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Abstract: In this study, an artificial neural network (ANN) model was developed and compared with
a rigorous mathematical model (RMM) to estimate the performance of an industrial heavy naphtha
reforming process. The ANN model, represented by a multilayer feed forward neural network
(MFFNN), had (36-10-10-10-34) topology, while the RMM involved solving 34 ordinary differential
equations (ODEs) (32 mass balance, 1 heat balance and 1 momentum balance) to predict compo-
sitions, temperature, and pressure distributions within the reforming process. All computations
and predictions were performed using MATLAB® software version 2015a. The ANN topology had
minimum MSE when the number of hidden layers, number of neurons in the hidden layer, and the
number of training epochs were 3, 10, and 100,000, respectively. Extensive error analysis between
the experimental data and the predicted values were conducted using the following error functions:
coefficient of determination (R2), mean absolute error (MAE), mean relative error (MRE), and mean
square error (MSE). The results revealed that the ANN (R2 = 0.9403, MAE = 0.0062) simulated the
industrial heavy naphtha reforming process slightly better than the rigorous mathematical model
(R2 = 0.9318, MAE = 0.007). Moreover, the computational time was obviously reduced from 120 s for
the RMM to 18.3 s for the ANN. However, one disadvantage of the ANN model is that it cannot be
used to predict the process performance in the internal points of reactors, while the RMM predicted
the internal temperatures, pressures and weight fractions very well.

Keywords: heavy naphtha; reforming; mathematical model; artificial neural network; deactiva-
tion; catalyst

1. Introduction

In general, mathematical models can be categorized as deterministic or empirical; the
deterministic models are constructed from first-principles equations, whereas empirical
models are mathematical functions generalized to fit the data of one or more variables.
Modeling catalytic refinery units is critical for designing, optimizing, and controlling tasks,
but the mathematical modeling of these units poses several challenges, including the (1)
assumptions used to simplify the models, (2) number of lumped components associated
with the kinetic modeling, (3) complexity of the mathematical modeling, (4) catalyst activity
decay with time, and (5) evaluation of physical properties under severe conditions [1,2].

Petroleum refineries consist of several thermal and catalytic units used to convert
and separate petroleum fractions into useful products. Naphtha reforming units convert
low-octane number heavy naphtha into a higher-octane number reformate that is the main
feedstock for the blending unit to produce gasoline. Industrial naphtha reforming units
include three or four reactors adiabatically operated at temperatures ranging from 450 to
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520 ◦C and pressures ranging from 1 to 3.5 MPa [3,4]. Mathematical representations of
these units can be done by integration of rigorous models that combine mass, heat, and
momentum equations as well as kinetic models that govern the reactions of the hundreds
of components within naphtha. In the past few years, several mathematical models have
been developed to describe the behavior of naphtha reforming units. Tailleur (2012) used
data obtained from commercial and micropilot plants to predict the reaction kinetics
and catalyst deactivation parameters. The ordinary differential equations of mass and
energy balance were solved using the Runge–Kutta–Fehlberg method in the axial and
radial directions. [5] Iranshahi et al. (2014) developed mathematical and kinetic models
to represent the continuous catalytic regeneration naphtha reforming process; the kinetic
model consists of 32 pseudocomponents and 84 reactions. They obtained acceptable
agreement between observed data and simulation results [6]. Elizalde and Ancheyta (2015)
proposed the dynamic modeling of the catalytic naphtha reforming reactor using material
and heat balances; the reaction network consisted of 20 components plus hydrogen and
53 chemical reactions [7]. Babaqi et al. (2018) simulated the continuous regeneration
naphtha reforming process using a reaction network of 36 lumps and 55 reactions. The
model has been validated by comparing its results with plant data, in which the mean
relative error for the octane number, reformate yield, light gases, hydrogen yield, reactor
temperature, and pressure was 1.3%, 2.5%, 0.93%, 0.43%, 1.03%, 2, and 0.6%, respectively [8].
Dong et al. (2018) described a continuous catalytic reforming process using a kinetic model
of 27-lump, plug flow reactor model of a 4-zone parallel-series and an empirical catalyst
deactivation model. The mean absolute prediction was found to be 0.76%, 0.42%, 0.90%,
and 0.50% for paraffins, naphthenes, aromatics, and hydrogen, respectively [9]. Yusuf et al.
(2019) used gPROMs® software for the steady-state and dynamic modeling of industrial
catalytic reforming. The 3D representation of 25 profiles (i.e., concentration, temperature,
research octane number [RON], and hydrogen yield) with respect to time and reactor
height was estimated by solving the partial differential equations governing mass and
heat transfer in the process [10]. Shakor et al. (2020) estimated the kinetic parameters
for the kinetic model of 32 lumps and 132 reactions by fitting the model predictions
with data obtained from the industrial heavy naphtha reforming process. They observed
that after 1225 days the catalyst activity decayed to 58.8% of its original activity [11].
Studies concerning the modeling of catalytic heavy naphtha reforming vary greatly in the
number of pseudocomponents in the reaction mixture and the number of reactions in the
kinetic networks, and hence, in the model predictions, these models are also graded from
moderate complexity to very complicated. Pishnamazi et al. (2020) developed a CFD-based
simulation model to predict the amount of aromatic capacity, process efficiency, transfer
rate, bed temperature, and pressure in case of changes in operating conditions for naphtha
reforming units [12].

Ebrahimian and Iranshahi (2020) simulated the thermal coupling of naphtha reform-
ing with propane ammoxidation using a one-dimensional homogenous model for two
processes. A genetic algorithm (GA) was applied to optimize the operating conditions
of the selected configuration (naphtha-series ammoxidation). The optimum tempera-
ture and feed flow rate and the number of tubes in three reactors were selected to be
776.94 K, 2086.2 kmol h−1, and 395, respectively. [13] Yusuf et al. (2020) estimated the
plant performance, temperature, and concentration profiles of the paraffins, naphthenes,
and aromatics of semicatalyst regenerative commercial naphtha catalytic reforming using
gPROMS software [14].

In a petroleum refinery, the operators need a fast, simple, and accurate methodology
to estimate the process predictions. An artificial neural network (ANN) is one of the
promising prediction methods that can be used to predict the performance of highly
nonlinear operations. ANNs are widely used for the modeling and controlling of complex
chemical processes, in which an ANN has been accurately used to simulate distillation
columns, [15–17] heat exchangers, [18,19] and catalytic reactors [20,21]. A survey of the
literature found that very few studies have investigated the application of ANNs in the
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modeling of heavy naphtha reforming. Sadighi and Mohaddecy (2013) developed a layered-
recurrent artificial neural network to simulate an industrial fixed-bed catalytic reforming
unit. They observed that the ANN could simulate the research octane number (RON),
flow rate of produced gasoline, and octane barrel level with a mean absolute deviation of
0.238%, 0.813%, and 0.853%, respectively [22]. Elfghi (2016) compared the response surface
methodology (RSM) and artificial neural network (ANN) for modeling catalytic naphtha
reforming units and optimized the RON of a produced gasoline. The ANN methodology
showed a very obvious advantage over RSM. A maximum RON of 98 was obtained at the
optimal conditions (T = 521 ◦C, P = 3.76 MPa, LHSV = 2.02 h−1) [23].

The objective of this work was to explore the use of two different models to predict the
performance of the heavy naphtha reforming process. The rigorous mathematical model
(RMM) was selected as the deterministic model, while the artificial neural network (ANN)
was selected as the empirical model.

2. Process Description and Data Collection

The flow sheet of the semiregenerative heavy naphtha reforming unit which is located
in the Al-Doura Refinery (Baghdad, Iraq) is shown in Figure 1. This unit consists of
four reactors with four interstage heaters in a series and containing a Pt/Al2O3 catalyst.
The reactors’ inlet temperature was 470 ◦C, feed pressure was 2.75 MPa, and hydrogen-
to-hydrocarbons feed ratio was 7 mol/mol. Gas chromatography/mass spectrometry
(GC/MS) was used to analyze the samples collected from the feed and reactors effluent.
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Figure 1. Flow sheet of the semi-regenerative naphtha reforming unit.

Ten datasets were collected from the commercial heavy naphtha reforming process in
a long time period (1225 days), starting after using a fresh catalyst in the reactors. Each
dataset contains information about the weight fractions of the streams, catalyst loading,
and operating conditions for the commercial heavy naphtha reforming unit (see Table 1).
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Table 1. Dataset of the weight fractions of the streams, catalyst loading, and operating conditions.

Weight Fraction

Lump Feed Reactor A Reactor B Reactor C Reactor D

P1 0 0 0 0 0
P2 0 0 0 0 0
P3 0.72 0 0 0 0

n-P4 0.43 0.22 0.32 0.31 0.21
n-P5 0.52 0.81 0.86 0.79 0.63
n-P6 3.67 2.38 2.37 2.22 1.68
n-P7 0 3.53 3.28 2.63 1.89
n-P8 8.87 5.57 3.2 2.17 1.58
n-P9 6.58 0.26 0.25 0.25 0.48
n-P10 2.42 3.28 1.88 0.22 0.17
n-P11 0.2 0.25 0.33 0.36 0.11
i-P4 0.35 0.15 0.32 0.15 0.18
i-P5 0.36 0.94 0.93 0.79 0.75
i-P6 3.17 5.19 6.12 6.07 5.16
i-P7 4.57 6.05 6.43 6.05 5.11
i-P8 9.77 7.11 5.9 4.92 3.72
i-P9 13.28 10.02 7.85 5.93 3.71
i-P10 9.02 9.15 7.46 7.14 3.02
i-P11 1.19 2.8 3.22 4.77 0.36
MCP 0.26 0.23 0.28 0.28 0.27
N6 2.07 0 0 0 0
N7 4.84 0.57 0.45 0.39 0.37
N8 7.02 0.86 0.81 0.68 0.49
N9 0.95 0 0 0 0
N10 3.9 0 0 0 0
N11 0 0 0 0 0
A6 0.35 0.8 1.15 1.35 1.32
A7 2.84 6.33 8.86 10.95 12.27
A8 8.31 14.5 19.14 23.53 26.94
A9 3.97 19 18.59 18.05 29.58

A10 0.37 0 0 0 0
A11 0 0 0 0 0

Catalyst loading (kg) 2700 4500 4750 5875
Feed temperature (◦C) 470 470 475 475

Outlet temperature (◦C) 431 454 476 474
Liquid feed flow rate (m3/hr) 33.5

Inlet pressure to reactor A (MPa) 3.04
Outlet pressure from reactor D (MPa) 2.25

3. Modeling
3.1. Rigorous Mathematical Model

To simplify the heavy naphtha reforming process, the following simplification assump-
tions were considered: (1) Plug flow in reactors. (2) Negligible mass and energy transfer in
radial direction [24]. (3) First-order homogeneous gas phase reactions [1,2,25]. (4) Steady
state adiabatic reactors. (5) Negligible heat loss to atmosphere. The physical and thermody-
namic properties of the pseudocomponents was assumed to be equal to the properties of
the main component for these pseudocomponents. The physical properties were obtained
from reference [26].

Mass and energy changes with respect to catalyst weight are represented in ordinary
differential Equations (1) and (2), respectively [27,28]:

dFi
dw

= −
m

∑
j

Si,jrj (1)

dT
dw

=
−∑m

j=1 rj∆HRj

∑n
i=1 FiCpi

(2)
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The reaction rate was calculated by Equation (3), and a modified Arrhenius Equation (4)
was used to calculate reaction rate constant.

rj = k jP o
i (3)

k j = ko
j exp

[EAj

R

(
1
To
− 1

T

)](
pt

pto

)α

(4)

where: n represents the number of components, m is the reactions number.
The specific heat of components was estimated according to third order polyno-

mial [28]:
Cpi = Ai + BiT + CiT2 + DiT3 (5)

Heat of reaction is calculated by:

∆Ho
r = ∑ ∆Ho

r,prodcts −∑ ∆Ho
r,reactants (6)

∆Ht = ∆Ho
r +

∫ T

To

[
∑ ∆Cpprodcts −∑ ∆Cpreactants

]
dT (7)

The Ergun equation was used to predict the pressure drop [29]:

dPt

dz
= − G

ρgcDp

(
1− εb

ε3
b

)(
150

(1− εb)µ

Dp
+ 1.75G

)
(8)

Equation (9) was used to convert the difference in the reactor length to the difference
in the catalyst weight.

dw
dz

= ACρC(1− εb) (9)

Time dependent catalyst deactivation was used to represent the rate of catalyst decay
with time as shown in Equation (10) [30]:

a = exp(−kdt) (10)

The proposed kinetic model involves 32 pseudo-components and 132 reactions; the
pseudo-components are 1 to 11 carbon atoms of normal paraffins, 4 to 11 carbon atoms of
isoparaffins, 6 to 11 carbon atoms of naphthenes, and 6 to 11 carbon atoms of aromatics.
The kinetic model consists of isomerization, hydrocracking, dehydrogenation, dehydrocy-
clization, and hydrodealkylation reactions. The activation energies were grouped into nine
activation energies according to reaction type. The estimated pre-exponential factors and
activation energies are presented in Tables 2 and 3 respectively.

3.2. Artificial Neural Network Model

Artificial Neural networks are a series of mathematical algorithms that mimic the
processes of the human brain to estimate relationships between massive amounts of data.
Based on a set of experimental data, ANN models create nonlinear relationships that relate
the independent and dependent variables. A multilayer feed forward neural network is
the most commonly used topology in neural networks [31]. The connections between the
input and hidden layer are calculated according to values called weights, which represent
the strength of the connection between neurons. The output of the jth and kth nodes of the
hidden layers are given by the following equations [29]:

netj =
I

∑
i=1

Wi,jXi

outputj = f
(
netj

) (11)
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netk =
N
∑

n=1
Wn,kXn

outputk = f(netk)
(12)

Table 2. Pre-Exponential factors of predicted kinetic model.

Reaction Step ko Reaction Step ko Reaction Step ko Reaction Step ko

nP4 → iP4 0.0034 nP10 → N10 + H2 0.0074 iP9 + H2 → iP5 + nP4 0.0002 N9 + H2 → N7 + P2 0.0011
nP5 + H2 → nP4 + P1 0.0002 nP11 + H2 → nP10 + P1 0.0010 iP9 → N9 + H2 0.3145 N9 → A9 + 3H2 . 0.8036
nP5 + H2 → nP3 + P2 0.0111 nP11 + H2 → nP9 + P2 0.0007 iP10 → nP10 0.0155 N10 + H2 → nP10 0.0317

nP5 → iP5 0.0073 nP11 + H2 → nP8 + P3 0.0010 iP10 + H2 → iP9 + P1 0.0012 N10 + H2 → iP10 . 0.1057
nP6 + H2 → nP5 + P1 0.0053 nP11 + H2 → nP7 + nP4 0.0005 iP10 + H2 → iP8 + P2 0.0021 N10 + H2 → N9 + P1 0.0058
nP6 + H2 → nP4 + P2 0.0001 nP11 + H2 → nP6 + nP5 0.0012 iP10 + H2 → iP7 + P3 0.0011 N10 + H2 → N8 + P2 0.0083

nP6 + H2 → 2P3 0.0013 nP11 → iP11 0.0019 iP10 + H2 → iP6 + nP4 0.0000 N10 + H2 → N7 + P3 0.0041
nP6 → iP6 0.0763 nP11 → N11 + H2 0.0024 iP10 + H2 → iP5 + nP5 0.0018 N10 → A10 + 3H2 7.5196

nP6 → MCP + H2 0.0037 iP4 → nP4 0.0031 iP10 → N10 + H2 0.0039 N11 + H2 → nP11 0.1008
nP6 → N6 + H2 0.0016 iP5 → nP5 0.0162 iP11 → nP11 0.0296 N11 + H2 → iP11 1.4912

nP7 + H2 → nP6 + P1 0.0014 iP5 + H2 → iP4 + P1 0.0003 iP11 + H2 → iP10 + P1 0.0072 N11 + H2 → N10 + P1 0.0018
nP7 + H2 → nP5 + P2 0.0006 iP5 + H2 → P3 + P2 0.0126 iP11 + H2 → iP9 + P2 0.3902 N11 + H2 → N9 + P2 0.0025
nP7 + H2 → nP4 + P3 0.0000 iP6 → nP6 0.0261 iP11 + H2 → iP8 + P3 0.0021 N11 + H2 → N8 + P3 0.0011

nP7 → iP7 0.0670 iP6 + H2 → iP5 + P1 0.0021 iP11 + H2 → iP7 + nP4 0.0003 N11 → A11 + 3H2 0.0009
nP7 → N7 + H2 0.0412 iP6 + H2 → iP4 + P2 0.0001 iP11 + H2 → iP6 + nP5 0.0007 A6 + 3H2 → N6 0.0137

nP8 + H2 → nP7 + P1 0.0003 iP6 + H2 → 2P3 0.0009 iP11 → N11 + H2 0.0248 A7 + 4H2 → nP7 0.0126
nP8 + H2 → nP6 + P2 0.0011 iP6 → MCP + H2 0.0037 MCP + H2 → nP6 0.0230 A7 + 4H2 → iP7 0.0152
nP8 + H2 → nP5 + P3 0.0006 iP6 → N6 + H2 0.0005 MCP + H2 → iP6 0.0994 A8 + 4H2 → nP8 0.0029

nP8 + H2 → 2nP4 0.0001 iP7 → nP7 0.0351 MCP→ N6 0.0097 A8 + 4H2 → iP8 0.0098
nP8 → iP8 0.1052 iP7 + H2 → iP6 + P1 0.0099 N6 + H2 → nP6 0.0035 A8 + H2 → A7 + P1 0.0010

nP8 → N8 + H2 0.0116 iP7 + H2 → iP5 + P2 0.0045 N6 + H2 → iP6 0.4533 A9 + 4H2 → nP9 0.0165
nP9 + H2 → nP8 + P1 0.0017 iP7 + H2 → iP4 + P3 0.0001 N6 → MCP 0.0100 A9 + 4H2 → iP9 0.0508
nP9 + H2 → nP7 + P2 0.0023 iP7 → N7 + H2 0.0155 N6 → A6 + 3H2 0.6178 A9 + H2 → A8 + P1 0.0033
nP9 + H2 → nP6 + P3 0.0006 iP8 → nP8 0.0344 N7 + H2 → nP7 0.0016 A9 + H2 → A7 + P2 0.0028
nP9 + H2 → nP5 + nP4 0.0001 iP8 + H2 → iP7 + P1 0.0037 N7 + H2 → iP7 0.0086 A10 + 4H2 → nP10 0.0033

nP9 → iP9 0.4088 iP8 + H2 → iP6 + P2 0.0044 N7 → A7 + 3H2 0.7168 A10 + 4H2 → iP10 0.7510
nP9 → N9 + H2 0.0070 iP8 + H2 → iP5 + P3 0.0003 N8 + H2 → nP8 0.0373 A10 + H2 → A9 + P1 0.9012

nP10 + H2 → nP9 + P1 0.4301 iP8 + H2 → nP4 + iP4 0.0001 N8 + H2 → iP8 0.1945 A10 + H2 → A8 + P2 0.0038
nP10 + H2 → nP8 + nP2 0.0331 iP8 → N8 + H2 0.0861 N8 + H2 → N7 + P1 0.0013 A10 + H2 → A7 + P3 0.0008
nP10 + H2 → nP7 + nP3 0.0035 iP9 → nP9 0.0149 N8 → A8 + 3H2 0.5233 A11 + 4H2 → nP11 0.0179
nP10 + H2 → nP6 + nP4 0.0004 iP9 + H2 → iP8 + P1 0.0047 N9 + H2 → nP9 0.0020 A11 + 4H2 → iP11 0.0501

nP10 + H2 → 2nP5 0.0052 iP9 + H2 → iP7 + P2 0.0004 N9 + H2 → iP9 0.0182 A11 + H2 → A10 + P1 0.0038
nP10 → iP10 0.0592 iP9 + H2 → iP6 + P3 0.0008 N9 + H2 → N8 + P1 0.0026 A11 + H2 → A9 + P2 0.0435

Table 3. Activation energies of predicted kinetic model.

EA

(
J

mol

)
α

Dehydrocyclization of Paraffin′s (Pn → Nn ) 52,712 −0.66
Hydrocracking of Paraffin′s (Pn → Pn−1 + Pi ) 72,254 0.20

Isomerization of Paraffin′s (iPn ←→ nPn ) 135,455 0.00

Dehydrogenation of Naphthenes (Nn → An ) 40,528 0.11
Hydrodealkylation of Naphthenes (Nn → Nn−1 + Pi ) 186,470 0.49

Ring Opening of Naphthenes (Nn → Pn ) 23,345 0.96

Hydrodealkylation of Aromatics (An → An−1 + Pi ) 138,888 0.29
Ring Opening of Aromatics (An → Pn ) 138,635 1.17

Hydrogenation of Aromatics (An → Nn ) 149,622 0.70

The transfer functions (sigmoid) occur between the layers of the ANN and relate
the input and output of the transfer function [32]. Three transfer functions (i.e., tangent,
logarithmic, and linear) are most widely employed in neural network models [33]. As with
the formation of the output of the hidden nodes, the ANN outputs are produced based on
the summation of incoming weighted signals of hidden nodes passing through a specific
transfer function fo.

Yj = fo

(
n

∑
i=1

WI,jXi + b

)
(13)

Designing an Artificial Neural Network

The ANN model was designed to predict the performance of catalytic heavy naphtha
using a set of input parameters. A multilayered feed forward neural network (MFFNN)
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was used in this study. The input to the ANN model contained 36 nodes, including feed
weight fractions, inlet temperature, inlet pressure, catalyst weight, and dataset time, while
the output of the model contained 34 nodes, including product weight fractions, outlet
temperature, and outlet pressure. There is a huge difference in the ranges of the ANN
input-output data (shown in Table 4), where the weight fractions are within the range of 0–1,
while the other variables are much greater. The temperatures, pressures, catalyst weights,
and times were normalized within the range from 0–1 according to the Equation (14) [34]:

xnorm
i =

xi − xmin
xmax − xmin

(14)

Table 4. Range of ANN model variables.

Variable Minimum Maximum

Mole fraction 0 0.2353
Temperature (◦K) 697.1500 743.1500

Pressure (MPa) 2.6700 3.0400
Catalyst weight (kg) 2700 5875

Time (day) 0 1225

The weight fractions of some components cannot be normalized using Equation (14)
because its values may be equal to zero, making the value of the normalized variable equal
to infinity as a result of division by zero.

The predicted data of the temperature and pressure were denormalized to their
regional values using Equation (15):

xi = xmin + (xmax − xmin)× xi,Pred (15)

The tangent sigmoid transfer function for the hidden layer f(X) is given by Equation (16):

f (X) =
2

(1 + e−2n)
− 1 = tan sig(X) (16)

Different topologies with one, two, and three hidden layer(s) and varying numbers of
neurons (1 to 34) in hidden layer(s) were iteratively tested to achieve the optimum topology.
The mean square error (MSE) was used to quantify the performance of the neural network
topology according to Equation (17):

MSE =
1
N

N

∑
i=1

(
yexp,i − ypred,i

)2
(17)

The averages of the MSE values for all neural network topologies are presented in
Figure 2. When using only one hidden layer, the levels of the MSE were higher than
when using two or three hidden layers (Figure 2a). In addition, the unacceptable values
of the MSE were estimated in different values of neurons. Using two hidden layers of an
equal number of neurons produced lower values of the MSE than when using only one
hidden layer, especially for neurons higher than 9 (Figure 2b). As shown in Figure 2c,
acceptable values of MSE were estimated using three hidden layers of equal numbers of
neurons, especially when the number of neurons exceeded 7, in which case the values of
the MSE were stable for the lowest level. Therefore, three hidden layers, each comprised of
10 neurons, were selected as the optimum ANN topology to represent the results of the
heavy naphtha reforming process.
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The optimum neural network topology (36–10–10–10–34) is plotted as shown in
Figure 3, this topology having 36 neurons in the input layer, 10 neurons for each one of
three hidden layers, and 34 neurons in the output layer.



Catalysts 2021, 11, 1034 9 of 16

Catalysts 2021, 11, x FOR PEER REVIEW 9 of 17 
 

 

 

 

Figure 2. Mean square error achieved for (a) one hidden layer, (b) two hidden layers and (c) three hidden layers. 

The optimum neural network topology (36–10–10–10–34) is plotted as shown in Fig-

ure 3, this topology having 36 neurons in the input layer, 10 neurons for each one of three 

hidden layers, and 34 neurons in the output layer. 

 

Figure 3. Optimum topology of artificial neural network model. 

0.0001

0.001

0.01

0.1

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

M
ea

n
 s

q
u

a
re

 e
rr

o
r

No. of neurons

(b) Two hidden layers of equal numbers of neurons

0.0001

0.001

0.01

0.1

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

M
ea

n
 s

q
u

a
re

 e
rr

o
r

No. of neurons

(c) Three hidden layers of equal numbers of neurons

Figure 3. Optimum topology of artificial neural network model.

Figure 4 illustrates a graph of the MSE versus the epochs number using the optimum
neural network topology. The epochs number reveals the number of iterations until
reaching the optimal value of the objective function (minimum MSE). Obviously, the MSE
decreases with an increase in the number of epochs. The minimum value of the MSE
(0.00004) was observed when the epoch number reached 99,951, while further increase
in the epoch number did not have a noticeable effect of the value of the MSE. Therefore,
the maximum number of epochs was selected as 100,000 during ANN modeling. The
parameters of the ANN model are summarized in Table 5.
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Table 5. Parameters of the artificial neural network model.

Input Layer Input Data (36 Features)

Number of hidden layers 3
Hidden neuron for each hidden layer 10

Output layer Prediction of naphtha reforming performance (34)
Performance function Mean squared error (MSE)
Activation function Sigmoid

Learning rate 0.0001
Maximum number of iterations 100,000

Gradient 0.00001
Type of activation sigmoid Tan-Sigmoid

Algorithm used for training Levenberg–Marquardt

4. Statistical Analyses

Four statistical criteria were estimated to evaluate the performance of the two models
developed in this study: correlation coefficient (R2), mean absolute error (MAE), mean
relative error (MRE), and mean squared error (MSE). The coefficient of determination (R2)
was calculated using Equation (18) [35]:

R2 = 1−
∑N

i=1

(
yexp,i − ypred,i

)2

∑N
i=1

(
yexp,i − yexp

)2 (18)

The mean absolute error (MAE) and mean relative error (MRE) were calculated using
Equations (19) and (20), respectively.

MAE =
1

N ×M

M

∑
j=1

N

∑
i=1

∣∣∣yexp
i,j − ypred

i,j

∣∣∣ (19)

RE =
1

N ×M

M

∑
j=1

N

∑
i=1

yexp
i,j − ypred

i,j

yexp
i,j

 (20)

5. Results and Discussion
5.1. ANN Model Training

The datasets were divided into three parts: 70% for training, 20% for validation, and
10% for testing, which contained 28, 8, and 4 sub-datasets, respectively. Figure 5 displays a
comparison between the real data and the predicted result from the ANN model during
the training mode. The MSE was 4.0519 × 10−5, 5.0850 × 10−5, and 8.9327 × 10−6 for the
weight fractions, temperatures, and pressures, respectively, while the average MSE for all
data was 4.1085 × 10−5. The values of the MSE for temperature and pressure were lower
than for the weight fractions. This was a result of the weight of the objective functions for
temperature and pressure being higher than the weight of the weight fractions because
the normalized variables for temperature and pressure fell within the range 0–1 while the
weight fractions fell within the range from 0–0.26. The very low level of the predicted
errors confirms the reliability of the proposed ANN model.
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Figure 5. Comparison between the actual and ANN results (training mode).

5.2. Comparison between the ANN and RMM Predictions

The ANN model that was validated in the learning mode was applied to estimate the
model outputs in the testing mode; four sub-datasets were used in compassion between
the actual data and predicted results. The catalyst deactivation term was already present
in the two models, which included the ANN model as time normalized from 0–1225
to 0–1 and also added the kinetic model to achieve the predictions of the RMM model.
Figures 6–8 show a comparison between the actual and predicted results using the ANN
and RMM, while the summary of the predicted errors of two models is illustrated in Table 6.
Figure 6a,b represents a comparison between the actual and predicted weight fractions
obtained by the RMM and ANN models, respectively. The corresponding values of the
R2, MAE, and MSE error functions achieved by the ANN model were 0.9403, 0.0062, and
0.002044, respectively, while for the RMM model, they were 0.9318, 0.0070, and 0.0002284,
respectively. The MRE does not calculate for the weight fractions because some real values
(those that were equal to zero) displayed an infinite relative error. Comparisons between
the real and predicted outlet reactor temperatures obtained by the RMM and ANN models
are presented in Figure 7a,b, respectively. The corresponding values of the R2, MAE, MRE,
and MSE error functions achieved by the ANN model were 0.9736, 2.2246, 0.4774 and
21.6587 respectively, while for the RMM model, they were 0.8951, 4.0939, 0.5679 and 37.329,
respectively. Figure 8a,b shows a comparison between the actual and predicted outlet
reactor pressures obtained by the RMM and ANN models, respectively. The corresponding
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values of the R2, MAE, MRE, and MSE error functions achieved by the ANN model were
0.9467, 0.4010, 1.4129, and 1.1988, respectively, while for the RMM model, they were 0.4859,
1.6248, 6.4959, and 5.303, respectively. For the RMM model, the lower value of R2 in the case
of pressure can be attributed to the fact that the error in pressure was accumulative from
the first reactor to last one, in contrast to the temperature, whereas the heat exchangers
were used to heat the feed to the required temperature before entering each one of these
four reactors, so there would be no accumulative error. From these figures, close mappings
between the measured and simulated weight fractions, temperatures, and pressures can be
observed for the two models.
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Figure 6. Comparison between the real and predicted weight fractions: (a) mathematical model, and (b) artificial
neural network.
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Figure 7. Comparison between the real and predicted temperatures: (a) mathematical model, and (b) artificial
neural network.
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Figure 8. Comparison between the real and predicted pressure: (a) mathematical model, and (b) artificial neural network.

Table 6. Summary of the estimated errors.

Mathematical Model Artificial Neural Network

Composition Temperature Pressure Composition Temperature Pressure

Coefficient of
determination

(R2)
0.9318 0.8951 0.4859 0.9403 0.9736 0.9467

Mean absolute
error (MAE) 0.0070 4.0939 1.6248 0.0062 2.2246 0.4010

%Mean relative
error (MRE) - 0.5679 6.4959 - 0.4774 1.4129

Mean square
error (MSE) 2.284 × 10−4 37.329 5.303 2.0443 × 10−4 21.6587 1.1988

Both the ANN and RMM models displayed notable errors because predictions made
using both models depended on four consecutive calculations to predict the outputs of the
four reactors, which led to the accumulation error increasing from the first reactor effluent
to that of the last reactor. The training data for the ANN model represented only data for
input into the reactor and output from the reactor. Therefore, the ANN model is valid for
the data within this range. Using catalyst weights smaller than those used in training the
ANN model makes the model display unusual values of the weight fractions.

The heavy naphtha reforming process is nonlinear, and there is a strong interaction
between the products’ compositions, temperatures, and pressures. The dehydrogenation
of paraffins and naphthenes to aromatics entails endothermic reactions that occur quickly;
they take place in the first and second reactors, causing a rapid temperature drop in these
reactors. The temperature drop through the first two reactors was higher than that of the
last two reactors due to the exothermic nature of hydrocracking and the dehydrocyclization
reaction involving the paraffins that occurred in the first two reactors. Despite this process
being nonlinear, these two models predicted the four reactors’ effluent weight fractions,
temperatures, and pressures very well, but the ANN model’s predictions were slightly
better than those of the RMM model. The ANN and RMM models can effectively simulate
the complicated chemical reactors, but the ANN model is faster and more accurate than
the RMM model, which is in agreement with the conclusions obtained by Elçiçek et al.
(2014) [32]. The computational time was 18.3 s for the ANN model and 120 s for the RMM.
This great difference in the computation time is due to the fact that solving the ANN model
involves substituting input variables in simple algebraic equations to estimate the outputs
of the process, while solving the RMM model involves solving 34 ordinary simultaneous



Catalysts 2021, 11, 1034 14 of 16

differential equations using the fourth-order Runge–Kutta integration method sequentially
for each one of the four reactors. The validated ANN and RMM models can be used in the
future for accurate simulation of industrial heavy naphtha reforming processes.

6. Conclusions

In the present study, real data obtained from the heavy naphtha reforming process in
a long time period (1225 days) were modeled by both the rigorous mathematical model
(RMM) and artificial neural network (ANN) model. The parameters of the ANN model,
including the number of hidden layers, number of neurons in the hidden layers, and
the number of iterations, were optimized to construct an optimal ANN model having
36-10-10-10-34 topology. To evaluate the goodness of fit, an error analysis was performed
using the mean square error (MSE), coefficient of determination (R2), mean relative error
(MRE), and mean absolute error (MAE). The ANN model provided a precise and effective
prediction of the experimental data with a coefficient of determination (R2) of 0.9403,
0.9736, and 0.9467 for the weight fractions, temperatures, and pressures, respectively. In
comparison, for the rigorous mathematical model, the coefficient of determination (R2)
was found to be 0.9318, 0.8951, and 0.4859 for the weight fractions, temperatures, and
pressures, respectively. The R2 of the ANN was higher than 0.94 for the weight fractions,
temperatures, and pressures, indicating a good fit by the ANN for the testing dataset. All
predictions of the error functions yielded lower values for the ANN model than the RMM
model, suggesting that the ANN model is the most suitable model to describe the heavy
naphtha reforming process. One disadvantage of the ANN model is that it cannot predict
the process performance at the intermediate points inside reactors. We conclude that the
ANN may be preferable as an alternative approach instead of the RMM to predict the
performance of the heavy naphtha reforming process.
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Nomenclature
Ai, Bi, Ci, Di Specific heat constants
Ac Cross sectional area of the reactor (m2)
a Catalyst activity
CP Specific heat (kJ/kmole.K)
Dp Catalyst particle diameter (m)
EA Activation energy (J/mole)
Fi Molar flow rate of species i (kmole/hr)
G Mass flux (kg/m2 s)
gc Acceleration of gravity (m/s2)
Hj Molar enthalpy (kJ/kmol)
Ho

f Enthalpy of formation (kJ/kmol)
ko

i Pre-exponential factor
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ki ith reaction rate (kmole hr−1)
kd Rate constant of catalyst deactivation (day−1)
M Dataset number
N Component number
Po

i Partial pressure of ith component (MPa)
Pt Total pressure (MPa)
R Universal gas constant (J/mole K)
r Rate of reaction (kmole/kgcat hr)
S Stoichiometry of reaction
t Time (day)
T Temperature (K)
To Reference temperature (K)
w Weight of catalyst (kg)
y Weight fraction
Z Reactor length (m)
Superscript
norm Normalized
Subscript
exp Experimental
i Component number
j Reaction number
min Minimum
max Maximum
pred Predicted
Greek letters
εb Void fraction (m3/m3)
α Power of pressure effect
µ Viscosity (kg/m·s)
ρ Density (Kg/m3)
ρc Catalyst density (Kg/m3)
∆HRj Heat of reaction (kJ/kmole)
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