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Biocatalysis refers to the utilization of enzymes, either in purified form, or existed as
part of crude cell lysate or intact cells, to catalyze single- or multi-step chemical reactions,
converting synthetic molecules or natural metabolites into high-value products. In recent
decades, with the abundant information of genome sequences and better understanding of
metabolic pathways, the enzymes involved in biochemical reactions can be modified using
genetic techniques to improve the yield of products, modify the substrate specificity and
manipulating the metabolic networks to satisfy specific industrial needs [1].

The Special Issue Recent Advances in Biocatalysis and Metabolic Engineering presents
twelve original research and review articles involving triterpenoid synthesis and catalysis,
β-glucan and lignin hydrolysis, nanomaterials, enzyme immobilization and fluorescence-
based characterization, in vitro peptide/protein phosphorylation, and enzymatic dye
decoloring, along with novel practices relating to enzymes using synthetic biology and
metabolic engineering. The published articles demonstrate experimental and simulated
data which can be applied in pharmaceuticals, diagnosis, functional foods, materials and
biofuel production.

Triterpenoids from several natural sources are of interest due to their various biological
activities for medicinal purposes [2,3]. However, most triterpenoids are hydrophobic,
which limits their practical applications. Glycosylation and hydroxylation reaction are
the common approaches to increase the bioactivity and the aqueous solubility of these
triterpenoid compounds [4]. To facilitate the development of new nutraceuticals and
pharmacological formulations of triterpenoids, Chang et al. [5] attempted to apply an
enzymatic synthesis to produce a novel Ganoderma triterpenoid saponin by glycosylation
of ganoderic acids via a cascade bi-enzymatic synthesis of BtGT_16345, and Toruzyme®.
The glycosylation synthetic strategy can be employed on other small molecules to produce
novel bioactivity compounds [6].

Oleanolic acid (OA), a triterpenoid found in plants and foods, exhibits beneficial
bioactivities for humans [7]. Cytochrome P450 enzymes are a large enzyme family that play
important roles in the metabolism of drugs, carcinogens, and steroids [8]. To efficiently
synthesize a hydroxylated OA derivative, Cao et al. [9] screened a set of cytochrome
enzymes, and found recombinant CYP3A4 capable of regioselectively hydroxylating the
methyl group of OA at the C-23 position to synthesize 4-epi-hederagenenin.

Enzymes could be applied in various fields such as food processing, probiotics pro-
duction, paper processing, and biofuel production [10]. To apply cellulases for substrate
hydrolysis is a common practice in food processing [11]. β-glucanases can be produced
via the fermentation of cellulolytic fungi [12]. However, enzyme production by fungi
cultivation is complicated and time-consuming, limiting its application in industry. Zhong
et al. [13] attempted to construct a recombinant β-glucanase extracellularly with E. coli host
via a kil-km secretion cassette and overexpress it on a bioreactor scale. Factors affecting fed-
batch cultivations including various feeding strategies and nutritional supplements were
conducted to yield higher biomass and β-glucanase activity. These fed-batch strategies for
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enzyme production from E. coli can be used as a reference to facilitate the production of
other bioproducts.

Immobilization of enzymes shows superior effects on, for example, enzyme stability
in reaction, enzyme reusability, and bioproducts separation [14]. Various methods can
be employed for enzyme immobilization [15]. For preparing a recyclable biocatalyst
system for the synthesis of L-theanine, Chi et al. [16] proposed a direct way to cross-link
aggregated γ-glutamyl transpeptidase (GGT) onto a magnetic nanoparticle. The targeted
recombinant GGT was derived from Bacillus licheniformis with the help of site-specific
mutagenesis techniques (N450D) to increase the transpeptidation/hydrolysis ratio, which
could facilitate the biosynthesis to L-theanine in an efficient way.

Immobilization can also be carried out with membranes as a supporting material [17].
Wong et al. [18] applied a modified regenerated cellulose membrane to couple metal
ions to construct an immobilized metal ion affinity membrane/Co2+ (IMAM-Co2+). This
system was utilized to immobilize the recombinant scaffolding protein (CipA) and xylanase
derived from a Clostridium thermocellum cellulosome [19]. The co-immobilization was
performed via applying an IMAM-Co2+ membrane to adsorb CipA first, followed by
adsorbing xylanase in series. The two-step approach enhanced xylanase activity, heat and
pH resistance, and reusability.

Graphene quantum dots (GQDs), a nanostructured material with high surface area
and surface energy, have attract great interest in catalytic reactions due to their special
physiochemical characteristics [20]. Glucose oxidation reaction (GOR) is a very common
redox reaction performed by many electrochemical conversion devices [21]. Gu et al. [22]
attempted to perform the GOR with synthesized boron–nitrogen-codoped GQDs as the
electrode. The stability and catalytic activity of the GQD electrodes was analyzed in
the GOR. In this way, an inexpensive and high-performance catalyst for the GOR was
constructed.

Fluorescence techniques have been employed to study enzyme kinetics and identify
human diseases [23,24]. Two articles in the Special Issue focus on the modeling of enzyme
activity and detection of enzymes as a diagnostic tool using fluorescence-based approaches.
Vorob’ev published an enzymatic modeling study of trypsin taking the unfolding of protein
substrate, termed demasking, into account [25]. In the study, the intrinsic fluorophore
tryptophan was employed to monitor the demasking rate of substrate β-Lactoglobulin
(β-LG), by which hydrolysis of peptide bonds is remodeled. In the process of demasking,
the intrinsic tryptophan is exposed to the aqueous solvent resulting in a red shift of wave-
length of maximum fluorescence (λmax). Gong et al. demonstrated a diagnostic tool for
butyrylcholinesterase (BChE), which is a key enzyme involved in diabetes, cardiovascular
disease, cancer and chronic liver disorders [26]. The assay relies on the detection of an
enzymatic production using fluorescence resonance energy transfer (FRET). The chemi-
cal probe, termed 11, is synthesized using exo-6, a derivative of 5-(2-aminoethylamino)-
1-naphthalenesufonic acid (EDANS), and 4-[4-(dimethylamino)phenylazo]benzoic acid
(DABCYL) with a disulfide link, causing the FRET effect while the probe is intact. The
presence of BChE cleaves the probe and gives rise to the fluorescence signal of EDANS.
The assay provides a specific detection of BChE superior to Ellman’s colorimetric detection,
which is interfered easily with by glutathione (GSH), a thiol group containing biomolecule
abundant in human plasma.

In this Special Issue, we included four comprehensive reviews on the aspects of enzy-
matic catalysis and practices of metabolic engineering. Slovakova and Bilkova [27] outlined
the current achievements for the manufacturing phosphorylated and multiphosphorylated
peptides and proteins of synthetic or recombinant origin. Enzymatic methods used for
in vitro phosphorylation of peptides and recombinant proteins are proposed. The avail-
ability of various kinases with different activity, specificity, and stability make it feasible
to manipulate and modulate the phosphorylation reaction in vitro. The phosphorylation
performed by immobilized kinases with all the advantages of immobilization is high-
lighted. This review also discussed the kinase-related phosphorylation pathways, which
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are essential for understanding the pathogenesis of ailments such as Alzheimer’s disease,
inflammation, and bacterial infection. The bulk production of phosphorylated recombinant
proteins and peptides can be exploited for diagnostic and therapeutic applications.

Molina et al. [28] reviewed the recent advances in enzyme metal–organic framework
(MOF) encapsulation by one-pot, in situ approaches in mild conditions. The advantages
of using of MOFs to entrap enzymes within their micropores, including minimal enzyme
leaching, high enzyme loading, and activity preservation, are exploited by one-pot synthe-
sis of the biocatalysts. In addition, the methodology entails key sustainability issues: quick
synthesis, preparation at room temperature with water as the sole solvent and moderate
pHs, cheap and non-toxic metals and linkers, etc. However, few enzymes immobilized
on MOFs can be prepared in situ because of the lability of the enzymes and the harsh
conditions of most MOFs synthesis. Although MOF materials such as zeolitic imidazole
frameworks are widely reported [29], this review emphasized other less common ones
such as Fe-BTC, NH2-MIL-53(Al), HKUST-1(Cu), and Mg-MOF-74 which are traditionally
prepared under harsh conditions incompatible with enzymatic activity. Therefore, the
information on the preparation of these composites using mild synthesis conditions, as
well as their performance in trapping active enzymes are crucial for one-step enzyme
immobilization applications using MOFs.

Although lignocellulosic biomass is the most abundantly available source of raw
material on the planet, the conversion of biomass to biofuels is often hindered by the
notorious recalcitrance of this material. Substrate hydrolysis into fermentable sugars is
a rate-limiting step in the whole biofuels production process, due to the lack of effective
and cost-effective cellulase enzymes. In this special issue, Ha-Tran et al. [30] discussed
the Clostridium thermocellum cellulosome, which is a robust cellulase nano-machinery that
contains over 70 enzymes on its scaffolding protein CipA. It is a promising biological
material utilizing biomimetic approaches to construct artificial designer cellulosomes
and cellulase cocktails. In addition, the hyper-modular property of the C. thermocellum
cellulosome is of great interest from a mechanistic viewpoint and its potential for industrial
applications. For cellulase assembly and surface display, novel protein pairs have been
detected as an alternative approach to the conventional C. thermocellum cohesion-dockerin
system. Due to the slow growth and strictly anaerobic culture condition of C. thermocellum,
the low yield of cellulosome triggers the development of conversion of non-cellulolytic
biofuel microbes into consolidated bioprocessing microbes using metabolic engineering
strategies. Successful cases have been demonstrated in Bacillus subtilis, Saccharomyces
cerevisiae, Pichia pastoris, and Kluyveromyces marxianus. These crucial issues were updated
and discussed in this review.

In a review, Xu et al. [31] summarized the structure and catalytic characteristics of
dye decoloring peroxidases (DyPs) from different heme peroxidase families on the basis
of amino acid sequence, protein structure, and enzymatic properties. The catalytic ability
of dye decoloring and lignin degradation varies greatly among DyPs classes. Further-
more, potential applications of DyPs in paper manufacturing, environmental protection,
biomedicine, and biofuel are also discussed. In the past decades, novel research strate-
gies based on genetic engineering and synthetic biology in optimizing the yield, stability,
and catalytic activity of DyPs, along with industrial applications have been developed.
Nevertheless, according to the current research findings, improvements in catalytic ef-
ficiency, production level, and alkali resistance remain necessary to bring DyPs to the
industrial level.
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