance marked with * is water (impurity).

Temp/ °C
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endo

Figure 3. DSC thermograms of hydrogenated poly(M1-co-DCD)s (M1:DCD = 1:10, molar ratio)
prepared under various hydrogenation conditions [H, 1.0 MPa, 3 h (run 9), 6 h (run 10), and 24 h
(run 13); Hy 2.0 MPa, 3 h (run 9-2)]. Detailed data are shown in Table 1.
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Figure 4 shows DSC thermograms in the resultant poly(M1-co-DCD)s prepared under
various M1:DCD molar ratios; the thermogram for poly(M1) is placed for comparison.
It turned out that the Ty, value in the resultant copolymer increased upon increasing the
DCD molar ratios (the ratio was highly close to that charged in the reaction mixture).
The resultant copolymer prepared with a DCD/M1 molar ratio of 10 possessed a T
value of ca. 105-106 °C, and the value seemed rather low in the low molecular weight
samples (runs 1,4-6). These results suggest that thermal resistant polymers (T, higher
than 100 °C) could be prepared by conducting copolymerization of biobased monomer
(M1) with nonconjugated diene (DCD).

Temp/ °C
0 20 40 60 80 100 120

Figure 4. DSC thermograms of hydrogenated poly(M1-co-DCD)s prepared under various M1:DCD
molar ratios [M1:DCD = 1:2 (run 8), 1:5 (run 7), 1:10 (run 13)]. Detailed data are shown in Table 1.

2.2. ADMET Copolymerization of M1 with 1,13-Tetradecadiene (TDCD) and
Tandem Hydrogenation

Copolymerizations of M1 with 1,13-tetradecadiene (TDCD) were also conducted
under similar conditions (TDCD:M1 = 10:1, molar ratio), and the results are summarized in
Table 2. Although the polymerizations were conducted with different catalyst loading (1.0
and 0.5 mol%) as well as different numbers of solvent exchanges to remove ethylene by
product in this polycondensation, the resultant polymers possessed rather low molecular
weights and no improvements in the M, values were attained.

Table 2. ADMET copolymerization of M1 with 1,3-tetradecadiene (TDCD) “.

Cat. No. Solvent Yield € p i Tm €

Run /mol% Exchange ¥ 1% Mn Muw!Mn I°C
15 1.0 1 80.2 4400 1.58 106.5
16 1.0 2 72.1 6700 1.67 105.2
17 1.0 4 84.1 6400 1.61 107.8
18 0.50 2 83.5 6100 1.61 107.0
19f 0.50 4 82.8 6700 1.56 107.0

? Conditions (ADMET polymerization): 1,13-tetradecadiene 3.25 mmol, M1 0.325 mmol, CHCl3 0.14 mL, 50 °C. Hydrogenation: addition of
Al,03 5 mg, Hy 1.0 MPa, 50 °C, 24 h. ® Number of solvent replacements during the polymerization (see details in Experimental Section).
¢ Isolated yields as MeOH insoluble fraction. ¢ GPC data in THF vs. polystyrene standards (sample before hydrogenation). ¢ By DSC
thermograms (after hydrogenation).  Composition of TDCD/M1 = 10.4 estimated by "H NMR spectrum.

3. Concluding Remarks

Copolymerizations of bio-based dianhydro-D-glucityl bis(undec-10-enoate) (M1) with
1,9-decadiene (DCD) by tandem acyclic diene metathesis (ADMET) copolymerization,
and subsequent tandem hydrogenation (H; 1.0 MPa, 50 °C) by adding a small amount
of Al,O3 were explored. The copolymerizations, conducted under optimized conditions
yielded high molecular weight unsaturated polyesters (M, = 9300-23,400) with melting
temperatures of 71.7-107.6 °C depending on the ratio of M1 and DCD. An efficient tandem
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hydrogenation system under rather mild conditions (1.0 MPa, 3 h at 50 °C) was also
demonstrated in this catalysis. The attempted copolymerization with 1,13-tetradecadiene
in place of DCD yielded rather low molecular weight polymers, suggesting that further
improvements should be considered as a future project. Synthesis of rather thermal resistant
polymers (T, higher than 100 °C) containing isosorbide (derived from a glucose) unit
was demonstrated by copolymerization of a biobased monomer (M1) with nonconjugated
diene (DCD). The approach adopted here should be beneficial to development of a green
sustainable process with materials that should be promising alternatives to those based on
fossil fuels.

4. Materials and Methods

General Procedure. Dianhydro-D-glucityl bis(undec-10-enoate) (M1) was prepared ac-
cording to the reported procedure [28], and RuCl,(IMesH, )(CH-2-O'Pr-C¢Hy) [HG2; Cy =cy-
clohexyl, IMesH, = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene, Aldrich Chemical
Co., Milwaukee, WI, USA] was used as received. Anhydrous grade dichloromethane
(>99.5%, Kanto Chemical Co., Inc., Tokyo, Japan), 1,9-decadiene (TCI Co., Ltd., Tokyo, Japan),
ethyl vinyl ether (>98%), alumina (activated Al,O3), and Celite (Fujifilm Wako Pure Chemical
Ind., Inc., Tokyo, Japan), and other chemicals of reagent grade were used as received. All 'H
NMR spectra (in CDCl5 at 25 °C) were recorded on a Bruker AV500 spectrometer (500.13 MHz
for 'H). All chemical shifts were presented in ppm (reference SiMey at 0.00 ppm) and obvious
multiplicities and routine coupling constants are not listed. Molecular weights and the molec-
ular weight distributions of resultant polymers were measured by gel-permeation chromatog-
raphy (GPC), equipped with columns (ShimPAC GPC-806, 804 and 802, 30 cm x 8.0 mm
diameter, spherical porous gel made of styrene/divinylbenzene copolymer, ranging from
<10? to 2 x 107 MW). The measurements were performed at 40 °C on a Shimadzu SCL-10A
using a RID-10A detector (Shimadzu Co., Ltd., Kyoto, Japan) in THF (HPLC grade, Fujifilm
Wako Pure Chemical Ind., Inc., Tokyo, Japan, containing 0.03 wt% of 2,6-di-tert-butyl-p-cresol,
flow rate 1.0 mL/min). DSC (Differential scanning calorimetric) data for the polymers were
measured using a Hitachi DSC 7020 analyzer. All samples (5-7 mg) were placed in standard
aluminum pans under a nitrogen atmosphere and were first heated from 25 to 150 °C then
cooled to —100 °C at a rate of 10 °C/min. The melting (Tr,) temperature was determined
upon a second heating cycle.

Acyclic diene metathesis (ADMET) polymerization. The typical polymerization pro-
cedure is as follows. In the drybox, a prescribed amount of 1,9-decadiene (DCD), and a
CHCI; solution (0.14 mL, anhydrous) containing a prescribed amount of ruthenium cata-
lyst (HG2) was placed into a 50 mL scale sealed Schlenk tube. After stirring the solution
for 10 min at 25 °C under a nitrogen atmosphere in the drybox, dianhydro-D-glucityl
bis(undec-10-enoate) (M1 0.325 mmol, 150 mg) was added to the reaction mixture. The re-
action tube was taken out and was magnetically stirred in an oil bath at 50 °C. The mixture
was then placed into a liquid nitrogen bath to remove ethylene from the reaction by open-
ing the valve connected to the vacuum line for a short period (1 min). The valve was
then closed, and the tube was returned into the oil bath to continue the reaction [26,28].
The procedure removing ethylene was repeated after a measured period (30 min for the
first time then every 1.0 h until 6 h). The polymerization mixture was then cooled to room
temperature and was quenched with excess ethyl vinyl ether (two drops, ca. 100 mg) while
stirring for 1.0 h. The resultant solution was then dissolved in chloroform (2.0 mL) for
dilution, and the solution was added dropwise into the stirred cold methanol (50 mL).
The solution was stirred for ca. 15 min, and the precipitates were then collected by filtration
and dried in vacuo to yield poly(M1-co-DCD) as a white solid. During the reaction in certain
experimental runs, CHCI3 was removed in vacuo and was replaced every 30 min at the
initial stage (noted as solvent exchange in Table 1).

Poly(M1-co-DCD) (before hydrogenation). TH NMR (CDCl3): 6 1.43-1.21 (m, -CH)- ),
1.61 (t, ] = 6.6 Hz, -CH,CH,COO-), 1.94 (-CH,CH = CH-), 2.30 (t, ] = 7.7 Hz, -CH,COO-),
2.34 (t,] =7.1 Hz, -CH,COO-), 3.78 (dd, ] = 9.8, 5.4 Hz, -CH,OCH-), 3.92-4.03 (m, -CH,-
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OCH-,-CH,-OCH-), 4.46 (d, ] = 4.6 Hz, -CH,-OCH-), 4.82 (t, ] = 5.0 Hz, -CH,-OCH-), 5.13
(dd, ] =5.6 Hz, -CHOCO-), 5.18 (d, | = 3.2 Hz, -CHOCO-), 5.37 (-CH=CH-). The assignments
of chemical shifts were almost identical with that of poly(M1) reported previously [28],
except the integration ratio of protons of internal olefins (5.37 ppm, -CH=CH-), methylene
(1.43-1.21 ppm, -CH>-) and of that observed at 1.94 ppm (-CH,CH=CH?-), ascribed from
incorporation of DCD. 3C NMR (CDCly): 6 17.9, 24.8,27.2,28.7,28.9,29.1,29.2, 29.3,29.4,
29.5,29.6,29.8, 32.5, 32.6, 34.0, 34.2, 70.3, 73.5, 73.7, 73.7, 80.7, 86.0, 124.5, 124.6, 129.9, 130.4,
131.8,172.9, 173.1. Compositions of DCD/M1 were estimated by integration of protons
resonances at 1.94 (-CH,CH=CH-), 2.30 and 2.34 ppm (-CH,COO-).

Tandem hydrogenation. After polymerization, the reaction mixture was placed into an
autoclave, and a prescribed amount of Al,O3 powder (5 mg) was added. The reactor was
then pressurized with hydrogen at 1.0 MPa. The reactor was then placed into aluminum
heating blocks set at 50 °C, and was stirred for 24 h (or 3 h). The resultant mixture was
diluted in chloroform (2.0 mL), and the solution (after filtration through Celite pad) was
added dropwise into the stirred cold methanol (50 mL). The precipitates were collected by
filtration and dried in vacuo. In runs 9-11, the reaction mixtures were separated into two
portions to conduct hydrogenation under various hydrogenation conditions.

Poly(M1-co-DCD) (after hydrogenation). 'H NMR (CDCl3): § 1.27 (m, -CH,-), 1.64
(m, -CH,CH,COO-), 2.33 (t, ] = 7.7 Hz, -CH,COO-), 2.39 (t, ] = 7.1 Hz, -CH,COO-), 3.81 (dd,
J =9.8 and 5.4 Hz, -CH,OCH-), 3.96-4.02 (m, -CH,-OCH-,-CH,-OCH-), 4.49 (d, ] = 4.6 Hz,
-CH,-OCH-), 4.84 (t, | = 5.0 Hz, -CH;,-OCH-), 5.16 (dd, ] = 5.6 Hz, -CHOCO-), 5.20 (d,
J =3.2 Hz, -CHOCO-).
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