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Abstract: As part of natural products or biologically active compounds, the synthesis of nitrogen-
containing heterocycles is becoming incredibly valuable. Palladium is a transition metal that is
widely utilized as a catalyst to facilitate carbon-carbon and carbon-heteroatom coupling; it is used
in the synthesis of various heterocycles. This review includes the twelve years of successful indole
synthesis using various palladium catalysts to establish carbon-carbon or carbon-nitrogen coupling,
as well as the conditions that have been optimized.

Keywords: indole; palladium; cyclization; cross-coupling; transition

1. Introduction

A.V. Baeyer and Kop discovered indole in 1866 while researching a plant named
indigo, which is also known as benzopyrrole. Later, in 1869, Baeyer and Emmering
proposed the indole formula, which is generally being used now. A five-membered
pyrrole ring and benzene are fused to form indole [1]. Indoles are important heterocyclic
compounds because they are an integral part of many alkaloids and biologically active
compounds [2–20]. Thus, having enormous activities, indole has always acquired the
attention of researchers.

Heterocycles have recently been synthesized in modern research using various tran-
sition metals as catalysts. The Pd, Ni, Ru, and Rh are among the most commonly used
metals for the synthesis of heterocycles. Metal catalysts have the advantage of constructing
heterocycles from readily available starting substrates under mild reaction conditions [21].
Palladium-catalyzed coupling reactions are now regarded as a powerful tool in the syn-
thesis of organic compounds [8,22–38]. About fifty years ago, C-C bond production was
once considered one of the most difficult tasks, involving stoichiometric interactions be-
tween reactive nucleophiles and electrophiles or pericyclic reactions. However, using
palladium-catalyzed synthesis, new gates in C–C bond and C–X bond synthesis are now
being opened [39,40]. Palladium exists in three complexes with the following oxidation
states: Pd(0), Pd(II), and Pd(IV). These three oxidation states can be easily interconverted,
which is one of the reasons for palladium’s widespread use in organic synthesis [41].
Palladium-catalyzed couplings are favorable, as they are needed in smaller quantities, have
mild reaction conditions and good yields, and are tolerant of a wide range of functional
groups [42]. There are various classical methods available for the synthesis of indole and
most of them are named after the scientists [25,43–62].

Pd-catalyzed indole synthesis was highlighted in this review. In different reaction
conditions, we discuss the role of different Pd Catalysts, for instance, PdCl2, Pd(PH3)4,
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Pd2dba3, Pd(OAc), and various others. We also summarized the major factors which affect
the yield of reaction for a particular catalyst.

2. Indole Synthesis
2.1. Indole Synthesis via Ortho-Alkynyl Anilines

One of the attractive strategies for constructing complex molecules is a tandem re-
action [63–71]; by this methodology, N-heterocycles are formed by utilizing 2-alkynyl
benzaldoxime in the laboratory for synthesizing compounds resembling natural com-
pounds [72–83]. Moreover, the use of ketoxime in amide production for the Beckmann
rearrangement has shown to be a successful and extensively used method [84,85]. In 2010,
Qiu and colleagues used a two-step catalytic system for the synthesis of N-substituted
indole (2). They utilized 1-(2-alkynylphenyl)ketoxime (1) as the starting substrate in the
tandem reaction using (NCCl)3 in the presence of InCl3 co-catalysts. Their action involved
Beckmann rearrangement and subsequent intramolecular cyclization of (1) to acquire the
desired N-substituted indoles which are fundamental structures in both the therapeu-
tic agents and natural products (Scheme 1). This one-pot multi-catalytic strategy was
effective for 1-(2-alkynylphenyl)ketoximes (1) having either electron-donating or electron-
withdrawing substituents on the aromatic ring.
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Scheme 1. Synthesis of N-substituted indoles via intramolecular cyclization of ketoxime.

They also reported the formation of the 3-chloroindoles (3) by simply adding CuCl2
to the reaction via the following steps: Beckmann rearrangement/intramolecular cycliza-
tion/halogenation process (Scheme 2) [86].

Atropisomeric compounds having a chiral N-C axis gained excessive attention as
innovative chiral molecules over recent years [87–105]. They are also considered important
in the field of advanced organic enantioselective catalytic preparation of the innovative
compounds having a chiral Nitrogen-Carbon axis [106–126]. In 2010, Ototake and co-
workers stated that the reaction utilizing basic reagents or transition-metal catalysts has
been reported as an effective method for constructing indole nuclei [107,127–130]. They
firstly synthesized optically active atropisomeric compounds, N-(o-tert-butyl phenyl)indole
derivatives (5) by palladium-catalyzed asymmetric 5-endo-hydroamino cyclization of
the achiral N-(o-tert-butylphenyl)-2-alkynylanilines (4), affording approximately 83% (ee)
product (Scheme 3) [131].
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It was concluded that enantioselectivity was highly influenced by the electronic
crowding in the aryl ethynyl group as well as by the bulkiness of substituents at the ortho
position because of the dynamic axial chirality developed by aryl substituent’s twisting
(Scheme 4) [132].
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Due to having unique and effective biological properties and being the essential
building element of the many naturally occurring compounds, the reaction for constructing
an indole nucleus has gained much attention [127,128]. Currently, one-pot synthesis
involving multiple steps have gained attention because of the economic and environmental
benefits. The classical separation as well as isolation of the required products needed in
every step has been avoided. In 2008, Sakai et al. used one-pot, four-step synthesis for
constructing arylated indoles (8), utilizing homogeneous as well as heterogeneous solid-
supported Pd-catalysts and reagents (Scheme 5). Such a method of using a combination of
reagents and two-phase catalysts increased the yield dramatically. The reaction mechanism
was initiated with 2-[(trimethyl)ethynyl]aniline (9) formation via Sonogashira coupling of
trimethylsilylacetylene (7) with 2-iodoaniline (6). The second step afforded ethynylaniline
(10) by desilylation. Then, the compound (10) in the next step underwent Sonogashira
coupling with an aromatic iodide (11) to introduce a new functional group in the alkynyl
moiety at the terminal position. Lastly, the coupled product (12) was cyclized to yield the
indole (8) (Scheme 6). The combination of PdCl2 and silica-supported Pd-catalyst yielded
the best results, in contrast to PdCl2(PPh3)2 and all the other heterogeneous catalysts
not involving a silica-supported Pd-catalyst. Thus, such results provided a true picture
of the potency of using a combination of homogeneous and heterogeneous palladium
catalysts [133].
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Scheme 6. The plausible mechanism for the synthesis of arylated indoles involving Sonogashira coupling.

For current interest, indoles having nitrogen substituents over the benzenoid ring are
usually found to have biological activities, so there is an urge to develop new methodologies
that allow the synthesis of indole-containing nitrogen substituents [134–137]. In 2009,
Sanz and co-workers synthesized different derivatives of 2-substituted-nitroindoles from
commercially available 2-haloanilines or 2-amino-nitrophenols by cross-coupling hetero-
annulation methodology. They reported the synthesis of 2-substituted indoles by treating
terminal alkynes (14) with 2-haloanilines (13), involving 5-endo-dig cyclization in the
presence of NaOH. They synthesized 2-substituted indoles having a nitro or an amino
substituent selectively on the C–5, C–6, or C–7 position. The desired product formation
was accomplished by utilizing different solvents; with DMA, NO2-indole derivatives
(15) were obtained effectively, whereas choosing DMF resulted in NH2-indole derivatives
(16) selectively (Scheme 7). When DMF was used as a solvent in situ, a derivative of
ammonium formate was produced, which acted as a hydrogen source in the presence of
palladium salt [138].
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Reactions catalyzed by transition metal have gained an advantage over classical
methods for indole synthesis due to their efficient tolerance of functional groups and greater
structural diversity [127,139–146]. A viable approach for the synthesis of indole nuclei is a
two-step methodology involving a Sonogashira cross-coupling reaction of o-halo aniline,
followed by the nucleophilic addition of an amine to triple bond. Though the cyclization
reaction can proceed on its own, it often needs the assistance of heteroatom to become more
nucleophilic, formed either via deprotonation [147,148] or via Lewis acid or metal activation
of the alkyne moiety [149–153]. In 2008, Dooleweerdt and co-workers synthesized 2-
aminoindoles (19) by one-pot, two-step reaction catalyzed by palladium between ortho-
iodoanilines (17) and ynamides (18) (Scheme 8). The reaction mechanism involved a
Sonogashira reaction to form a C–C bond. Then, the triple bond spontaneously underwent
hydroamination, intramolecularly generating a C–N bond and providing yields up to 87%.
In some of the cases, ortho-iodoanilines with electron-withdrawing substituents provided
a relatively poor yield of the product, which was due to the reduced nucleophilicity of
aniline NH2 in the step of hydroamination. In comparison with other solvent alternatives,
DMF provided the best yield. Additionally, Pd(dba)2 can be used instead of palladium
acetate without affecting the yield of indole [140].

In 2011, Rao and colleagues synthesized 2-(hetero)aryl-substituted indoles (23) via
Pd/C–Cu catalysis involving a cross-coupling reaction. In this reaction, firstly, a cou-
pling reaction between iodoarenes (20) and (trimethylsilyl)acetylene (21) using Pd/C–CuI–
PPh3, Et3N in CH3OH took place. Then, the reaction mixture was treated by K2CO3 in
H2O/CH3OH and, lastly, coupled with o-iodoanilides (22), affording the desired indole
derivatives (23) (Scheme 9). Here, they utilized K2CO3 as a base for desilylation in the
presence of CH3OH–H2O. The reaction mechanism involved the following sequential steps:
(i) carbon-carbon coupling reaction followed by (ii) carbon-silicone bond fission followed
by (iii) carbon-carbon and (iv) carbon-nitrogen bond formation in a one-pot reaction. The



Catalysts 2021, 11, 1018 7 of 80

reaction required only 10% Pd/C–CuI/PPh3 for a better yield. On the exclusion of any
constituent in 10 mol% of the Pd/C–PPh3–CuI catalytic system, the desired product’s
yield was decreased. Iodoarene rings having either electron-withdrawing substituents, e.g.,
–CF3 and –CO2Et, or electron-donation substitutes, e.g., –Me, –OMe, –OH, –NH2, were
successfully tolerated in this reaction [154].
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Scheme 9. One-pot synthesis of 2-(hetero)aryl-substituted indoles.

The 2-substituted indoles were synthesized in the presence of economic ZiCl2 that acted
as a co-catalyst instead of CuI in the Pd-catalyzed Sonogashira cross-coupling/cyclization.
The reactants used in this reaction were terminal alkynes and N-tosyl-2-iodoanilines. In
this reaction, terminal alkynes (25) were heated with 2-iodoanilines (24) using 10% Pd/C,
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Et3N, PPh3, and moist ZnCl2 at 110 ◦C in dry DMF for 3 h to afford N-protected indoles (26)
in higher yields (Scheme 10). At room temperature, the reaction was unable to yield any de-
sired product; while at 110 ◦C, the desired indole was obtained in a minor quantity together
with di-yne produced predominantly by homocoupling of the alkyne. However, after utiliz-
ing moist ZnCl2, the only product that was formed was the desired indole without yielding
any by-product of homocoupling [155]. Furthermore, they synthesized N-unsubstituted
indoles by employing N-formamide-2-iodoanilines rather than N-tosyl-2-iodoanilines.
For this reaction, N-(2-iodoaryl)formamides (27) were treated with phenylacetylene (28)
(terminal alkynes) in Pd-catalyzed cross-coupling/cyclization, yielding corresponding
indoles (29) via an intramolecular cascade C–C/C–N bond generation (Scheme 11). The for-
mamides having electron-donating groups or poor electron-withdrawing groups afforded
the desired product in less than 1.5 h in a high yield. In the case of formamides bearing
strong electron-withdrawing substituents, a long reaction time was required with the
decrease in the yield of the desired product. The reaction was performed by the following
sequential steps: Sonogashira cross-coupling, followed by the formation of the intramolec-
ular C–N bond using the exact catalytic system, affording the intermediate substance (30),
after which hydrolysis afforded the indole derivatives (29) (Scheme 11) [156].
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In 2014, Yamaguchi and Manabe synthesized 4-Chloroindoles (33) by reacting deriva-
tives of 2,3-dichloroaniline (31) with terminal alkynes (32) using a catalyst made up of
palladium and dicyclohexyl-(dihydroxy terphenyl)phosphine (Cy-DHTP)(L2) (Scheme 12).
This catalyst carried out the reaction selectively at the ortho-position involving Sonogashira
cross-coupling followed by subsequent cyclization to produce 4-chloroindoles providing
high yields. On the contrary, adding the boronic acid to the same reaction conditions
yielded 2,4-disubstituted indoles (34) by a single-pot reaction involving a Sonogashira
cross-coupling reaction followed by subsequent cyclization and a Suzuki–Miyaura reaction
(Scheme 12). The Cy-DHTP (L2) provided better results for cross-coupling at ortho-position
selectively than Cy-HTP. By increasing the quantity of alkyne, the yield was improved. This
reaction did not yield any product by Sonogashira cross-coupling at the meta-chloro sub-
stituents because the Sonogashira cross-coupling occurred selectively at the ortho-chloro
substituents. These results proved that the Pd-catalyst has potential to increase the reaction
rate even in the case of sterically hindered and electronically inactive positions [157].
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In 2017, Bruneau and co-workers synthesized indoles (37) by employing a hetero-
geneous catalytic system while reacting o-iodoanilines (35) with terminal alkynes (36)
(Scheme 13). The catalytic system was composed of nanoparticles of palladium supported
on (Pd0 –AmP–MCF), the siliceous meso-cellular foam. The presence of water even in
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a small amount affected the transformation. Moreover, the water increased the yield of
indole by accelerating the hydrolysis of vinyl Pd-intermediate (38), which was involved in
this annulation process (Scheme 14). Under mild reaction conditions, this catalytic protocol
enabled good to excellent yields of the desired products without adding any ligand [158].
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tion in the aryl annulation process. The ligand (L3) and PdPh(OAc) complex (42) was the 

vital intermediate in the synthesis. The reaction was remarkably influenced by the size as 

well as the nature of –OR substituent on the naphthyl moiety, and the presence of -OBn 

afforded the best results. Aryl boronic acid having electron-donating or electron-with-

drawing substituents underwent the reaction smoothly, affording a good to high yield. 
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2.2. Indole Synthesis via Cascade Reaction

In 2020, He and colleagues synthesized highly enantioselective 2,3-disubstituted
indoles (ee) (41) via a Pd-catalyzed Cacchi reaction between N-aryl(alkyl)sulfonyl-2-
alkynylanilides (39) and aryl boronic acid (40). The optimized reaction conditions for
the reaction involved Pd(OAc)2 in a catalytic amount, ligand (R,R)-QuinoxP*(L3), and
the base K3PO4 in the presence of solvent MeOH under an O2 atmosphere (Scheme 15).
The experimental studies suggested that the trans-metallation occurred before the amino-
palladation in the aryl annulation process. The ligand (L3) and PdPh(OAc) complex (42)
was the vital intermediate in the synthesis. The reaction was remarkably influenced by
the size as well as the nature of –OR substituent on the naphthyl moiety, and the presence
of -OBn afforded the best results. Aryl boronic acid having electron-donating or electron-
withdrawing substituents underwent the reaction smoothly, affording a good to high yield.
This reaction also tolerated the presence of many groups as well as heterocyclic substituents
such as furan, indole, and quinoline on o-alkynylanilines. Ligand (R,R)-QuinoxP* (L3) and
methanol provided the best results [159].
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Scheme 15. Synthesis of 2,3-disubstituted indoles by Cacchi reaction.

Larock and co-workers synthesized indoles (45) via a one-pot reaction by using mi-
crowave radiation and employing three components in this coupling reaction. The reaction
involved two steps under Sonogashira cross-coupling standard-reaction conditions. Firstly,
N-substituted/N,N-disubstituted 2-iodoaniline (43) was treated with terminal alkynes
(44), followed by the addition of aryl iodide (Ar-I) and acetonitrile (CH3–CN) (Scheme 16).
Mechanistic studies revealed that the first step generated N,N-dialkyl-2-(1-alkynyl)aniline
(46) via Sonogashira cross-coupling. Then, the aryl iodide was added oxidatively to the
Pd(0) which was transformed to an electrophilic Ar-PdI species, which later carried out the
activation of the triple bond in alkyne (46) of N,N-dialkyl-2-(1-alkynyl)aniline by coordi-
nation for forming a pie-palladium complex (47). After that, it underwent intramolecular
trans-aminopalladation by the 5-endo-dig cyclization, yielding the indolium species (48),
which then removes a methyl group via the SN2 mechanism after the iodide anion attack
in situ and yielded the indole-Pd(II) intermediate (49). Then, after reductive elimination,
the 2,3-disubstituted indole derivative was acquired (Scheme 17) [160].
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Scheme 17. Possible mechanism for synthesis of N-methylated indoles.

In 2010, Cacchi and co-workers synthesized novel N-H free 2,3-disubstituted indoles
(52) by reacting 2-alkynyltrifluoro acetanilides (50) and arene diazonium tetrafluoroborates
(51) in the presence of a Pd-catalyst (Scheme 18). The reaction followed the domino process
that was started by reacting iodo-dediazoniation with TBAI to form aryl iodide in situ. The
aryl iodide was added oxidatively to the Pd(0), affording a sigma-arylpalladium iodide
(53) which coordinated with the carbon–carbon triple bond to form a π-alkyne-sigma-
arylpalladium complex (54). This step was followed by intramolecular amino-palladation
that yielded a sigma-indolylpalladium intermediate (55), which later afforded the desired
N-H free indole (52) by reductive elimination and hydrolysis (Scheme 19). It was found
that the reaction tolerated a variety of the substituents in arene diazonium salt as well as
an alkyne, such as halo and cyano, ether, keto, –NO2, –Me, and –OMe substituents as well
as other ortho substituents [161].
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Scheme 19. The domino process for synthesizing N-free 2,3-disubstituted indoles.

Cacchi and colleagues synthesized 3-aryl-4-fluoro-2-substituted-1H-indoles (58) re-
gioselectively by using the 3-fluoro-2-iodotrifluoro acetanilide (56), terminal alkynes (57),
and aryl bromide in a single-pot via a cascade Sonogashira-Cacchi reaction (Scheme 20).
The results showed that the yields of indole formation were good when using an inorganic
base, e.g., Cs2CO3 and K2CO3. However, the cyclization was better in the presence of a
base such as Et3N in a microwave-irradiated process [162].
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In 2013, Lu and colleagues extended the Cacchi aminopalladation/reductive elimi-
nation sequential reaction mechanism by utilizing 2-bromoanilides (59) for obtaining 2,3-
disubstituted indoles (61) instead of corresponding iodides (Scheme 21). They proposed a
one-pot reaction involving three components that were found to have one major drawback:
the low active and sterically hindered 2-bromo or 2-chloro anilides required harsh reaction
conditions for Sonogashira cross-coupling. Thus, the harsh conditions resulted in unwanted
intramolecular hydroamidation taking place in the primarily obtained o-alkynylanilides with-
out incorporating the aryl group at position-2 of the indole ring. The results suggested that to
minimize the formation of hydroamidation in the Sonogashira coupling, the use of a strong
base, copper salt as a co-catalyst, and high temperature must be avoided. The Sonogashira
cross-coupling reaction proceeded effectively in both NMP and acetonitrile, although the
Cacchi cyclization was affected badly in these solvents. The reaction did not proceed in the
case of toluene because the base was poorly soluble. It is worth noting that three equivalents
of the base Cs2CO3 were used during the complete reaction. Moreover, Cacchi cyclization
was not completed with the 2.2 equivalent of the base [163].

Zhou and co-workers synthesized various derivatives of 2-aryl indoles (64) by reacting
aryl bromides (63) and 2-alkynyl aryl azides (62). They used dppe as a ligand with catalyst
Pd2dba3 and base t-BuOLi at 100 ◦C using toluene as a solvent (Scheme 22). For the cyclization,
the nucleophilic nitrogen was obtained in situ via the Staudinger reaction from azides [164].
The reaction proceeded via two different pathways. In the first path A, aryl bromide (65)
was added oxidatively to catalyst Pd(0), affording an aryl palladium (II) species (68). The
2-alkynyl aryl azide (62) imino phosphorane (69) were generated in situ by the Staudinger
reaction. Then, the intermediate (70) was obtained by 5-endo-dig cyclization. Nitrogen acted
as a nucleophile and attacked the phosphinimine moiety, present in the aryl palladium (II)-
activated triple bond. Later, intermediate (70) was converted to intermediate (75) by reductive
elimination which, after hydrolysis, afforded the product (66). The alternative mechanism
path B involved the carbene species. The Palladium (II) carbene species (72) was generated
by the palladium intermediate (70) via electron’s back donation. Then, intermediate (73) was
formed by subsequent migratory insertion, which afforded intermediate (74) by isomerization.
The product (66) was formed after protonating the intermediate (74) and Pd(II) was reduced to
Pd(0) by (71) (Scheme 23). The yield of the reaction was found to be increased by loading more
dppe and Pd2dba3. The results concluded that dppe did not solely act as the ligand but also
carried out other crucial roles in the transformation. The product yield was sharply reduced
by decreased loading of dppe; on the other hand, the decreased loading of Pd2dba3 did not
affect the yield. Furthermore, the base was found to be necessary for the reaction. The aryl
bromides having meta and para substitutions afforded good yields of the required product
except in the case of the p-CO2Me substituted bromide. The yield was low in the case of ortho
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substitution at aryl bromide. Furthermore, the reaction with the azide substrate having an
aryl substituent also produced the desired product in a moderate to good yield [165].
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Scheme 23. Plausible annulation paths in the synthesis of 2-aryl indoles.

In 2016, Minami et al. used another sort of amino-palladation/reductive elimination
reaction involving the palladium-catalyzed regioselective 5-endo-dig ring-closing reaction
between 2-alkynyl phenyl carbamates (76) and diaryliodonium salts (77), resulting in C-
arylated 2,3-disubstituted indoles (78) (Scheme 24). This reaction involved the generation
of palladium (II) intermediate by the reacting diaryliodonium salts with palladium, which
acted as an arylating agent by activating the C≡C. The DCE solvent was found to be the
best solvent for this reaction, providing maximum yields [166].
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Moreover, Cacchi reported that the three-component synthesis of 2-(aminomethyl)-
3-arylindoles (82) was catalyzed by palladium. The reaction was carried out between
aryl iodides (81), amines (80) and 3-(ortho-trifluoro acetamide-o-aryl)-1-propargyl alco-
hols (79) by a simple a one-pot procedure affording two carbon-nitrogen bonds and one
carbon-carbon bond (Scheme 25). The mechanistic studies suggested the formation of
trifluoroacetyl ester in the reaction medium. It is also believed that palladium intermediate
(83) formation is the key step in cyclization. The formation of intermediate was carried by
the nucleophilic intramolecular attack of nitrogen on the activated C≡C. The activation
of C≡C was performed by Pd(II) moiety generated in situ (Scheme 26, eqn (1)). Thus, this
assumption rejected the formation of indole by the direct nucleophilic replacement of the
-OH by amino group carried out via the palladium coordination to oxygen species (84)
(Scheme 26, eqn (2)). The reaction required mild conditions and both substituted aryl
iodide and propargylic alcohols at the propargylic carbon were suitable choices for this re-
action. The reaction showed tolerance towards many substituents including chloro, bromo,
keto, ether, ester, and cyano groups. Low yields were obtained using other phosphine
ligands or Cs2CO3 as the base. The primary amines were not a suitable choice for the
reaction because they involve inside reactions [167].
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Vinyl halides were also used as a suitable electrophile instead of aryl halides for
amino-palladation, followed by subsequent reductive elimination of Pd(0) to construct an
indole nucleus. In 2010, Arcadi et al. utilized α-iodoenones (86) of different ring sizes
as organic electrophiles in cyclizing 2-alkynyltrifluoro acetanilides (85) in the presence
of palladium as a catalyst to obtain 2,3-disubstituted indoles (87) (Scheme 27). Among
the various conditions tested, weak ligand As(Ph)3 and a catalyst Pd2(dba)3 provided the
best results, whereas Pd2(dba)3 was much more operative in the absence of a ligand. The
K2CO3 can also be employed as a base instead of Cs2CO3, though slightly better results
were obtained in the latter case. The reaction was found to be independent of the ring size
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of the alpha-iodoenones. Moreover, various functional groups, e.g., keto, cyano, ester, and
nitro, were tolerated under these reaction conditions [168].
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The cascade intermolecular amino-palladation reactions subsequently followed by
oxidative coupling were also carried out with alkenes, contrary to the halide (X) derivatives.
In 2010, Alvarez and colleagues reported that structurally diverse C3-alkenylindoles (90)
were efficiently prepared by using readily available o-iodosubstituted aniline, alkynes, and
functionalized olefins. In the first step, 2-alkynylanilnes (88) were formed by Sonogashira
cross-coupling between o-iodo substituted aniline and alkynes, then 2-alkynylanilnes (88)
underwent cascade Pd-catalyzed hetero-cyclization/oxidative Heck cross-couplings with
functionalized olefins (89), affording the desired C3-alkenylindoles (90) (Scheme 28). The
5-endo-dig-cyclization of N-heteronucleophiles occurred regioselectively, and subsequent
stereo selectively Heck cross-coupling took place with any mono or disubstituted alkenes,
affording mostly (E) isomers. Usually, substrates bearing different alkynyl substituents
e.g., alkyl (–R) and aryl (–Ar) groups, either electron-rich or electron-poor, produced the
desired indole in high yields. Anilines having the trimethylsilyl (TMS) group were not
affected during the reaction [169].
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In 2011, Cacchi and co-workers synthesized 2-alkenyl indoles (93) by palladium-
catalyzed reactions between arene diazonium tetrafluoroborates (92) with 2-alkynyl-N-
(allyl)trifluoro acetanilides (91) (Scheme 29). The reaction involved the following series of
subsequent events: (a) Heck reaction, (b) amino-palladation, and (c) reductive elimination
to yield the desired product. To carry out this reaction via the single-pot procedure, K2CO3
and PPh3 were added to the crude reaction mixture obtained by the Heck reaction when
MeCN was used as a solvent or after evaporating the volatile components from the crude
reaction mixture when MeOH was used as a solvent and the temperature was elevated
to 100 ◦C. The reaction mechanism is shown in (Scheme 30), which was involved the
reaction of (94) with Pd(0) generating π –allylpalladium complex intermediate (96), then
C≡C coordinated to Palladium and afforded (97). After that, a regioselective intermediate
(98) was formed via intramolecular amino-palladation which, on subsequent reductive
elimination, afforded the desired product (95) and the active Pd catalyst was regenerated
after the cycle. This new methodology tolerated many useful substituents, e.g., –Cl, –Br,
and –I, as well as other ortho substituents [170].
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In 2013, Wang and co-workers synthesized β-indole ketones (101) by coupling 2-
alkynyl anilines (99) with allylic alcohols (100) in the presence of an oxidant using palla-
dium as a catalyst. Contrary to alkenes, allylic alcohols were used in this methodology,
with inexpensive dioxygen as the oxidant (Scheme 31). These cross-couplings showed
high tolerance towards many useful functional substituents and high reactivity towards
electron-deficient allylic alcohols. The cyclization mainly depends on the (Pd(OAc)2 cata-
lyst; additionally, it has a higher reactivity than other palladium catalysts. The presence of
oxygen is necessary for regenerating the active Pd(II) species. Polar solvents worked best
in this reaction, and studies also concluded that, in the case of DMF, high reactivity was
observed in terms of both required reaction time and yield of the product. The obtained
β-indole ketones can readily be used to obtain pyrrolo[2,1-a]isoquinolines and β-indole
alcohol/amine, which are pharmaceutically significant [171].

In 2013, Janreddy et al. reported a tandem reaction between 2-N-unprotected-2-
alkynylanilines (102, 105) and different electron-poor alkenes (103, 106) using a Pd-catalyst
and affording 2,3-disubstituted indole derivatives (104, 107). The nature of the palla-
dium catalyst was used to affect the formation of the resulting product. The catalyst
PdCl2 in MeCN at 60 ◦C afforded 2,3-disubstituted indole derivatives (104), while with
Pd(OAc)2/LiCl or LiBr in the THF or MeCN at 60 ◦C, the same reaction afforded N-
alkylated-2-alkynylaniline derivatives (107) (Scheme 32). The 2-(phenylethynyl)anilines
having electron-donating substituents produced slightly better yields of the desired prod-
ucts than the substrates having electron-withdrawing substituents. Sensitive substituents,
e.g., alcohol, ester, and C3H5–, were tolerable during the reaction [172].
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In 2015, Reddy and Vijaya Anand reported a domino process catalyzed by palla-
dium to afford unsymmetrical diarylindolyl methane derivatives (110) by annulation of
o-alkynylanilines (108) followed by subsequent 1,6-conjugated addition to p-quinone me-
thides (109) involving mild reaction conditions (Scheme 33). For this reaction, there was
no need to protect the amino group. This reaction proceeded smoothly with p-quinone
methides obtained either from the electron-donating, or slightly electron-withdrawing
aromatic aldehydes, producing the corresponding diarylindolyl methane yields up to 90%.
The o-alkynylanilines obtained either from electron-donating or electron-withdrawing aryl
alkynes afforded moderate to excellent yields of the corresponding products. During the
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reaction, amine addition product (111) was formed by a reversible reaction as its concen-
tration was decreased with increased formation of the indoles (110). It was worth noting
that the compound (111) was not an intermediate of this reaction. The 2-substituted indole
(112) was regarded as the key intermediate, and it was formed in the rate-determining step
during the cyclization process (Scheme 34) [173].
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Scheme 34. The key intermediate formation in the synthesis of diarylindolyl methane derivatives.

The cyclohexanone-fused tetrahydropyrano[3,4-b]indoles (114) was synthesized by in-
tramolecular Pd(OAc)2-catalyzed cyclization of the aniline-tethered alkynyl cyclohexadienones
(113) using a ligand and bipyridine in the mixture of solvents of DMF/H2O/HOAc (Scheme 35).
The 1,4 dioxane can also be used instead of DMF, but better results were obtained in the latter
case. The mechanistic studies have shown the reaction involved following series of subsequent
steps. A vinylpalladium species (119) was generated via trans-amino-palladation of the C≡C
bond present in (116). After this step, conjugate intramolecular C=C was inserted into the Pd-C
bond present in (119), generating an intermediate (120) or an enolate (121). The desired product
(117) was obtained after protonolysis of (120) or (121). The Pd(II) moiety was regenerated on
completion of the cycle. Intermediate (119) after protonolysis generated the N-Ts-indole (122) as
a byproduct. The presence of the tosyl group (Tos) reduced the nucleophilicity at the 3-position
in the (122), thus it making it unable to produce the desired (117) (Scheme 36). In the presence
of a chiral ligand such as bipyridines, the asymmetric cascade cyclization produced chirally
(CH2)5CO-fused tetrahydropyrano[3,4-b] indoles (117) with remarkable enantioselectivities in
a comparatively good yield (Scheme 36). At low temperatures and in the absence of water or
HOAc, the reaction did not go well and negative effects on the yields were observed. Except
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for substrate (115), all other starting substrates afforded the dried product good to excellent
yields despite the electronic or steric crowding rendered by the substitutions present in the
cyclohexadienone or benzene ring; even trifluoromethyl and bromide substituents were well
tolerated in the methodology [174].
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In 2007, Tang and co-workers utilized PdX2 and CuX2 (X = Chloro, Bromo) in the
synthesis of 2-substituted 3-halo-1H-indoles (124) via the annulation of 2-ethynyl benze-
neamines (123) (Scheme 37). The reaction worked successfully only with N-acetyl-protected
2-ethynyl benzeneamines. The substituents on the aromatic rings, e.g., –NO2, halogens
(X = F, Cl), were tolerated successfully during the reaction [175].
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In 2010, Han and Lu synthesized substituted 3-hydroxymethylindoles (129) via the 
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nylethynyl anilines (127) with aldehydes (128) using the cationic catalytic Pd(II) complex 

Scheme 37. Synthesis of 2-substituted 3-halo-1H-indoles via the annulation of 2-ethynyl benzeneamines.

In 2011, Zhang et al. reported that for halopalladation cyclization, 2-alkynyl aryl
azides (125) were suitable substrates. Thus, they synthesized 3-substituted haloindoles
(126) using PdBr2 or PdCl2 together with halide sources from a variety of 2-alkynyl aryl
azides (Scheme 38). Under Cy2NCl, PdCl2, and CuCl2, alkynes having electron-rich or
electron-poor aryl groups produced a moderate yield in the chloro-palladation reaction.
The aromatic ring with substituents such as chloro or nitro in the azidobenzene nucleus
were successfully tolerated [176].
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In 2010, Han and Lu synthesized substituted 3-hydroxymethylindoles (129) via
the intermolecular subsequent formation of C–N and C–C bonds by reacting N-tosyl-2-
phenylethynyl anilines (127) with aldehydes (128) using the cationic catalytic Pd(II) complex
in dioxane. The complex Pd(bpy)(OTf)2(H2O)2 produced the best yields, although dppp
was also used in place of bpy. In solvent screening, different solvents were employed, e.g.,
CH3NO2, toluene, THF, DMSO, and 1,2-dichloro ethane (ClCH2CH2Cl), but the results
were not satisfied with them (Scheme 39). To synthesize, the α-hydroxyindolyl acetate
(132), the exact conditions were used with ethyl glyoxylate (131) to afford good yields. This
cascade reaction firstly involved intramolecular aminopalladation of the alkyne substrate.
Then, the C–Pd bond was quenched by adding a carbonyl group, and this catalytic cycle
was completed and regenerated the Pd(II) species without requiring the redox system
(Scheme 40). This reaction only worked successfully only with N-tosyl protected anilines,
contrary to those with other protecting groups, e.g., with mesyl or trifluoroacetyl no desired
product was obtained. Thus, it is concluded that a strong electron-withdrawing substituent
on nitrogen has a vital role for aminopalladation [177].
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In 2014, Zhao et al. carried out the synthesis of indole nuclei by the intramolecular
addition of C−N and S−N bond to alkynes catalyzed by palladium, involving functional
group migration to the position-3 of the indole ring. Hence, the reaction of N-acyl-2-
alkynylanilines (133) in the presence of PdCl2(CH3CN)2 in MeCN at 90 ◦C afforded the
3-acyl-indoles (134) involving acyl group migration (Scheme 41). The screening of solvents
concluded that the migration of functional groups was highly affected by the solvent used
(MeCN was the best solvent) and there was no product observed in the case of Pd2(dba)3
and Pd(PPh3)4. This method required low catalyst loading, operated simply, and had
a high tolerability towards many functional groups. The substrates with electron-rich
substituents, e.g., –Me, or –MeO, halides (X) (X = Br, Cl, F), or electron-poor substituents,
e.g., (CF3) on position R, produced the respective products in remarkably high yields. This
method smoothly migrated various functional groups, e.g., sulfonyl, pyruvoyl, acyl, and
amide to the 3-position of indoles [178].
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Gabriele and colleagues reported a novel multicomponent tandem reaction to syn-
thesize 1-(alkoxyarylmethyl)indole-3-carboxylic ester (137) using five basic molecules:
2-alkynylaniline imines, (ROH), (CO), (ROH), and (O2) in the presence of a Pd-catalyst.
The reaction mechanism involved a subsequent series of steps. Firstly, the nucleophilic
alcohol (ROH) addition to the imino moiety present in the 2-alkynylaniline imine (135)
afforded [(alkoxymethyl)(2-alkynylaryl)]amine intermediate (136), then the PdI2-catalyzed
reaction with alcohol (ROH), CO (carbon monoxide) and O2 (oxygen) afforded the desired
product 1-(alkoxyarylmethyl)indole-3-carboxylic ester (137) via 5-endo-dig cyclization-
alkoxycarbonylation (Scheme 42). These five molecules (2-alkynylaniline imines, alcohol
(ROH), oxygen (O2), alcohol (ROH), and carbon monoxide (CO)) were activated sequen-
tially in a two-step tandem process, producing high-functionalized derivative indole. The
use of MeC(OMe) as the solvent instead of HC(OMe)3 resulted in a significantly lower
yield of the product [179].
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Scheme 42. Synthesis of 1-(alkoxyarylmethyl)indole-3-carboxylic ester by multicomponent tandem reaction.

Furthermore, Gabriele et al. directly obtained indole-3-carboxylic esters (139) from
2-alkynylanilines (138) having an internal C≡C and 2◦ amino by reacting them with carbon
monoxide (CO), oxygen (O2), and alcohol (ROH) in the presence of a PdI2/ KI catalytic
system. The reaction conditions used were mild, i.e., a temperature of 100 ◦C or 25 ◦C at
20 atm using a 4:1 ratio of the mixture of CO/air (Scheme 43). On switching the alcohol to
trimethyl orthoformate, the 2-alkynylanilines afforded intermediate N-(dimethoxymethyl)-
2-alkynylaniline derivatives because the 1◦ amino group in aniline was transformed to 2o

in situ and, thus, it further afforded the 1-(dimethoxymethyl) indole-3-carboxylic esters
(140). Both the electron-withdrawing and electron-donating substituents on the benzene
ring worked well. The nitrogen in aniline can have both alkyl and benzyl groups (even
the bulkier ones, e.g., isobutyl). The higher concentration of substrate with electron-poor
substituents, i.e., (R3 = CF3), produced better results. The reaction was also worked
smoothly even with higher alcohol, e.g., EtOH [180].
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Scheme 43. Synthesis of indole-3-carboxylic esters from 2-alkynylanilines.

In 2017, Chen and co-workers synthesized pentaleno[2,1-b] indoles (142) by Pd (OAc)2-
catalyzed cascade aminopalladation followed by the cyclization of 2-alkynylanilines bear-
ing a cyclopentanone (141) (Scheme 44). The reaction mechanism was initiated with
Pd(II) coordination with C≡C present in alkynes (141) followed by trans-aminopalladation,
producing intermediate (145). Subsequently, the Pd-intermediate was quenched by in-
tramolecular carbonyl addition, affording (146). Lastly, the protonolysis of (146) yielded
the desired product (142), while (145) on protonolysis gave rise to the byproduct (143)
(Scheme 45). In the tetracyclic indole structure (147), the two adjacent stereocenters (ee)
were obtained with higher diastereoselectivity in a single process employing pyridine oxa-
zoline chiral ligand (L6) in the presence of Pd(OAc)2 at 100 ◦C (Scheme 46). A benzene ring
with electron-donating substituents such as –Me or –OMe afforded the desired products
in excellent yields. In the case of the benzene ring substituted with electron-withdrawing
substituents, e.g., trifluoromethyl or ester, the reaction went well, although a slight decrease
in the yield was observed. In addition, –Cl and –F substituents were tolerated during the
transformation. On switching the protecting group from Tosyl to Mesityle, the nitrogen
atom was not influenced over the cyclization [181].
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In 2013, Xia et al. synthesized 3-acylindoles (149) via palladium/copper co-catalyzed
oxidative cyclization of 2-alkynylaniline (148) by utilizing 10 mol% PdBr2 and 10 mol%
CuI in the presence of t-BuOOH. The 3-acylindoles (149) were obtained in a good yield by
this reaction (Scheme 47). In this methodology, t-BuOOH acted as an oxidant, as well as a
source of oxygen to introduce the carbonyl functional group. The results of this controlled
experiment indicated that in ketone moiety, and the oxygen atom did not come from the
H2O or O2 but t-BuOOH. These results of the controlled experiments together with ESI/MS
analysis encouraged the mechanism for the Pd–Cu co-catalyzed oxidative cyclization
shown in (Scheme 48). The reaction was initiated by the reaction of 2-alkynylaniline (150)
with two molecules of t-BuOOH via a radical mechanism in the presence of a copper
catalyst, generating a peroxide (152) and t-BuOH. The iminium intermediate (153) was
formed spontaneously in equilibrium from (152) in small amounts and assisted by Lewis’s
acid in the presence of a CuI catalyst. Then, the nucleophile was attacked on the alkyne
of (153) by t-BuOOH (TBHP) in the presence of a Pd-catalyst, generating the intermediate
(154). Subsequently, the intermediate (154) was transformed to 3-acylindoline (155) by
intramolecular cyclization. Then on oxidation, it was converted to intermediate (156).
The deprotonation of intermediate (156) produced the product (151) (Scheme 48). The
reaction tolerated a broad range of functional groups, e.g., –F, –Cl, NO2, ether, acetyl, alkyl,
and amino alkynes. The electron-withdrawing substituents were more favorable for this
reaction than the electron-donating substituents [182].



Catalysts 2021, 11, 1018 31 of 80
Catalysts 2021, 11, x FOR PEER REVIEW 35 of 85 
 

 

N

PdBr2 (10 mol%)

t-BuO2H (3.0equvi), LiCl (2.0equvi)

toluene, 100oC

CuI (10 mol%)

N

R1

O

R1

61% 65%

N

76%

O

N

O

N

O
F

73%

N

O
NO2

68%

N

O
O

Scheme 47

148 149

R
R

 

Scheme 47. Synthesis of 3-acylindoles via intramolecular cyclization. 

N

t-BuO2H + H2O

CuI + 2t-BuO2H

N

OOt-Bu

N
Me

ICu OOt-Bu

PdBr2 + LiCl

NMe

Pd X

t-BuO2H

N
Me

O
O

t-Bu

PdX

H

-t-BuOH
N

Me

Ph

O

CuI

t-BuOH

N

Me

Ph

O

H -H

N

Me

Ph

O

Scheme 48

150

151

152 153

154 155

156
 

Scheme 48. Mechanism of palladium/copper co-catalyzed oxidative cyclization. 

In 2017, Zhang et al. synthesized 1H-indole-3-sulfonates by using 2-alkynyl ar-

ylazides and sulphonic acids in the Pd-catalyzed cascade reactions. The reaction afforded 
the required product, 1H-indole-3-sulfonates (160), in higher yields in 10 min by treating 

2-alkynyl arylazides (157) with sulphonic acids (CH3SO3H) (158) in the presence of 

Scheme 47. Synthesis of 3-acylindoles via intramolecular cyclization.

Catalysts 2021, 11, x FOR PEER REVIEW 35 of 85 
 

 

N

PdBr2 (10 mol%)

t-BuO2H (3.0equvi), LiCl (2.0equvi)

toluene, 100oC

CuI (10 mol%)

N

R1

O

R1

61% 65%

N

76%

O

N

O

N

O
F

73%

N

O
NO2

68%

N

O
O

Scheme 47

148 149

R
R

 

Scheme 47. Synthesis of 3-acylindoles via intramolecular cyclization. 

N

t-BuO2H + H2O

CuI + 2t-BuO2H

N

OOt-Bu

N
Me

ICu OOt-Bu

PdBr2 + LiCl

NMe

Pd X

t-BuO2H

N
Me

O
O

t-Bu

PdX

H

-t-BuOH
N

Me

Ph

O

CuI

t-BuOH

N

Me

Ph

O

H -H

N

Me

Ph

O

Scheme 48

150

151

152 153

154 155

156
 

Scheme 48. Mechanism of palladium/copper co-catalyzed oxidative cyclization. 

In 2017, Zhang et al. synthesized 1H-indole-3-sulfonates by using 2-alkynyl ar-

ylazides and sulphonic acids in the Pd-catalyzed cascade reactions. The reaction afforded 
the required product, 1H-indole-3-sulfonates (160), in higher yields in 10 min by treating 

2-alkynyl arylazides (157) with sulphonic acids (CH3SO3H) (158) in the presence of 

Scheme 48. Mechanism of palladium/copper co-catalyzed oxidative cyclization.



Catalysts 2021, 11, 1018 32 of 80

In 2017, Zhang et al. synthesized 1H-indole-3-sulfonates by using 2-alkynyl arylazides
and sulphonic acids in the Pd-catalyzed cascade reactions. The reaction afforded the
required product, 1H-indole-3-sulfonates (160), in higher yields in 10 min by treating 2-
alkynyl arylazides (157) with sulphonic acids (CH3SO3H) (158) in the presence of Pd(OAc)2
at room temperature (Scheme 49). The formation of intermediate (159) accounted for the
progress of the reaction. The reaction provided a high yield of the desired product with
2-alkynyl aryl azides having electron-poorer and electron-rich substituents on the aryl ring
as well as with (hetero)aryl group on the C≡C. Moreover, 2-alkynyl aryl azides having
different groups on the aromatic ring, e.g., (R = halide (–X), –Me or –CF3), performed
smoothly. Under the same reaction condition, 2-Alkynyl aryl azides having aliphatic
substituents on the carbon in alkyne underwent the reaction smoothly with a yield 83% to
96% while 2-alkynyl aryl azides bearing terminal alkynes were not a suitable substrate for
the reaction [183].
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Scheme 49. Synthesis of 1H-indole-3-sulfonates from 2-alkynyl arylazides and sulphonic acids.

In 2013, Qiu et al. synthesized 3-amidylindoles (166) via a Pd-catalyzed reaction of
2-alkynylaniline (161), isonitriles (162), and CH3CO2Ag to afford the yields, which were
moderate to good. Five new bonds were constructed during this single-pot procedure
with remarkable reaction efficiency. The silver acetate (CH3CO2Ag) acted both as a reac-
tant and oxidant. The proposed mechanism in (Scheme 50) suggested that the reaction
involved 2-alkynylaniline (161) cyclization in the presence of a Pd(II) catalyst to generate
intermediate (163). In the next step, isonitrile insertion took place to afford intermediate
(164). Then reductive elimination of intermediate (164) generated the compound (165),
along with the Pd(0) formation. Finally, intramolecular nitrogen attacked the acetyl group
and generated the product 3-amidylindole (166). Meanwhile, silver acetate oxidized the
Pd(0) to Pd(II) for reuse in the catalytic cycle. Different 2-alkynylanilines with an alkyl
or aryl substituents at the R1 were suitable for this reaction. However, N,N-dimethyl-2-
(2- trimethylsilylethynyl)aniline failed to produce the reaction. The reaction also went
smoothly for the substituents at R, which were fluoro or alkyl groups [184].
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Scheme 50. Synthesis of 3-amidylindoles by single-pot procedure.

Hu and co-workers synthesized 2-substituted 1H-indole-3-carboxamidines (170) via
a three-component Pd(II) catalyzed reaction using o-alkynyltrifluoro acetanilides (167),
isonitrile (168), and amines (169) (Scheme 51). The success of the reaction was the in-
tramolecular amino-palladation of C≡C activated by the isonitrile-ligated Pd(II) species
(171) (Scheme 52). Dioxygen (O2) was the only oxidant used for regenerating the palladium
(II) species. The reaction tolerated many functional groups. In general, electron-rich sub-
stituents provided higher yields in a shorter time than electron-deficient substituents [185].

A Pd-catalyzed reaction between isonitriles (173) and N,N-dimethyl-2-alkynyl anilines
(172) afforded 3-amidylindoles (174) and 3-cyanoindoles (175) (Scheme 53). The success
of this reaction was the insertion step of isonitrile. The presence of H2O is key for the
formation of 3-amidylindoles (174). Not only R2CN, but also cyclohexyl isonitriles were
tolerated in the reaction and produced 3-cyanated indole [186].



Catalysts 2021, 11, 1018 34 of 80Catalysts 2021, 11, x FOR PEER REVIEW 38 of 85 
 

 

R

N
H

O

CF3

R1

+ R2NC + R4R3NH
Pd(TFA)2 (5mol%)

Cs2CO3 (1.1equvi)

O2,DMF, 60oC
N
H

R1

R2N
NR3R4

N
H

N
N

Me

84%

N
H

N
N

Br

68%

N
H

N
N

OMe

N
H

N
N

Cl

76%

76%

N
H

N
N

63%

Scheme 51

167 168 169 170

R

 

Scheme 51. Synthesis of 2-substituted 1H-indole-3-carboxamidines via the intramolecular cycliza-

tion. 

R2NC + R4R3NH
O2, CF3COOH

N
H

R1

R

N
H

O

CF3

R1

+ Pd0 N
R3

R4

NR2

Pd
O

O

CF3

Base

N
R3

R4

NR2

Pd
O

O

CF3

R

N

R1

COCF3

Pd
ii

N
H

R1

R2N
NR3R4 N

R4

R3

N R2

Scheme 52

168 169 171

170

R R

 

Scheme 52. Mechanism for the 2-substituted 1H-indole-3-carboxamidines synthesis. 

A Pd-catalyzed reaction between isonitriles (173) and N,N-dimethyl-2-alkynyl ani-

lines (172) afforded 3-amidylindoles (174) and 3-cyanoindoles (175) (Scheme 53). The suc-

cess of this reaction was the insertion step of isonitrile. The presence of H2O is key for the 
formation of 3-amidylindoles (174). Not only R2CN, but also cyclohexyl isonitriles were 

tolerated in the reaction and produced 3-cyanated indole [186]. 

Scheme 51. Synthesis of 2-substituted 1H-indole-3-carboxamidines via the intramolecular cyclization.

Catalysts 2021, 11, x FOR PEER REVIEW 38 of 85 
 

 

R

N
H

O

CF3

R1

+ R2NC + R4R3NH
Pd(TFA)2 (5mol%)

Cs2CO3 (1.1equvi)

O2,DMF, 60oC
N
H

R1

R2N
NR3R4

N
H

N
N

Me

84%

N
H

N
N

Br

68%

N
H

N
N

OMe

N
H

N
N

Cl

76%

76%

N
H

N
N

63%

Scheme 51

167 168 169 170

R

 

Scheme 51. Synthesis of 2-substituted 1H-indole-3-carboxamidines via the intramolecular cycliza-

tion. 

R2NC + R4R3NH
O2, CF3COOH

N
H

R1

R

N
H

O

CF3

R1

+ Pd0 N
R3

R4

NR2

Pd
O

O

CF3

Base

N
R3

R4

NR2

Pd
O

O

CF3

R

N

R1

COCF3

Pd
ii

N
H

R1

R2N
NR3R4 N

R4

R3

N R2

Scheme 52

168 169 171

170

R R

 

Scheme 52. Mechanism for the 2-substituted 1H-indole-3-carboxamidines synthesis. 

A Pd-catalyzed reaction between isonitriles (173) and N,N-dimethyl-2-alkynyl ani-

lines (172) afforded 3-amidylindoles (174) and 3-cyanoindoles (175) (Scheme 53). The suc-

cess of this reaction was the insertion step of isonitrile. The presence of H2O is key for the 
formation of 3-amidylindoles (174). Not only R2CN, but also cyclohexyl isonitriles were 

tolerated in the reaction and produced 3-cyanated indole [186]. 

Scheme 52. Mechanism for the 2-substituted 1H-indole-3-carboxamidines synthesis.



Catalysts 2021, 11, 1018 35 of 80Catalysts 2021, 11, x FOR PEER REVIEW 39 of 85 
 

 

R1

NMe2

R + R2NC

Pd(TFA)2 (5 mol%)

AgTFA (2.0 equvi), DCE, 70oC N

Me

R R1

O NHR2

N

Me

Ph

O
H
N

t-Bu

72%

N

Me

C6H4OMe-p

O
Ac
N

t-Bu

N

Me

C6H4OMe-o

O
Ac
N

n-Bu

60% 68%

N

Me

CN

80%

N

Me

CN

77%

Scheme 53

+ H2O

R1

NMe2

R + R3NC
Pd(TFA)2 (5 mol%)

AgTFA (2.0 equvi), DCE, 70oC N

Me

R R1

CN

OMe

Cl
N

Me

Ph

CN

80%

172 173 174

175172 173

 

Scheme 53. Synthesis of 3-amidylindoles and 3-cyanoindoles the insertion of isonitrile to N,N-

dimethyl-2-alkynyl anilines. 

In 2015, Hu and co-workers synthesized C–3 alkylated indole derivatives (178) via 

Pd-catalyzed aminopalladation followed by the insertion of carbene. The reaction took 

place in the open air with reactants, o-alkynyltrifluoro acetanilides (176) and α-diazoace-

tates (177), by using a weak base (Scheme 54). The plausible mechanism for the reaction 

is as follows (Scheme 55). Firstly, a palladium complex (182) was generated by deproto-

nation of the substrate (179) via Na2CO3. The activation of alkyne moiety took place by 

PdCl2. Then, the key intermediate indolylpalladium (183) was generated by intramolecu-

lar aminopalladation of (182). The α-phenyldiazoacetate (180), on decomposition by (182), 

led to a Pd-carbene species (184) and released N2 gas. The intermediate (185) was gener-

ated by the insertion of the carbene via migration into the Carbon-Pd bond of sigma-in-
dolylpalladium intermediate (184). The intermediate (185) tautomerized to a more stable 

enol from (186). Ligand exchange of (186) with –Cl followed by protonation and deprotec-

tion during workup yielded the desired product (181) (Scheme 55). Insertion of carbene 

species by migration into the sigma-indolyl-Pd intermediate is more favorable than N-H 

insertion. The reaction had excellent tolerance towards a range of functional groups [187]. 
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dimethyl-2-alkynyl anilines.

In 2015, Hu and co-workers synthesized C–3 alkylated indole derivatives (178) via Pd-
catalyzed aminopalladation followed by the insertion of carbene. The reaction took place in
the open air with reactants, o-alkynyltrifluoro acetanilides (176) and α-diazoacetates (177),
by using a weak base (Scheme 54). The plausible mechanism for the reaction is as follows
(Scheme 55). Firstly, a palladium complex (182) was generated by deprotonation of the sub-
strate (179) via Na2CO3. The activation of alkyne moiety took place by PdCl2. Then, the key
intermediate indolylpalladium (183) was generated by intramolecular aminopalladation
of (182). The α-phenyldiazoacetate (180), on decomposition by (182), led to a Pd-carbene
species (184) and released N2 gas. The intermediate (185) was generated by the insertion of
the carbene via migration into the Carbon-Pd bond of sigma-indolylpalladium intermedi-
ate (184). The intermediate (185) tautomerized to a more stable enol from (186). Ligand
exchange of (186) with –Cl followed by protonation and deprotection during workup
yielded the desired product (181) (Scheme 55). Insertion of carbene species by migration
into the sigma-indolyl-Pd intermediate is more favorable than N-H insertion. The reaction
had excellent tolerance towards a range of functional groups [187].
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In 2012, Yao and colleagues synthesized 2,3-disubstituted 3-alkynylindoles (189) by
reacting o-alkynylanilines (187) and terminal alkynes (188) via palladium (II)- catalyzed
domino reaction under aerobic oxidative conditions (Scheme 56) [188]. The reaction in-
volved two vital steps for initiating the alkynylation process: (a) sigma-alkynylpalladium
(II) complex formation followed by (b) the aminopalladation of o-alkynylaniline generating
a sigma-indolylpalladium (II) intermediate. Thus, according to the mechanism, the reaction
involved the formation of the sigma-indolylpalladium intermediate (190) via aminopallada-
tion of o-alkynylanilines (187). Then, sigma-indolylpalladium was coordinated with termi-
nal C≡C (188) followed by the deprotonation step and generated sigma-alkynylpalladium
(191). Finally, iodide via SN2 carry out N-demethylation of indolium (191) produced
the 3-indolylpalladium intermediate (192) which, after reductive elimination, yielded the
required 3-alkynylindoles (189) and Pd(0). In the presence of air, Pd(0) was oxidized to
Pd(II), completing the catalytic cycle (Scheme 57). To avoid the retro-aminopalladation
of complex (191) and spontaneous N-demethylation of (191), nBu4NI was used. It was
concluded that the sigma-indolyl-sigma-alkynylpalladium intermediate (191) formation
occurred before the N-demethylation step (Scheme 57). This reaction had a good tolerance
towards many useful functional groups. These oxidative reaction conditions allowed the
use of nucleophilic terminal alkynes instead of electrophilic organic halides [188].
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Scheme 57. Mechanism for domino reaction for synthesizing 2,3-disubstituted 3-alkynylindoles.

Similarly, in 2015, Yao et al. used two different o-alkynylanilines in a Pd-catalyzed
cyclization cross-coupling reaction using aerobic oxidation for synthesizing unsymmet-
rical 2,3′-bisindoles. The reaction conditions used were Pd/C, CH3COOH, n-Bu4NBr,
and DMSO in presence of air at 80 ◦C for effective cyclization of o-ethynylaniline (194)
and o-alkynylanilines (193), affording 2,3′-bisindole derivatives (195) (Scheme 58). The
proposed mechanism suggested that the reaction involved two catalytic cycles separated
temporarily. Firstly, cyclative alkynylation occurred, generating 3-alkynylindoles (196);
then, a subsequent aminopalladation afforded 2,3′-bisindoles. It is worth noting that the
charcoal-supported catalyst was the product of the cyclization of 3-alkynylindoles (196) to
the desired bisindoles (195) (Scheme 58). This methodology was a rare case using Pd/C as
pre-catalyst for oxidative PdII-catalyzed transformations [189].

Huang and co-workers carried the direct synthesis of indole 3-boronic esters (199)
by Pd-catalyzed cyclisation of o-alkynylanilines (197) merged with a cross-coupling re-
action using bis-(pinacolato)diboron(B2Pin2) (198) in the presence of a catalyst mixture
of Pd2(dba)3 and Ph3As (Scheme 59). Mechanistic studies under controlled conditions
suggested that a borylation reaction occurred during cyclization, rather than after the
formation of indole. The reaction worked smoothly only in the presence of a limited
sulfonamide-based Ms- and Ts-protected starting substrate and those which were N-Boc or
N-Bn protected failed to cyclize [190].

Guo and co-workers developed a one-pot reaction for the synthesis of 3-sulfenylindoles
(202) via cyclization of 2-(1-alkynyl)benzenamines (200) with disulfides (R−S−S−R′) (201)
catalyzed by transition metal Pd in aerobic conditions. The presence of air was crucial for
the success of the reaction (Scheme 60). The results showed that this annulation methanoyl
with PdCl2 in the presence of DMSO as solvent at 80 ◦C with a ratio of 1:2 among diorganyl
disulfides and o-alkynylanilines afforded the best results of the desired products. The
effectiveness of this reaction was that the two (RS) portions of the organosulfur reagent
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were transferred to the desired product. In amine, replacing hydrogen with Me- worked
well, but hydrogen replaced with an acetyl group was a failure and afforded the desired
product only in trace quantities. Several useful substituents such as –Me, –OMe, –NH2,
–CF3, –CN, –NO2 –Cl, and –F on the aromatic ring in disulfides were tolerable, but better
results were obtained with disulfides with electron-deficient aryl substituents [191].
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Scheme 60. Synthesis of 3-sulfenylindoles by cyclization of 2-(1-alkynyl)benzenamines and disulfides.

In 2016, Li and colleagues developed a palladium/copper (Pd(TFA)2/CuI)-catalyzed
cascade annulation/arylthiolation reaction to afford 3-sulfenylindole derivatives (206) by
treating o-alkynylamines (203) with sulphur (S8) (205) and aryl boronic acid (204) in ionic
liquids using phenanthroline (phen) (L7) as a ligand (Scheme 61). The reaction produced a
moderate to a good yield of the desired 3-sulfenylindole derivatives. The 3-sulfenylindoles
were obtained in higher yields via a single-pot procedure without the preparation of the
diorganyl disulfides. The mechanism is depicted in (Scheme 62). Firstly, the Pd-complex
was generated in situ in presence of an ionic solvent [192–199]. Subsequently, nucleopalla-
dation of o-alkynylamines (203) generated the vinyl-Pd intermediate (207) [200,201]. Then,
aryl boronic acid (204) reacted with elemental sulfur (S8) (205), spontaneously generating an
in situ organo-copper thiolate complex (208) in the presence of the CuI complex [202–206].
Subsequently, intermediate (209) was obtained by a trans-metalation process of intermedi-
ate (207) with an organo-copper thiolate complex (208). Finally, after reductive elimination,
the desired product (206) was obtained. The Pd(0) oxidized to Pd(II) and the catalytic cycle
was completed (Scheme 62). It was suggested from the mechanism that the palladium com-
plex (209) was the key intermediate for this successful cyclization. This reaction possessed
remarkable tolerance towards a number of functional groups used [207].

In 2014, Sheng et al. carried out a reaction between trifluoro methane sulfanilamide
(211) and 2-alkynylaniline (210) for obtaining 3-((trifluoromethyl)thio)indoles (212) using
Pd(II) acetate [Pd(OAc)2] and bismuth(III) chloride (BiCl3) (Scheme 63). The BiCl3 played a
key role as it participated in the electrophilic addition of trifluoromethane sulfanilamide
(211) to the iodolium (213). The proposed mechanism is depicted in (Scheme 64). It
was suggested that intermediate (213) was generated by the intramolecular annulation
of N,N-dimethyl-2-alkynylaniline (210). Subsequently, chloride of bismuth(III) chloride
attacked the intermediate (213) and removed the –Me group present at the intermediate
(213). Meanwhile, the BiCl3 activated the trifluoromethane sulfanylamide (211), generating
trifluoromethanesulfanyl cation (CF3S+), which then reacted with the iodolium gener-
ated in situ, affording the 3-(trifluoromethyl)thio)indole (212). Many functional groups
including halogens (X) (X = Cl, F), and ester were tolerated in this reaction. Moreover, N,N-
dimethyl-2-alkynylanilines underwent the reaction smoothly with different substituents
present at C≡C [208].
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Scheme 64. The plausible mechanism for intramolecular annulation of N,N-dimethyl-2-alkynylaniline.

The 3-sulfonyl indoles were prepared by another simple and effective method. The
migratory group in intramolecular migration was the sulfonyl group instead of the allyl
group. In 2016, Wu et al. developed intramolecular selective addition of S–N and C–N
bonds to C≡C in the presence of a Pd-catalyst, forming two distinct indoles. During the
reaction difference in oxidation states of palladium, salts were the significant feature in the
migration of groups. The allyl group migrated while employing Pd(0), and the sulfonyl
group migrated while employing Pd(II). Herein, the N-allyl-N-sulfonyl-o-alkynylanilines
(214) reacted with the Pd(PPh3)4 and afforded 3-allylindoles (215) by exclusively transfer-
ring the allyl group. In the presence of PdCl2(CH3CN)2, however, the selective transfer of
the sulfonyl group took place and yielded the 3-sulfonylindoles (216) (Scheme 65). Thus,
using the same set of substrates, simply switching the palladium catalyst afforded two
distinct functional indoles. The yields were quite good in the case of both electrons in the
donating as well as withdrawing groups [209].
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Scheme 65. Synthesis of 3-sulfonyl indoles by cyclization involving allyl group migration.

In 2008, Gabriele and coworkers utilized 1-(2-Aminoaryl)-2-yn-1-ols (217) for the
carbonylation under a PdI2-KI catalytic system, in oxidative as well as non-oxidative
conditions, to obtain quinoline 3-carboxylic esters (218) and indol-2-acetic esters (219)
respectively (Scheme 66). By carrying out 5-exo-dig annulations and subsequently de-
hydrating methoxy-carbonylation of 1-(2-aminoaryl)-2-yn-1-ols with either 1◦ or 2◦-NH2
groups, and C≡C with bulkier substituents, indol-2-acetic esters (219) were produced in a
moderate to good yield, in the absence of oxidative conditions (2 mol% PdI2, 20 mol% KI
and 90 atm of carbon monoxide in methanol at 100 ◦C). On the other hand, in oxidative con-
ditions (2 mol% PdI2 and 20 mol% KI, 80 atm of carbon monoxide-air mixture in a 4:1 ratio
in methanol at 100 ◦C), the same substrate 1-(2-aminoaryl)-2-yn-1-ols having the 1◦-NH2
group was transformed into quinoline 3-carboxylic esters (218) selectively via 6-endo-dig
annulation and subsequent dehydration and oxidative methoxy-carbonylation. It was
concluded that the starting substrate with bulky substituents on the C≡C preferentially
underwent 6-endo-dig annulation instead of 5-exo-dig annulation [210].

Cacchi and colleagues synthesized free-NH indole 2-acetamides (222) by treating ethyl
3-(o-trifluoroacetamidoaryl)-1-propargylic carbonates (220) either with 1◦ or 2◦ amines
(221) in the catalytic system composing of Pd2(dba)3, carbon monoxide (CO) and dppf using
solvent THF at 80 ◦C (Scheme 67). Furthermore, the free-NH indole 2-acetic acid methyl
esters were synthesized. This reaction had certain limitations while using 1◦ amines, e.g.,
aniline or benzylamine, as they obtained only a trace amount of indole yielding deacylated
propargylic esters and urea [211,212] derivatives as the side products. Thus, more hindered
primary amines should be used to limit these side reactions. Out of other bidentate
phosphines employed, the dppf ligand was the effective one for this methodology [213].
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Moreover, Cacchi et al. cyclized 3-(o-Trifluoroacetamidoaryl)-1-propargylic esters
(223) with amines (224) to synthesize the corresponding 3-unsubstituted 2-substituted
indole derivatives (225). The annulation was catalyzed by PdCl2(PPh3)2 (Scheme 68) [214].
Additionally, 3-(o-trifluoroacetamidoaryl)-1-propargylic alcohols (226) with amines (227)
using Pd(PPh3)4 as a catalyst and 2-(aminomethyl)indoles (228) were obtained (Scheme 69).
This reaction was worked well with both 1◦ as well as 2◦ amine, although with 2◦ amine
the yields were better. The reactions went smoothly and provided better yields with
3-(o-trifluoroacetamidoaryl)-1-propargylic alcohols than with the respective carbonate
esters [215]. The ethyl 3-(o-trifluoroacetamidoaryl)-1-propargyl carbonates (229) with the
alkyl group on the propargyl carbon showed an elimination reaction, forming 2-vinylic
indoles (230) and 2-vinylic indoles stereo-selectively. Ethyl-3-(o-trifluoroacetamidoaryl)-1-
propargylic carbonates (231) also afforded 2-alkylindoles (232) in the presence of HCOOH,
with base Et3N, and catalyst Pd(PPh3)4 in solvent CH3CN 80 ◦C (Scheme 70) [214].
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In 2014, Thirupathi and colleagues developed 2-indolylacetamides (235) by a Pd-
catalyzed tandem annulation of (amino aryl)propargyl alcohols (233) and isonitriles (234)
in excellent yields. The transformation was carried out in the presence of a Pd(TFA)2
catalyst, Cs2CO3 base, and CH3CN solvent in the open air at 60 ◦C (Scheme 71). It
was found that electron-deficient substrates as well as less hindered isopropyl isonitriles
and phenyl isonitriles remained intact in this transformation. Additionally, the internal
alkynes yielded this reaction even on increasing the reaction time at high temperatures.
Halogens were well tolerated during this reaction. The plausible mechanism suggested
that the reaction was a tandem process that involved trans-aminopalladation and 5-exo-dig
cyclization. Then isonitrile insertion followed the migration of the 1,4-OH group. For this
reaction, palladium in its two oxidation states Pd(0) and Pd(II) activated the reactants and
carried out the annulation process without additional oxidants [216].
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In 2015, Liu and co-workers used a Pd-catalyzed cascade process for the synthesis of
tetrahydro[1,4]diazepino[1,2-a]indoles (238) by treating 2,2,2-trifluoro-N-(2-iodophenyl)acet
amides (236) with N-protected (prop-2-yn-1-yl)acrylamides (237) (Scheme 72). By this
method, 1,2-fused tricyclic indoles were obtained. The mechanistic studies suggested a
plausible mechanism involving Sonogashira cross-coupling or annulation of indole by
regioselective as well as chemoselective N-1 acylation and subsequent 1,4-Michael addition.
It is worth noting that the formation of (239) was the consequence of this cyclization. The
assumption thus rejected the participation of intermediate (240) obtained through trans-
intermolecular amidation. The benzene ring with electron-donating substituents, e.g., –Me
and –OMe, afforded the products in lower yields; on the contrary, excellent yields were
obtained with electron-withdrawing substituents such as –F, –Cl, –Br, and –CN. However,
the reaction yield was observed in the cases of powerful electron-withdrawing substituents,
like carbonyl and trifluoromethyl, being introduced. While investigating the influence
of the protecting group on the tandem reaction, it was found that the substrates bearing
a sulfonyl protecting group with substituted benzene worked perfectly. Moreover, the
benzene ring with electron-donating substituents afforded better yields for an electron-
withdrawing substitute [217].
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The Pd-catalyzed tandem annulation has been used as an effective alternative for the
synthesis of C-2 functionalized indoles. Das and co-workers synthesized 2-arylmethylindoles
(244) by reacting 2-(2-propynyl)aniline or 2-(2-propynyl)tosylanilide (241) and aryl iodides
(Ar–I) (242) in the presence of Pd(OAc)2, Ph3P, and DBU (Scheme 73). Aryl iodides
with electron-withdrawing substituents, e.g., –F, –Br, –CF3, or –NO2, produced the C-2
functionalized indole in better yields. The 2-(2-Propynyl)tosylanilides (245) were more
reactive towards the electron-poor olefines (246) in the presence of catalyst Pd(OAc)2 and
NaI in air, yielding 2-vinylic indoles (247) with remarkable (E)-stereochemistry around
the side chain C=C (Scheme 74) [218]. Furthermore, Chowdhury et al. synthesized (E)-
2-arylmethylidene-N-tosylindolines (243) and their respective quinoline derivatives by
reacting 1-(2-tosylaminophenyl)prop-2-yn-1-ols (241) and aryl iodides (Ar-I) (242) under
Pd catalyzed conditions, i.e., PdCl2/Ph3P as a catalyst, n-Bu4NBr as a phase transfer cata-
lyst, and K2CO3 as a base in solvent DMF. The proposed mechanism of this reaction has
been involved the trans-aminopalladation during 5-exo-dig annulations ensuring high
(E)-stereochemistry in end products [219].
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2.3. Indole Synthesis via Annulations of Non-Terminal Alkynes

In 2009, Cui and colleagues developed a methodology utilizing a phosphine-free
ligand to accelerate Pd-catalyzed indole synthesis using 2-bromoanilines (248) and internal
alkynes (249) [220]. Phenylurea acted as the optimal ligand promoting indolization by
affording 2,3-disubstituted indoles (250). The yields of this reaction were quite good.
The catalyst Pd(OAc)2 was used to achieve excellent regioselectivity (Scheme 75). It is
worth noting that the electron-poor alkynoic acid and ester were not suitable substrates for
this reaction [220].
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Furthermore, Batail and co-workes developed a methodology using heterogeneous
ligands in the absence of salt for obtaining indoles. For this heteroannulation, o-haloanilines
(251) and internal alkynes (252) were used in the presence of a Pd/C catalytic system by
using Na2CO3 as a base in DMF solvent at 120 ◦C, affording indole derivatives (253)
(Scheme 76) [221–223]. This catalytic system worked perfectly in the presence of air and
was reutilized up to four times. This reaction was independent of the nature of the
substrate used [222].
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In 2014, Ang et al. synthesized indole derivatives (256) by an alternative method using
palladacycle (257) as a pre-catalyst during annulations of functionalized aryl halides (254)
with either symmetrical or asymmetrical internal alkynes (255) in the presence of H2O using
microwave irradiation (Scheme 77). Internal alkynes, either symmetrical or asymmetrical,
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with alkyl (–R), aryl (–Ar), or silyl substituents underwent annulation smoothly. This
cyclization reaction afforded the products with high regioselectivity. Usually, solely one
product or the major product is formed. The catalytic system could be recycled and reused
for up to five cycles. Moreover, the reduction in Pd-catalyst activity was quite slow [224].
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Moreover, Denmark et al. synthesized 2,3-disubstituted indoles (260) by sequential
Larock hetero cyclization and a cross-coupling reaction directed by silicon. In this reaction,
o-iodoanilines (258) and alkynyldimethyl silyltert-butyl ether (259) were used as reactants
affording indole-2-silanols by Larock heterocyclization and subsequent hydrolysis. Then,
the corresponding sodium 2-indolylsilanolate salts were effectively engaged in a coupling
reaction with aryl bromides (Ar–Br) or chlorides (Ar–Cl) to afford poly-substituted indoles
(260) with excellent regioselectivity (Scheme 78) [225]. For this indolization reaction to
occur effectively, only slight changes such as the addition of H2O and a t-butoxysilyl
ether were performed in the original Larock’s indole-synthesis conditions. The vital
feature for regioselectivity was the steric hindrance of the t-butoxysilyl ether present on
the alkynes pointing away from it (Scheme 79 (Equation (1))). The migratory insertion,
however, occurred and minimized the steric crowding at the shortest carbon-carbon bond
(Scheme 79 (Equation (2))), Furthermore, the Pd-catalyzed cross-coupling of derivatives of
triethyl silyl propargyl glycine (262) with o-iodoanilines (261) by using Larock’s conditions
afforded N-ethyl-D-tryptophans (263) (Scheme 80) [226].
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In 2010, Kondoh and co-workers carried out Pd-catalyzed cyclization of 1-alkynylphos
phine sulfides (265) with o-iodoanilines (264) and subsequent desulfidation to afford 3-
substituted 2-indolylphosphines (266). The plausible mechanism for this reaction involved
the Pd-catalyzed cyclization of 1-alkynylphosphine sulfides and 2-iodoanilines, affording 2-
indolylphosphine sulfides with a substituent directly derived from the 1-alkynylphosphine
sulfides present in proximity to the thiophosphinyl group. Thus, this created steric crowd-
ing around the phosphorus and the substituent present on the nitrogen atom. Then, they
were reduced to the respective trivalent phosphines (267) using tris-(trimethylsilyl) silane
[(Me3Si)3SiH] and AIBN[(CH3)2C(CN)]2N2 in a catalytic amount. (Scheme 81). Moreover,
Pd-catalyzed annulation of 1-alkynylphosphine oxides afforded 2-indolylphosphine ox-
ide derivatives and these derivatives further afforded the trivalent phosphine (268) on
reduction in the presence of trichlorosilane (HCl3Si) and TBA [(C4H9)3N]. This reaction
was worked well in aprotic solvents, like DMS, which was considered to be the best choice.
On switching the base to Cs2CO3 or Na2CO3, the results were not satisfactory, although
K3PO4 provided good results, similarly to K2CO3 [227].
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In 2012, Goswami and colleagues synthesized 3-indolylglycine derivatives by reacting
2-iodoaniline (269) with ethynyl oxazolidinones (silylated internal alkyne) (270) under
Larock’sindole synthesis conditions, which afforded 2-silyl-3-indolylglycine derivatives
(271). The optically active compound (271), after desilylation, afforded 3-indolylglycine
(272). On the other hand, ethynyl oxazolidinones with o-iodo-N-Ts-anilines cyclized at
90 ◦C to yield (271) using Pd(OAc)2, LiCl, and Na2CO3 in DMF. Rather, the reaction using
Pd(OAc)2, Ph3P, DIPEA, and n-Bu4Cl in a DMF solvent at 90 ◦C yielded (273) which, on
desilylation, afforded 3-indolylglycine (274) (Scheme 82) [228].

Furthermore, indoles were synthesized by Pd-catalyzed coupling involving three
to four components, i.e., alkynes, aryl iodides (Ar-I), and amines. In 2014, Hao et al.
synthesized N-substituted indoles (278) via a one-pot reaction between N-substituted-
2-iodoanilines (275), amines (277), and alkynes (276) by using Pd(OAc)2 as a catalyst,
cyclopentadiene–phosphine as a ligand (L8), and t-BuOLi as a base in the presence of
toluene as the solvent at 110 ◦C. A variety of aryl iodides reacted with both cyclic as well
as acyclic amines, and symmetric as well as asymmetric alkynes underwent the reaction
smoothly, affording good to excellent yields (Scheme 83). The cyclopentadiene phosphine
ligand (L8) was highly effective [229]. The mechanism suggested that the C(sp3)–N bond
cleavage in the intermediate (279) was the product of this reaction. Later on, the reaction
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took place by any of the paths, as shown in (Scheme 84). The same research group also
reported that the indole N-substituted with alkyl iodides (280) were afforded without using
amines by Pd-catalyzed C(sp3)–I bond development through reductive elimination, despite
the elimination of sny-β-hydride (Scheme 85) [230]. Furthermore, the Pd(pie-allyl)Cp rather
than Pd(OAc)2 promoted the formation of the C(sp3)–I bond by reductive elimination.
Herein, pre-catalyst Pd(pie-allyl)Cp, without the base assistance, generated a highly active
species PdL6 in the presence of phosphine (L6 = phosphine ligand). Additionally, Pd(pie-
allyl)Cp worked well with Ph3P for this reaction in the presence of base LiOtBu [231].
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In 2013, Zhu and colleagues extended Larock’s heteroannulation by employing propar-
gyl bromides instead of simple alkynes. They reported a single-pot reaction between
N-protected o-iodoanilines (281) and propargylic bromides (282) to obtain the desired
poly-substituted indoles derivative (283) (Scheme 86). The cascade reaction took place by
C–C bond formation catalyzed by Pd(0) involving in situ-produced organindium and subse-
quent cyclic isomerization. The effectiveness of this reaction was owing to allenes formation
and azapalladation. The choice of protecting groups highly affected the reaction. The N–Ms
or N–Tos protected o-iodoanilines worked smoothly, producing the desired indole in good
yields; on the contrary, N-p-Ns-protected o-iodoaniline (p-Ns = 4-NO2-benzenesulfonyl)
produced the required indole solely in trace quantities [232].
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Panyam and Gandhi further expanded the scope of alkynes in Larock’s heteroannula-
tion; monometallic and bimetallic Pd(II)/N-heterocyclic carbene complexes appended with
bisnaphthalimide or naphthalimide moieties brought about the heteroannulation regioselec-
tivity of tert-propargyl alcohols (285) with o-haloanilines (284), affording 2-alkenylindoles
derivatives (286) (Scheme 87). A single asymmetrical regioisomer was generated, and the
success of this remarkable regioselectivity depended on the directing effect and coordi-
nation of the propargylic –OH group to the Pd-catalyst in the Pd-insertion. In addition,
experimental studies concluded that in situ HBr generation was responsible for the for-
mation of terminal C=C by a dehydration reaction. Furthermore, the bisnaphthalimide
and naphthalimide moieties of the Pd-NHC were critical for the catalytic process. The
[Pd] complex (287) formed with naphthalimide worked best for this methodology. The
reaction only worked perfectly with CH3COOH, rather than other acids. Deprotection of
haloanilines took place during the cyclization. The substrates having –F, –OMe, –MeCO,
–EtOOC, –Me, and –CN substituents at position-4 were readily tolerable [233].
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Scheme 87. Synthesis of 2-alkenylindoles derivatives by Larock’s heteroannulation.

In 2018, Onishi and co-workers synthesized 2,3-disubstituted indole derivatives (290)
by reacting o-iodoanilines (288) and alkynes (289) via Larock indole synthesis using Pd nan-
oclusters (NCs) stabilized by N,N-dimethylformamide (DMF) (Scheme 88). Low catalyst
loading was required for this reaction to proceed without needing phosphine ligands. Pd
NCs is recyclable and was used for up to three cycles. No product formation was observed
in the absence of Pd NCs. The haloanilines with electron-donating substituents, e.g., –Me
at 4 and 5 positions with diphenylacetylene, afforded the respective indole derivatives in
moderate to excellent yields. However, when the substrates with electron-withdrawing
substituents, e.g., 5-Cl and 4-CF3, were used, the reaction was sluggish [234].
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Scheme 88. Synthesis of 2,3-disubstituted indole derivatives by Larock indole synthesis.

In 2020, Zhang et al. reported the synthesis of 3,4-fused tricyclic-indole (293) deriva-
tives via Pd-catalyzed cascade [2 + 2 + 1] cyclization of alkyne-tethered aryl iodides (291)
and diaziridinone (292) (Scheme 89). The C,C-palladacycles formed by intramolecular reac-
tion between aryl halides (Ar–X) and alkynes severed as the key intermediates during this
annulations. The controlled experimental studies concluded that less loading of PPh3 and
lowering of the temperature decreased the yield of the product. The aryl ring attached to
the internal alkyne with electron-donating and electron-withdrawing substituents in ortho,
meta, and para underwent the reaction smoothly, affording the desired indoles in 71−96%
yields. However, in the case of alkenyl substituents on the internal alkyne, no product was
afforded under optimized reaction conditions. The aryl iodide ring and electron-donating
as well as electron-withdrawing substituents, worked well. However, alkyl-unsubstituted
as well as a substituted alkyne failed to produce this reaction (Scheme 90) [235].
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Scheme 89. Synthesis of 3,4-fused tricyclic-indole by cascade [2 + 2 + 1] cyclization.
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Shen and colleagues synthesized 2-Perfluoroalkylated indoles (299) from anilines 

(297) and alkyl perfluoroalk-2-ynoates (298) by a single-pot tandem Michael-addition type 
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2.4. Indole Synthesis via C-H Activation

C-H bond activation catalyzed by Pd has an effective synthetic methodology to obtain
an indole nucleus [236]. In 2012, Chen and co-workers developed another alternative
to the Larcokc’s heteroannulation to prepare indoles nuclei. They used Pd-catalyzed
intermolecular annulation of symmetrical diarylalkynes (295) and anilines (294) to afford
2,3-diarylindoles (296) or pyrrole derivatives (Scheme 91) in the absence of a phosphine
ligand. On using asymmetrical diaryl alkynes, the yield was compromised and a mixture of
three indole isomers with zero regioselectivity was obtained. The solvent highly influenced
the product formation in this reaction. This was an alternative to Larock’s, involving direct
activation of the C–H bond and coordination of solvent DMF with the centre of Pd. On
using the 1,4-dioxane as a solvent, the end product was penta arylpyrroles. With electron-
withdrawing substituents on the alkyne, high product yields were afforded, whereas
electron-donating substituents afforded decreased yields [237].
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Shen and colleagues synthesized 2-Perfluoroalkylated indoles (299) from anilines
(297) and alkyl perfluoroalk-2-ynoates (298) by a single-pot tandem Michael-addition
type reaction/Pd-catalyzed intramolecular CDC (cross-dehydrogenative coupling) in the
presence of oxygen (O2) as an oxidant and DMSO as a solvent at 100 ◦C (Scheme 92) [238].
Asymmetrical electron-poor alkynes, i.e., methyl perfluoroalk-2-ynoates, were employed
for excellent regioselectivity in the desired indole. This reaction was tolerated a wide
range of useful electron-donating and electron-withdrawing substituents present at the
para position of the aniline. Anilines having powerful electron-withdrawing groups,
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however, e.g., −NO2, produced no reaction. The proposed mechanism involved the
Michael-type reaction between aniline (300) and alkyne (301), generating nucleophilic
enamine (302). Subsequently, electrophilic palladation of (302) afforded Pd-intermediate
(303). The intermediate (303) after deprotonation afforded palladium complex (304) which
underwent aromatic electrophilic palladation via a concerted metalation-deprotonation
process (CMD), generating (305). Finally, reductive elimination (305) afforded the 3H-indole
product (306) which, on spontaneous tautomerization, produced the desired indole (307)
and Pd0 complex which, oxidized in acid again by O2, regenerated the active Pd-species to
carry out the next cyclization (Scheme 93) [238].
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In 2009, Shi and co-workers constructed indole derivatives (310) by direct activation
of the C-H bond in the presence of a catalyst and O2 (1 atm) in the regioselective reaction
between anilines (308) and alkynes (309) (Scheme 94). The role of the oxidant was crucial in
the catalytic annulations in the activation of the C-H bond. The studies showed that oxygen
(O2) was the ideal oxidant for this reaction and BQ, Cu(OAc)2, PhI(OAc)2, and AgOAc also
worked perfectly in this methodology. The N-unsubstituted and N-alkyl mono-substituted
anilines underwent the reaction smoothly, affording the desired indoles. Due to milder
reaction conditions, an additional ligand or base was not required. The reaction proceeded
well with electron-deficient alkynes- and anilines bearing either electron-withdrawing or
electron-donating substituents, producing moderate to excellent yields. Steric crowding
was not influenced by reactivity. Thus, all ortho, para, and meta-substituted anilines
underwent this reaction smoothly, producing the corresponding products. It is worth
noting that the activation of the C-H bond was not a reversible step, and hydroamination
took place before the reductive elimination [239].
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Nakamura et al. reported the Pd-catalyzed annulation of N-aroylbenzotriazoles
(311) in the presence of internal alkynes (312) to afford corresponding poly-substituted
indoles (313, 314) by using Pd(PPh3)4 as a catalyst at 130 ◦C in the absence of a solvent
(Scheme 95) [240]. The yields of the corresponding indoles were good. This reaction was
also one of the alternatives of Larock’s seteroanulation and the aroylbenzotriazole was
used instead of o-haloanilide. During the reaction with asymmetric alkynes, a mixture
of regioisomers was obtained with the major product bearing the bulkier group at C–2
of the indole ring. The plausible mechanism for the reaction involved oxidative Pd(0)

insertion to the C-N bond of diazonium species present in the 2-imino benzenediazonium
(315), releasing N2 and affording the intermediates (316) or (317). The (315) was generated
thermally from benzotriazole (311) [241–244]. The Palladacycle species (318) was obtained
after internal alkyne (312) insertion into the C–Pd formed bond present on the intermediates
(316) or (317). Finally, reductive elimination afforded the product (313) (Scheme 96) [240].
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In the Pd-catalyzed activation of the C–H bond, the N-acetyl anilines were effective
substrates for constructing an indole nucleus. In 2011, Zhou and colleagues reported a strat-
egy involving activation of C–H bond present in N-aryl amides (319) in the cross-coupling
reaction with alkynes (320) using a catalytic system comprised of catalyst Pd(OAc)2, oxi-
dants Ag2O and Cu(OTf)2 in the presence of solvent DMAc to obtain the corresponding
indole derivatives (321) (Scheme 97). Herein, the presence of acetamino performed two
tasks: one as the directing group and the second as a source of N-atom for the indole
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nucleus (Scheme 97). A plausible mechanism showed that the reaction involved a six-
membered palladacycle (322) generated by ortho electrophilic palladation of aromatic
moiety with the coordination of the acetamino substituent [245,246]. The (322) after alkyne
(320) insertion afforded the vinylic Pd(II) intermediate (323), then intramolecular attacking
of the amide group followed by deprotonation step afforded the respective palladium
amide intermediate (324). Finally, intermediate (324), on reductive elimination, produced
the respective indole derivatives (321), releasing a Pd(0) complex. The Pd(0) was oxidized
back to the Pd(II) by Ag2O and Cu(OTf)2. It is worth noting that when CuCl2 was replaced
by Cu(OTf)2, there was no formation of diketone as a byproduct. It was found that the
formation step of the cyclopalladated complex (322) was the product of this annulation
reaction. To carry out a stoichiometric reaction, the best results were obtained by using
bipyridine in dimethylformamide at 120 ◦C, which resulted in the formation of the required
indole in moderate quantities (Scheme 98). The substrate N-aryl amides with electron-rich
substituents at the meta position were most suitable for this reaction [247].
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In 2011, Chen et al. synthesized N-(2-pyridyl)indole derivatives (327) by an oxidative
Pd-catalyzed cross-coupling reaction between N-aryl-2-aminopyridines (325) and internal
alkynes (326). The reaction was performed in the presence of catalyst Pd(CH3CN)2Cl2,
oxidant CuCl2. Herein, O2 could also be employed as a terminal oxidant with co-oxidant
CuCl2. Moreover, this reaction involved the regioselective ortho activation of the C–H bond
of N-aryl-2-aminopyridines (Scheme 99). This methodology with internal alkynes having
an alkyl chain attached directly at C≡C and formed a mixture containing two regioisomers
of indoles. On the contrary, asymmetrical alkyl (–R) and heteroaryl-substituted alkynes
afforded solely one isomer in the product. The results of the reaction further concluded
that the steric crowding at the nitrogen in pyridine and the N-aryl moiety was sensitive
towards this methodology. Additionally, the N-aryl moiety having electron-withdrawing
substituents present on the ring promoted the coupling [248]. In 2014, they extended
this work by the synthesis of N-(2-pyridyl)indoles via coupling asymmetrical internal
alkynes substituted with an aryl (–Ar) and alkyl (–R) with N-phenylpyridin-2-amines in
the presence of catalyst Pd/CeO2, oxidant Cu(II), salt, and free air co-oxidant. The desired
products in a moderate to high yield were afforded via the activation of the C-H bond, with
similar results for regioselectivity. However, an indole with an alkyl substituent at the C-3
was the major product [249].
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2.5. Indole Synthesis via Hydroamination or N-Arylation

In 2007, Sanz et al. carried out amination reactions of o-alkynyl-3-halophenyl ethers
(328) and m-alkynyl-2-halophenyl ethers (331) with the benzylamine ( BnNH2) (329) using
a catalytic system comprised of Pd(OAc)2 and (1,3-bis(2,6-diisopropylphenyl)imidazolium
chloride) (HIPrCl) with base KOt-Bu under refluxing conditions in toluene (Scheme 100).
By this reaction, regioselective indole derivatives with the alkoxy (-OR) functional group at
C–4 or C–7 (330) and (332) were afforded in excellent yields after 2 to 3 h of reaction via
a cascade amination/annulation. This approach found its application in the synthesis of
LY315920 (2-[3-(2-amino-2-oxoacetyl)-1-benzyl-2-ethyl-1H-indol-4-yloxy]-acetic acid) (333),
an indole ring containing an inhibitor of PLA2s (phospholipase A2). The PLA2s were the
secreted phospholipase (sPLA2) present in high concentrations in patients with inflamma-
tory disorders [250]. This methodology did not work well with the unprotected substrate.
When derivatives of hydroxyl-2-chloro-3-(hex-1-yn-1-yl)phenol (334) were employed, the
7-hydroxyindole derivative was not afforded in a pure form. However, the starting sub-
strate was consumed completely. This happened because the protection of hydroxyl group
of 2,3-dihalophenol was necessary for the closure of the benzofuran (obtained as a result of
the coupling of 2,3-dihalophenols with terminal C≡C under Cu/Pd-catalysis) [251].
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Scheme 100. Synthesis of 4-alkoxy indole and 7-alkoxy indole by cascade amination/annulation.

In 2009, Ackermann et al. disclosed the synthesis of indoles (337) containing bulky
N-aliphatic or N-aromatic substitutions via a Pd-catalyzed reaction involving an inter-
molecular N-annulation. This intramolecular reaction involved N-arylation and subsequent
hydroamination, affording regioselective formation of the product (Scheme 101). The re-
action was carried out between o-dihaloarenes or o-alkynylhaloarenes (335) and sterically
crowded amines (336) using the catalyst Pd (OAc)2. The Pd-complex generated from
N-heterocyclic carbene ligands having unsaturated and sterically crowded imidazolium
salt yielded the optimal results in the methodology. Thus, Pd(OAc)2 together with the
ligand (L9) afforded the respective indoles in moderate to high yields. The reaction toler-
ated 1-adamantylamine, o-alkynyl chloro arenes, and t-butylamine [(CH3)3CNH2]. The
reaction was worked smoothly with less-crowded anilines. The alkynes with a 1o an alkyl-
group produced slightly poor results because 2o amine formed quantically underwent
intramolecular hydroamination incompletely [252,253].
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In 2011, Liang and co-workers synthesized alpha-Alkynyl indoles (341) by a single-pot
coupling reaction employing three components, i.e., o-bromo-(2,2-dibromovinyl) benzenes
(338), phenylamines (339), and terminal alkynes (340) under Pd-catalysis (Scheme 102). The
three coupling components were added at the same time and exhibited a very high chemical
selectivity, constructing one C–C and two C–N bonds. The mechanistic studies concluded that
the reaction without adding aniline afforded the 1,3-diyne (342) (Scheme 103). The later reaction
of (342) with aniline afforded the respective 2-alkynyl indole 68% yield. However, path A of the
reaction as depicted was more preferable than path B of the reaction, though the latter should
not be ruled out. The results showed that aromatic alkynes and anilines with electron-poor
as well as electron-rich substituents were tolerated in this three-component coupling reaction.
Alkynes with heteroatomic aromatic substituents were also suitable starting materials [254].

Alsabeh and co-workers reported a direct synthesis of 2-arylindoles (345) from am-
monia (344) and 2-alkynyl bromoarenes (343) by a cascade cross-coupling reaction and
subsequent amination of alkynes (Scheme 104). Herein, NH3 or amines were used to
provide the N-atom for the indole nucleus. The critical studies were performed to develop
an effective catalytic system to achieve the highest yield of the desired indole. It was
concluded that Hartwig and his colleagues used Josiphos (CyPFt-Bu) ligand (L11), which
was effective in this approach by using amines as well as ammonia in the cross-coupling re-
action. Thus, in the presence of catalyst [Pd(cinnamyl)Cl]2, ligand Josiphos (L11), and base
t-BuOK, the reaction afforded the best results, producing yields of indoles up to 89%. The
yields of the products were influenced by loading of the catalyst [Pd(cinnamyl)Cl]2; lower
loading resulted in a lower yield of the product, although the starting substrate was fully
consumed. In the presence of other bases, i.e., NaOtBu, Cs2CO3, and KOH, the reaction did
not afford the best results; additionally, they were sometimes in the presence of NaOtBu
such as 2-(phenylethynyl)aniline (346) was obtained in a high yield. This methodology has
certain limitations; heterocyclic compounds having a heteroatom at the o-position to the
alkyne or bromo resulted in lower yields. Alkyne groups attached to aryl with R1 = silyl,
alkenyl or alkyl (hexyl, propyl) tended to degrade under these reaction conditions, yielding
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no satisfactory product results. This methodology worked smoothly for the preparation of
N-metylated indole derivatives in a good quantity and CH3NH2 was used for the N-atom
source instead of NH3 [255].
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Furthermore, in 2012, Lavery and co-workers extended this methodology using (silany-
loxyphenyl)phosphines as a ligand in the presence of a Pd-catalyst for the C-N cross-
coupling reaction and subsequent annulation of o-alkynylhalo(hetero)arenes (347) with 1o

amines (348), producing C–2 substituted indole derivatives (349) (Scheme 105). The study of
experimental results concluded that di(1-adamantyl) -(2-triisopropylsiloxyphenyl)phosphine
(OTips-DalPhos) (L12) was the best ligand under these reaction conditions. Thus, the
catalyst using [Pd(cinnamyl)Cl]2 and (L12) with a base such as t-BuOK in toluene as a
solvent mediated the annulation of o-alkynylhalo(hetero)arenes (Scheme 105). The o-
alkynylhalo(hetero)arene-having substituents, e.g., heteroaryl, aryl, and alkyl groups, were
suitable for this reaction with the resultant indole having these substituents at C–2 in the
indole ring. This reaction tolerated a wide range of amines such as small (methylamine),
large (1-adamantylamine), sterically crowded or uncrowded aryl amines having either
electron-rich or electron-deficient substituents, and N-methylpiperazine [256].

In 2011, Halland et al. synthesized substituted 1-aminoindoles (352) via a Pd-catalyzed
cascade reaction of N,N-Disubstituted hydrazines (351) and 2-halophenylacetylenes (350).
The reaction was conducted under relatively mild conditions, affording the desired product
in 3–6 h. Herein, hydrazine was provided with the nitrogen for the indole ring (Scheme 106).
The reaction mechanism is depicted in (Scheme 106). It involved the initial coupling reaction
of the 2-halo(X)-phenylacetylene (353) and N,N’-disubstituted hydrazine (354) catalyzed
by PdCl2, affording N’-aryl-N,N-disubstituted hydrazine (355). Then, subsequent 5-endo-
dig annulation in situ afforded the corresponding N,N-disubstituted-1-aminoindole (356)
(Scheme 107). The 2-halophenyl acetylenes having either electron-rich or electron-poor
groups underwent this reaction effectively. Quantitative yields of the required products
were obtained using electron-rich hydrazine [257].
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Scheme 107. The plausible mechanism for 5-endo-dig annulation.

Furthermore, Prakash and co-workers used tert-Butyl sulfinamide as the equiva-
lent of nitrogen in the Pd-catalyzed amination. In the synthesis of 2-aryl-indoles (359),
t-butyl sulfonamides (358) and o-alkynylbromoarene (357) under catalytic system Pd
(OAc)2/Cs2CO3/Xantphosin and 1,4-dioxane as a solvent at 110 ◦C produced a good
to excellent yield of the products (Scheme 108). The preparation of 2-aryl substituted in-
doles (363) took place by three elementary steps: (a) o-halophenols (360) were transformed
to phenol triflate (361) by Tf2O and Et3N in CH2Cl2 at 0 ◦C, (b) subsequent Sonogashira
cross-coupling with the terminal alkynes afforded o-alkynylbromoarene (362), and (c)
Buchwald coupling with tert-butyl sulfinamide (358) took place. Free N-H indole was ob-
tained after the deprotection of sulfinamide moiety within the same reaction (Scheme 109).
Aryl bromides (Ar–Br) and aryl chloride (Ar–Cl) having various substituents such as –CN,
aldehyde, ester, and –OMe underwent this reaction smoothly without forming any side
products, affording an excellent yield of the desired indole [258].
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Yao and colleagues reported Pd-catalyzed C–N bond development using o-haloaryl
acetylenic bromides, amines, and amides. The highly selective Csp-N bond develop-
ment instead of the Csp2-N bond was performed by amidation, leading to o-haloaryl-
substituted ynamides. These have been used as useful building blocks and for obtain-
ing 2-amido-indoles (365) (Scheme 110). The reaction took place specifically between o-
haloarylynamides (364) and p-tol-amine under a catalytic system comprised of a Pd2(dba)3
catalyst and X-phos ligand (L4) in toluene, affording 2-amido-indoles in high yields.
Leeuwen’s xantphos ligand was also employed, but better results were obtained using
Buchwald’s Xphos ligand (L4), requiring less reaction time. On the contrary, no satisfactory
result was obtained using BINAP. It is worth noting that this annulation went better with
Ar–Cl and Ar–Br than Ar–I. Additionally, cyclic or acyclic amides, as well as sulfonamides,
worked smoothly for the N-alkynylation process, affording good yields of ynamides [259].

Catalysts 2021, 11, x FOR PEER REVIEW 76 of 85 
 

 

R
Br

H
N R2R1+

CuI catalyst R
N

X X

R1

R2

Pd(dba)2 (2.5 mol%), X-phos (L4) (5.0 mol%)

Cs2CO3 (3.3 equiv), p-Tol-NH2 (1.43 equiv)

toluene, 110 oC

R
N

NHAr

R1

R2

Pd

N
Ar

N

PdH

R1

R2N
Ar

N
R1

R2

Scheme 110

R R

N
N

O

O

91% 80% 91% 72%

p-Tol Ph

N
N

O

O

o-Tol Bn

N
N

O

O

PMP Bn

N
N

O

O

Bn Ph

MeO2C

364

365

 

Scheme 110. Synthesis of 2-amido-indoles by Csp-N bond formation. 

3. Conclusions 

Indoles are found in bioactive and pharmaceutical compounds. Intermolecular or in-

tramolecular cyclization of alkynes catalyzed by palladium is a strong technique for form-

ing the indole moiety. Palladium-based complexes have been used to activate the terminal 

and internal alkynes as active catalysts. Palladium is an expensive and heavy transition 

metal that may adversely affect the environment. Therefore, it must be replaced by or-

ganocatalysts or metal-free synthesis. 

Author Contributions: Conceptualization, N.R., A. and M.B.; data curation, S.G.K. and U.R.; soft-

ware, M.B., A. and H.A.; writing—original draft preparation, A., M.B., H.A. and S.G.K.; writing—

review and editing, U.R., N.R. and I.A.; visualization, N.R. and U.R.; supervision, N.R.; project 

administration, N.R. and I.A. All authors have read and agreed to the published version of the 

manuscript. 

Funding: Article Processing Charges (APC) was funded by Research Management Center (RMC), 

Universiti Putra Malaysia (UPM), Malaysia. 

Data Availability Statement: Not Applicable. 

Acknowledgments: This research work was funded by Institutional Fund Projects under grant no. 

(IFPRP: 21-829-2021). Therefore, the authors gratefully acknowledge technical and financial sup-

port from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Van Order, R.H. Lindwall. Indole. Chem. Rev. 1942, 30, 69–96. 

2. Sharma, V.; Kumar, P.; Pathak, D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. 

Heterocycl. Chem. 2010, 47, 491–502. 

3. Abele, E.; Abele, R.; Dzenitis, O.; Lukevics, E. Indole and Isatin Oximes: Synthesis, Reactions, and Biological Activity. Chem. 

Heterocycl. Compd. 2003, 39, 3–35. 

4. Aboul-Enein, H.Y.; Kruk, I.; Lichszteld, K.; Michalska, T.; Kladna, A.; Marczynski, S.; Ö lgen, S. Scavenging of reactive oxygen 

species by N-substituted indole-2 and 3-carboxamides. J. Lumin. 2004, 19, 1–7. 

Scheme 110. Synthesis of 2-amido-indoles by Csp-N bond formation.

3. Conclusions

Indoles are found in bioactive and pharmaceutical compounds. Intermolecular or
intramolecular cyclization of alkynes catalyzed by palladium is a strong technique for
forming the indole moiety. Palladium-based complexes have been used to activate the
terminal and internal alkynes as active catalysts. Palladium is an expensive and heavy
transition metal that may adversely affect the environment. Therefore, it must be replaced
by organocatalysts or metal-free synthesis.
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