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Abstract: The synthesis of polymeric materials starting from CO2 as a feedstock is an active task of
research. In particular, the copolymerization of CO2 with epoxides via ring-opening copolymerization
(ROCOP) offers a simple, efficient route to synthesize aliphatic polycarbonates (APC). In many
cases, APC display poor physical and chemical properties, limiting their range of application. The
terpolymerization of CO2 with epoxides and organic anhydrides or cyclic esters offers the possibility,
combining the ROCOP with ring-opening polymerization (ROP), to access a wide range of materials
containing polycarbonate and polyester segments along the polymer chain, showing enhanced
properties with respect to the simple APC. This review will cover the last advancements in the field,
evidencing the crucial role of the catalytic system in determining the microstructural features of the
final polymer.
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1. Introduction

The pervasiveness of polymers in our daily life is a consolidated reality in recent
decades. Indeed, the reason for the fortune of polymeric materials is due to both their
unique physical and chemical properties and their cheapness compared to other structural
materials. In the last few years, however, there is a growing body of evidence that the large
success of these materials has determined a negative effect on terrestrial and marine ecosys-
tems with the presence of microplastics that have become ubiquitous on our planet [1].
This situation has engendered the growing attention of the polymer industries and the
scientific community to find biodegradable, more sustainable polymeric materials. Parallel
to this trend, the use of CO2 as a carbon feedstock has also gained momentum due to the
rising interest in using such an inexpensive, non-toxic molecule as a starting material for
the synthesis of polymers [2,3].

In particular, the alternating ring-opening copolymerization (ROCOP) of CO2 with
epoxides has offered a conceptually simple route for the synthesis of aliphatic polycarbon-
ates (APC), which show a clear advantage in terms of biodegradability with respect to
polyolefins [4–6]. APC, however, often display poor chemical and mechanical properties
compared to aromatic polycarbonates, and the incorporation of epoxides with various
structural features does not always result in an improvement in the final properties of
APC [7–9]. Aliphatic polyesters are another important class of biopolymers that can be
conveniently obtained by the ring-opening polymerization (ROP) of cyclic esters [10–13]
or by the ROCOP of epoxides with cyclic anhydrides [14–17]. Transition metal complexes
generally catalyze all these polymerization processes through a coordination–insertion
mechanism. Actually, taking a closer look at the polymerization mechanism of the ROCOP
of epoxides with CO2 or cyclic anhydrides depicted in Scheme 1, it is evident that the for-
mation of the metal-alkoxo bond (a’ in Scheme 1) is a key intermediate in the propagation
process. In analogy, the ROP of cyclic esters proceeds via the formation of a metal-alkoxo
bond (a in Scheme 1) that allows the ring-opening of the following monomer unit.
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Scheme 1. Representative mechanisms of the copolymerization of epoxides, CO2, and cyclic esters (I) and the ROCOP of 
CO2 or cyclic anhydrides with epoxides (II). 

Given this mechanistic scenario, it is easy to imagine that it is possible to design a 
metal complex able to promote both types of polymerization, allowing us to obtain vari-
ous block-copolymers. In principle, it is possible to obtain copolymers with polycarbonate 
and polyester segments and modulate the nature of the polycarbonate and polyester 
blocks, permitting the synthesis of new materials with tailored properties. 

Notwithstanding the potential of such an approach, the efforts to develop efficient 
catalytic systems that cannot only incorporate CO2 but also give rise to unprecedented 
new materials have raised good results only recently. 

This review will cover the last advancements (since 2003) in the metal-catalyzed and 
metal-free terpolymerization of CO2 with epoxides and cyclic esters or cyclic organic an-
hydrides for the obtaining of polycarbonate–polyester copolymers. 

2. Terpolymerization of CO2 with Epoxides and Cyclic Anhydrides 
Polymeric materials containing ester and carbonate linkages have shown potential as 

biodegradable implants and, in addition, it is possible to adjust the degradation rate by 
regulating the length of the polyester and polycarbonate blocks. The first approach to syn-
thesize poly(ester-block-carbonate)s in a one-pot reaction was the copolymerization, via 
ROP, of cyclic esters and cyclic carbonates promoted by stannous octanoate [18]. This con-
ceptually simple approach has some limitations because six or seven-membered cyclic 
carbonates suitable for ROP must be synthesized through time-consuming multistep pro-
tocols [19,20]. 

2.1. Zinc Complexes 
Only in 2006, Liu and coworkers reported on the terpolymerization of propylene ox-

ide (PO) with CO2 and maleic anhydride (MA) catalyzed by polymer-supported bimetallic 
catalyst (PBM) 1 of general formula P-Zn[Fe(CN)6]aCl2-3a(H2O)b, with P being the polyether 
type chelating agent and a ≈ 0.5 and b ≈ 0.76 [21]. Notably, the catalyst was inactive in the 
PO/MA copolymerization whereas it gave the poly(propylenecarbonate) (PPC) from 
PO/CO2. In the terpolymerization experiments (pCO2 = 4.0 MPa, T = 60 °C, t = 24 h), the 
polymer yield increased up to a 5:3 ratio between PO and MA, and a further increase in 
the MA content was detrimental for the polymerization activity. 1H and 13C NMR and IR 
spectroscopy revealed a random microstructure characterizing the resulting copolymers 
(Figure 1). The DSC thermograms showed a single transition with Tg values (29.1–56.1 °C) 
increasing by increasing the MA content in agreement with the microstructure revealed 
by NMR spectroscopy. 

Scheme 1. Representative mechanisms of the copolymerization of epoxides, CO2, and cyclic esters (I) and the ROCOP of
CO2 or cyclic anhydrides with epoxides (II).

Given this mechanistic scenario, it is easy to imagine that it is possible to design a
metal complex able to promote both types of polymerization, allowing us to obtain various
block-copolymers. In principle, it is possible to obtain copolymers with polycarbonate and
polyester segments and modulate the nature of the polycarbonate and polyester blocks,
permitting the synthesis of new materials with tailored properties.

Notwithstanding the potential of such an approach, the efforts to develop efficient
catalytic systems that cannot only incorporate CO2 but also give rise to unprecedented new
materials have raised good results only recently.

This review will cover the last advancements (since 2003) in the metal-catalyzed and
metal-free terpolymerization of CO2 with epoxides and cyclic esters or cyclic organic
anhydrides for the obtaining of polycarbonate–polyester copolymers.

2. Terpolymerization of CO2 with Epoxides and Cyclic Anhydrides

Polymeric materials containing ester and carbonate linkages have shown potential
as biodegradable implants and, in addition, it is possible to adjust the degradation rate
by regulating the length of the polyester and polycarbonate blocks. The first approach to
synthesize poly(ester-block-carbonate)s in a one-pot reaction was the copolymerization,
via ROP, of cyclic esters and cyclic carbonates promoted by stannous octanoate [18]. This
potentally straightforwrd way has some limitations because six or seven-membered cyclic
carbonates suitable for ROP must be synthesized through time-consuming multistep
protocols [19,20].

2.1. Zinc Complexes

Only in 2006, Liu and coworkers reported on the terpolymerization of propylene oxide
(PO) with CO2 and maleic anhydride (MA) catalyzed by polymer-supported bimetallic cat-
alyst (PBM) 1 of general formula P-Zn[Fe(CN)6]aCl2-3a(H2O)b, with P being the polyether
type chelating agent and a ≈ 0.5 and b ≈ 0.76 [21]. Notably, the catalyst was inactive in
the PO/MA copolymerization whereas it gave the poly(propylenecarbonate) (PPC) from
PO/CO2. In the terpolymerization experiments (pCO2 = 4.0 MPa, T = 60 ◦C, t = 24 h), the
polymer yield increased up to a 5:3 ratio between PO and MA, and a further increase in
the MA content was detrimental for the polymerization activity. 1H and 13C NMR and IR
spectroscopy revealed a random microstructure characterizing the resulting copolymers
(Figure 1). The DSC thermograms showed a single transition with Tg values (29.1–56.1 ◦C)
increasing by increasing the MA content in agreement with the microstructure revealed by
NMR spectroscopy.
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poly(ester-block-carbonate) by the terpolymerization (pCO2 = 0.3–5.4 MPa, T = 50 °C, t = 
0.2–3 h) of cyclohexeneoxide (CHO) with diglycolic anhydride (DGA) and CO2 [22]. 

 
Figure 2. Terpolymerization of CHO, DGA and CO2 with β-diiminate zinc complex 2 by Coates. 
Reproduced with modification and permission from ref. [22]. Copyright (2008) John Wiley and 
Sons. 

Notably, in spite of the polymerization feed simultaneously containing all three mon-
omers, the final polymer was a diblock copolymer with a polyester block followed by a 
poly(cyclohexenecarbonte) (PCHC) block. Indeed, by following the polymerization reac-
tion by in situ IR spectroscopy, the exclusive formation of the polyester block up to the 
total consumption of DGA was evident. From the mechanistic point of view, it was clear 
that the first step was the formation of zinc alkoxide by the ring-opening of CHO followed 
by the preferential and irreversible insertion of DGA until this monomer was completely 
consumed and only after the zinc alkoxide can allow the insertion of CO2 with the growth 
of the polycarbonate block. The polymerization of succinic anhydride (SA), albeit with 
lower reactivity, and vinyl-CHO was also accomplished. 

In 2010, Zhang and coworkers showed that the heterogeneous double metal cyanide 
complex (DMCC) 3 obtained by the reaction of K3Co(CN)6 with ZnCl2 promotes the ter-
polymerization of CO2 with CHO and MA [23]. The proposed active site for this catalyst 
is a Zn atom in a tetrahedral structure with the Co atom playing a spectator role. The 
catalyst was highly active and selective, giving a complete conversion of CHO (pCO2 = 4.0 
MPa, T = 90 °C, t = 5 h) and a complete selectivity toward the polymeric product. Notably, 
the resulting polymer was poly(ester-block-carbonate), but it also contained a variable 
amount of polyether linkages (2.9–11.7%) depending on the reaction conditions. In partic-
ular, the use of THF as a solvent inhibits the formation of polyether linkages due to the 
coordination of the THF molecule to the Zn2+ center. The mechanism proposed for 
CO2/CHO/MA terpolymerization catalyzed by a Zn–Co(III) DMCC catalyst is depicted in 
Scheme 2. 

Figure 1. The structure of CO2/PO/MA terpolymer obtained by Liu using complex 1 [21].

Later on, in 2008, the development of an efficient homogeneous catalytic system by
Coates based on β-diiminate (bdi) zinc complex 2 (Figure 2) allowed the synthesis of
a poly(ester-block-carbonate) by the terpolymerization (pCO2 = 0.3–5.4 MPa, T = 50 ◦C,
t = 0.2–3 h) of cyclohexeneoxide (CHO) with diglycolic anhydride (DGA) and CO2 [22].
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Figure 2. Terpolymerization of CHO, DGA and CO2 with β-diiminate zinc complex 2 by Coates. Reproduced with
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Interestingly, in spite of the polymerization feed simultaneously containing all three
monomers, the final polymer was a diblock copolymer with a polyester block followed
by a poly(cyclohexenecarbonte) (PCHC) block. Indeed, by following the polymerization
reaction by in situ IR spectroscopy, the exclusive formation of the polyester block up to the
total consumption of DGA was evident. From the mechanistic point of view, it was clear
that the first step was the formation of zinc alkoxide by the ring-opening of CHO followed
by the preferential and irreversible insertion of DGA until this monomer was completely
consumed and only after the zinc alkoxide can allow the insertion of CO2 with the growth
of the polycarbonate block. The polymerization of succinic anhydride (SA), albeit with
lower reactivity, and vinyl-CHO was also accomplished.

In 2010, Zhang and coworkers showed that the heterogeneous double metal cyanide
complex (DMCC) 3 obtained by the reaction of K3Co(CN)6 with ZnCl2 promotes the
terpolymerization of CO2 with CHO and MA [23]. The proposed active site for this
catalyst is a Zn atom in a tetrahedral structure with the Co atom playing a spectator
role. The catalyst was highly active and selective, giving a complete conversion of CHO
(pCO2 = 4.0 MPa, T = 90 ◦C, t = 5 h) and a complete selectivity toward the polymeric
product. The resulting polymer was poly(ester-block-carbonate), but it also contained a
variable amount of polyether linkages (2.9–11.7%) depending on the reaction conditions.
In particular, the use of THF as a solvent inhibits the formation of polyether linkages due
to the coordination of the THF molecule to the Zn2+ center. The mechanism proposed for
CO2/CHO/MA terpolymerization catalyzed by a Zn–Co(III) DMCC catalyst is depicted in
Scheme 2.

Unusually, notwithstanding the heterogeneous nature of the catalyst, the dispersity
was narrow (Ð = 1.4–1.7) and the Mn was up to 14.1 kg mol−1.
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Zinc glutarate (ZnGA) 4 was also found to be a versatile catalyst for the terpolymer-
ization of CO2 with PO and various cyclic anhydrides. Indeed, in 2014, Meng reported on
the synthesis of PO/phthalic anhydride (PA)/CO2 copolymers (pCO2 = 5.0 MPa, T = 75 ◦C,
t = 15 h) using toluene as a solvent [24]. Intruguingly, in this case the formation of polycar-
bonate is favored over the polyester formation; consequently, the resulting terpolymers
(Mn up to 221 kg mol−1, Ð = 2.1–3.9) consist of a polycarbonate chain randomly interrupted
by PA units (4.8–10.5%) and a lower amount of polyether linkages (2.7–7.1%). On one hand,
the lower reactivity of PA vs. CO2 was explained with the slower insertion of the PA into
the Zr-alkoxo bond; on the other hand, the increase in the polymer yield and Mn observed
when PA is present in the feed was explained with a faster insertion of PO into the zinc
benzoate growing chain with respect to the zinc carbonate chain (Scheme 3).

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 20 
 

 

 
Scheme 2. Proposed mechanism for CHO, MA and CO2 terpolymerization using Zn-Co(III) DMCC 
catalyst 3. Reproduced with modification and permission from ref. [23]. Copyright (2010) Elsevier. 

Notably, notwithstanding the heterogeneous nature of the catalyst, the dispersity 
was narrow (Ð = 1.4–1.7) and the Mn was up to 14.1 kg mol−1. 

Zinc glutarate (ZnGA) 4 was also found to be a versatile catalyst for the terpolymer-
ization of CO2 with PO and various cyclic anhydrides. Indeed, in 2014, Meng reported on 
the synthesis of PO/phthalic anhydride (PA)/CO2 copolymers (pCO2 = 5.0 MPa, T = 75 °C, 
t = 15 h) using toluene as a solvent [24]. Notably, in this case the formation of polycar-
bonate is favored over the polyester formation; consequently, the resulting terpolymers 
(Mn up to 221 kg mol−1, Ð = 2.1–3.9) consist of a polycarbonate chain randomly interrupted 
by PA units (4.8–10.5%) and a lower amount of polyether linkages (2.7–7.1%). On one 
hand, the lower reactivity of PA vs. CO2 was explained with the slower insertion of the 
PA into the Zr-alkoxo bond; on the other hand, the increase in the polymer yield and Mn 
observed when PA is present in the feed was explained with a faster insertion of PO into 
the zinc benzoate growing chain with respect to the zinc carbonate chain (Scheme 3). 

 
Scheme 3. Mechanism for terpolymerization of PA, PO and CO2 with ZnGA 4 [24]. 

These opposite effects determine an ideal value for the PA/PO ratio giving the maxi-
mum activity and highest molecular weight, and this ratio in the feed was experimentally 
found to be 1:8. However, the observed decrease in the Mn could also be explained con-
sidering the presence of diacid impurities in the anhydride that acts as a chain-transfer 
agent. 

DSC thermograms show that the introduction of an aromatic ter-monomer in the pol-
ymer sensibly enhances the Tg with respect to the corresponding polycarbonate with an 
increase of 6 °C incorporating 5.6% of PA. 

Scheme 3. Mechanism for terpolymerization of PA, PO and CO2 with ZnGA 4. Reproduced with
modification and permission from ref. [24]. Copyright (2014) Royal Society of Chemistry.

These opposite effects determine an ideal value for the PA/PO ratio giving the maxi-
mum activity and highest molecular weight, and this ratio in the feed was experimentally
found to be 1:8. However, the observed decrease in the Mn could also be explained consid-
ering the presence of diacid impurities in the anhydride that acts as a chain-transfer agent.

DSC thermograms show that the introduction of an aromatic ter-monomer in the
polymer sensibly enhances the Tg with respect to the corresponding polycarbonate with an
increase of 6 ◦C incorporating 5.6% of PA.

The same catalytic system 4 was also used for the synthesis of pseudo-interpenetrating
poly(propylenecarbonate) by the terpolymerization (pCO2 = 5.4 MPa, T = 70 ◦C, t = 36 h) of
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CO2 with PO and pyromellitic dianhydride (PMDA) up to 4% (in this case, Mn increased
up to 862 kg mol−1), resulting in a noticeable improvement in the mechanical and thermal
properties with respect to the corresponding polycarbonate [25].

More recently, Williams et al. described the synthesis of a new dinuclear zinc com-
plex 5 (Figure 3) that promotes the terpolymerization of CHO/PA/CO2 (pCO2 = 3.0 MPa,
T = 100 ◦C, t = 18 h) [26].
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Figure 3. Synthesis of dinuclear zinc complex 5 by Williams et al. Reproduced with modification and
permission from ref [26]. Copyright (2015) American Chemical Society.

By monitoring the reaction after 2 h, it was evident that there was the exclusive
formation of polyether linkages and no formation of PCHC, and after 18 h the formation of
a poly(ester-block-carbonate) (Mn up to 7 kg mol−1, Ð = 1.20) was evident and confirmed
by size-exclusion chromatography (SEC) analysis and diffusion-ordered spectroscopy
(DOSY) experiments.

Similar results were also obtained by Castro-Osma and coworkers by using dinuclear
zinc complexes 6–8 supported by heteroscorpionate ligands (Figure 4) [27].
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ands [27].

The complexes 6–8 were active, in the presence of DMAP, in the terpolymerization of
CHO/PA/CO2 (pCO2 = 4.0 MPa, T = 80 ◦C, t = 16 h), giving a poly(ester-block-carbonate)
material (Mn up to 3.9 kg mol−1, Ð = 1.41–1.64).

2.2. Chromium and Cobalt Complexes

In 2011, Duchateu and coworkers reported on the terpolymerization (pCO2 = 5.0 MPa,
T = 80 ◦C, t = 18 h) of CHO with CO2 and various anhydrides (SA, cyclopropane-1,2-
dicarboxylic acid anhydride (CPrA), cyclopentane-1,2-dicarboxylic acid anhydride (CPA) or
PA) promoted by two chromium complexes (Figure 5): tetraphenylporphyrinato chromium
chloride 9 and salophen chromium chloride 10 (where salophen = N,N’-bis(3,5-di-tert-
butylsalicylidenyl)-1,2-phenylenediamine) activated by DMAP (4-(N,N-dimethylamino)
pyridine) [28].
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acid anhydrides (SA, CPrA, CPA, PA) [28].

In analogy to the polymerization process observed by Coates in the case of the (bdi)Zn
complexes, the formation of the polyester is favored over the formation of the polycarbon-
ate, resulting in the formation of a poly(ester-block-carbonate). The authors also showed
that DSC of poly(ester-block-carbonate) is inconclusive in giving information about the
blocky microstructure of the copolymer because the polyester and polycarbonate phases
are completely miscible, giving a single value for the Tg. Furthermore, in the case of
complex 10, the authors noticed that the presence of CO2 in the polymerization feed com-
pletely suppresses the formation of polyether linkages. In particular, by copolymerizing
the equimolar amount of CHO and CPrA in the presence of CO2, the pure polyester was
obtained, while without CO2 an amount of 15–30% of polyether linkages was observed.
For all terpolymerizations, Mn (up to 19.2 kg mol−1) showed a linear correlation with
conversion and the Ð was ≤1.6, indicating controlled behavior.

Soon after, Darensbourg, using a related (salan) CrCl complex 11 activated by PPNN3
in the terpolymerization of CHO/PA/CO2, observed similar results (Mn up to 18 kg mol−1,
Ð = 1.07–1.13) [29]. In this case, the poly(ester-block-carbonate) showed two distinct Tg
values (48 ◦C and 115 ◦C). Intriguingly, the major reactivity of the anhydride vis à vis CO2
was explained in terms of a slower ring-opening step of the metal-carbonate intermediate
with the epoxide monomer instead of a faster insertion of the anhydride in the metal-alkoxo
bond (Scheme 4).

Catalysts 2021, 11, x FOR PEER REVIEW 6 of 20 
 

 

tert-butylsalicylidenyl)-1,2-phenylenediamine) activated by DMAP (4-(N,N-dimethyla-
mino) pyridine) [28]. 

 
Figure 5. Catalysts 9 and 10 used by Duchateu in the terpolymerization of CO2, CHO and dicarbox-
ylic acid anhydrides (SA, CPrA, CPA, PA) [28]. 

In analogy to the polymerization process observed by Coates in the case of the 
(bdi)Zn complexes, the formation of the polyester is favored over the formation of the 
polycarbonate, resulting in the formation of a poly(ester-block-carbonate). Notably, the au-
thors also showed that DSC of poly(ester-block-carbonate) is inconclusive in giving infor-
mation about the blocky microstructure of the copolymer because the polyester and pol-
ycarbonate phases are completely miscible, giving a single value for the Tg. Furthermore, 
in the case of complex 10, the authors noticed that the presence of CO2 in the polymeriza-
tion feed completely suppresses the formation of polyether linkages. In particular, by co-
polymerizing the equimolar amount of CHO and CPrA in the presence of CO2, the pure 
polyester was obtained, while without CO2 an amount of 15–30% of polyether linkages 
was observed. For all terpolymerizations, Mn (up to 19.2 kg mol−1) showed a linear corre-
lation with conversion and the Ð was ≤1.6, indicating controlled behavior. 

Soon after, Darensbourg, using a related (salan) CrCl complex 11 activated by PPNN3 
in the terpolymerization of CHO/PA/CO2, observed similar results (Mn up to 18 kg mol−1, 
Ð = 1.07–1.13) [29]. In this case, the poly(ester-block-carbonate) showed two distinct Tg val-
ues (48 °C and 115 °C). Intriguingly, the major reactivity of the anhydride vis à vis CO2 
was explained in terms of a slower ring-opening step of the metal-carbonate intermediate 
with the epoxide monomer instead of a faster insertion of the anhydride in the metal-
alkoxo bond (Scheme 4). 

 
Scheme 4. CO2 insertion vs. cyclic anhydride insertion into the metal alkoxide intermediate. Repro-
duced with modification and permission from ref [29]. Copyright (2012) American Chemical Soci-
ety. 

Scheme 4. CO2 insertion vs. cyclic anhydride insertion into the metal alkoxide intermediate. Repro-
duced with modification and permission from ref [29]. Copyright (2012) American Chemical Society.



Catalysts 2021, 11, 961 7 of 19

Chromium(III) complex 12 (TPPCrCl, Figure 6) with a porphyrin ligand in combina-
tion with PPNCl was successfully used by Chisolm and coworkers for the terpolymeriza-
tion of CO2/PO/SA (pCO2 = 4.0–5.0 MPa, T = 25 ◦C, t = 3–18 h) [30]. It is worth noting
that the PPNCl/Cr ratio is crucial to avoid the formation of polyether linkages; indeed,
when 0.5 equiv. of PPNCl have been used, the formation of polyether linkages is favored
(up to 42%) over the polyester and polycarbonate linkages, whereas with 1.0 equiv. of
PPNCl the amount of polyether linkages is drastically reduced (<2%). In analogy to other
chromium systems, for this system the polyester formation is also faster than the polycar-
bonate one, leading to copolymers with a tapered/diblock microstructure. The authors
attributed the higher reactivity of SA over CO2 to the higher solubility of the anhydride in
the reaction medium.
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A major breakthrough in this field was the use of the single component Co(III) complex
13 (Figure 7) tethering four quaternary ammonium salts [31].
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This complex displayed one of the highest activities in the CO2/PO copolymerization,
reaching TOF up to 16,000 h−1. In the presence of CO2/PO/PA, this complex also shows
high reactivity with a total conversion of PO only after 3.0 h (pCO2 = 3.5 MPa, T = 80 ◦C)
and a calculated TOF = 12,000 h−1. The resulting copolymers have a gradient poly(1,2-
propylene carbonate-co-phthalate)s microstructure since, due to the highest reactivity of
PA compared to CO2, the polymeric chains formed in the initial stages are richer in PA, but
the consumption of this comonomer favors the formation of polycarbonate chains in the
last stages. The resulting copolymers have a very narrow dispersity (Ð = 1.03–1.22) and
high molecular weight (Mn up to 354 kg mol−1). As previously observed, the incorporation
of PA in the polymeric chain enhances the thermal properties of the final polymer with
respect to the corresponding PPC.

A dinuclear Cr(III) salen complex 14 (Figure 8) was reported by Lu and coworkers
to promote, in the presence of 2 equiv. PPNCl, the terpolymerization of CO2/CHO/PA
(pCO2 = 1 MPa, T = 80 ◦C, t = 0.5–6 h) [32]. In the first 2 h, the system only produced the
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polyester segment with no incorporation of CO2, and only after the total consumption of
PA the polycarbonate block was formed, also giving, in this case, a diblock polymer. The
produced copolymers have a very narrow dispersity (Ð = 1.19–1.22) and the molecular
weight increases with the polymerization time (Mn up to 21.2 kg mol−1).
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2.3. Metal-Free Catalysts

Since the discovery by Feng and coworkers that triethyl borane (TEB) in combination
with onium halides or alkoxides promotes the formation of polycarbonates by coupling
CO2 with PO or CHO, the efforts to extend the use of this metal-free system to the terpoly-
merization of CO2 with epoxides and anhydrides resulted in the synthesis of terpolymers
having various microstructural features [33].

In 2020, Meng reported the quadripolymerization of CO2 with PA, PO and CHO in the
presence of TEB and PPNCl, resulting in the formation of the copolymer (pCO2 = 1 MPa,
T = 70 ◦C, t = 24–96 h) with good selectivity (94%) with respect to the cyclic product [34,35].
The microstructure of the resulting quadripolymer was clarified by 1H and 13C NMR show-
ing the presence of four main blocks, i.e., poly(PA-alt-CHO), poly(PA-alt-PO), poly(propylene
carbonate) (PPC), and poly(cyclohexene carbonate) (PCHC), and a very low amount of
polyether linkages (<1%). In addition, in this case the formation of the polycarbonate
segments only starts after the complete PA conversion and thus after the formation of the
polyester segments. The resulting polymers display narrow dispersity (Ð = 1.14–1.21) and
a high molecular weight (Mn up to 77 kg mol−1). It is worth reporting that the Tg can be
easily tuned by regulating the feed ratio with a wide temperature range (Tg = 82–116 ◦C).

Afterward, Li and coworkers reported on the terpolymerization of CO2 with PA and
CHO, in the presence of TEB and PPNCl (pCO2 = 0.1 MPa, T = 80 ◦C, t = 0.25–2 h) [36].
Additionally, in this case the polycarbonate block starts forming only after the complete
consumption of PA in the feed, resulting in a poly(ester-b-carbonate) copolymer with little
tapering, as shown by NMR spectra. The same catalytic system also allows the synthesis of
poly(ester-b-carbonate) without tapering by sequential monomer addition. The resulting
copolymers possess narrow dispersity (Ð = 1.09–1.15) and Mn up to 23.5 kg mol−1.

Lately, Feng obtained similar results by using TEB in combination with Bu4NN3
(pCO2 = 0.1 MPa, T = 60 ◦C, t = 0.75–18 h) for the terpolymerization of CO2 with PO and
SA/PA. The PO/SA/CO2 terpolymerization clearly shows higher reactivity toward the
oxoanion of SA over CO2, leading to the preferential formation of the polyester resulting
in tapered poly(ester-b-carbonate) [37]. Only at a low concentration of SA (SA:PO = 1:20),
a random poly(ester-co-carbonate) copolymer was obtained with 51% of polyester and
49% of carbonate. The PO/SA/CO2 terpolymerization leads to random copolymers also
at PA:PO = 20:200, and only with the presence of 40% of PA in the feed the resulting
copolymer displays a blocky nature. The terpolymerization of CHO/PA/CO2 activating
TEB with PPNCl (pCO2 = 0.1 MPa, T = 80 ◦C, t = 17–18 h) shows the analogous behavior
of PO preferentially producing copolymers with a random microstructure and blocky
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copolymers only with a high content of PA in the feed. Genuine poly(ester-b-carbonate)s
can be obtained by sequential monomer addition both in the case of PA/PO and CHO/PA
followed by feeding CO2. The Tg of the resulting copolymers can be tuned by regulating
the PA content in the final copolymer with values ranging from 32.5 ◦C to 46.2 ◦C in
the case of the PO/PA/CO2 copolymers and from 121 ◦C to 135.1 ◦C in the case of the
CHO/PA/CO2 copolymers.

In Table 1, the results obtained in the CO2/epoxide/cyclic anhydrides’ terpolymeriza-
tion discussed in this first part are summarized.

Table 1. Summary of terpolymerization of CO2 with epoxides and cyclic organic anhydrides.

Catalyst Monomers Polymerization Conditions
pCO2, T, t

Mn * (Ð)
kg mol−1

Polymer
Microstructure Ref.

1 CO2, PO, MA 4.0 MPa, 60 ◦C, 24 h - random [21]
2 CO2, CHO, DGA 0.3–5.4 MPa, 50 ◦C, 0.2–3 h 37 (1.2–1.4) block [22]
3 CO2, CHO, MA 4.0 MPa, 90 ◦C, 5 h 14.1 (1.4–1.7) block [23]
4 CO2, PO, PA 5.0 MPa, 75 ◦C, 15 h 221 (2.1–3.9) random [24]
4 CO2, PO, PMDA 5.4 MPa, 70 ◦C, 36 h 862 (2.0–3.8) random [25]
5 CO2, CHO, PA 3.0 MPa, 100 ◦C, 18 h 7 (1.20) block [26]

6–8 CO2, CHO, PA 4.0 MPa, 80 ◦C, 16 h 3.9 (1.41–1.64) block [27]
9–10 CO2, CHO, SA/CPrA/CPA/PA 5.0 MPa, 80 ◦C, 18 h 19.2 (1.1–1.6) block [28]
11 CO2, CHO, PA 3.5 MPa, 80 ◦C, 12 h 18 (1.07–1.13) block [29]
12 CO2, PO, SA 4–5.0 MPa, 25 ◦C, 3–18 h - tapered/block [30]
13 CO2, PO, PA 3.5 MPa, 80 ◦C, 3 h 354 (1.03–1.22) gradient [31]
14 CO2, CHO, PA 1 MPa, 80 ◦C, 0.5–6 h 21.2 (1.19–1.22) block [32]

Metal-free catalyst

TEB + PPNCl CO2, PO, PA, CHO 1 MPa, 70 ◦C, 24–96 h 77.7 (1.14–1.21) alternated [34,35]
CO2, CHO, PA 0.1 MPa, 80 ◦C, 0.25–2 h 23.5 (1.09–1.15) block [36]

TEB + Bu4NN3 CO2, PO, SA/PA 0.1 MPa, 60 ◦C, 0.75–18 h 17.3 (1.04–1.2) tapered/random [37]
TEB + PPNCl CO2, CHO, SA/PA 0.1 MPa, 80 ◦C, 16–17 h 22.7 (1.06–1.09) tapered/block [37]

* The highest reported value.

3. Terpolymerization of CO2 with Epoxides and Cyclic Esters

The synthesis of polyester-co-polycarbonate was also attempted by the terpolymer-
ization of CO2 with epoxides and cyclic esters combining the ROCOP and ROP mech-
anisms [38]. This approach gives access to microstructures not accessible via ROCOP
with organic anhydrides and has the advantage of using largely available monomers
ε-caprolactone (CL), DL-lactide (LA) and β-butyrolactone (BBL) [14,16,36,38–40].

3.1. Zinc Complexes

ZnGA 4, obtained by the reaction of zinc oxide and glutaric acid, was active in
the terpolymerization of CO2/PO/CL (pCO2 = 2.8 MPa, T = 60 ◦C, t = 40 h), resulting
in high molecular weight polymers (Mn up to 27.5 kg mol−1) with narrow dispersity
(Ð = 1.50–2.97) [41]. The catalytic activity decreases by increasing the content of CL beyond
the 50% in mol in the feed. Notably, the system was inactive in the polymerization of
CL alone and the production of cyclic carbonate contaminant was not observed. The
13C NMR analysis reveals a diblock microstructure with CL units directly linked to PC
units and CL units in homosequences. Accordingly, the DSC thermograms display two
transitions: one relative to the Tg of the PPC block (Tg = 5.4–17.7 ◦C) and the Tm of the
PCL block (Tm = 51.0–57.2 ◦C). These polymers show excellent enzymatic biodegradability
catalyzed by various lipases. The same catalytic system using glycidol terminated -PCL
as a macromonomer produced the corresponding grafted copolymers in the presence of
CO2/PO (pCO2 = 1.0 MPa, T = 60 ◦C, t = 6 h) [42].

In 2006, Doring reported the first example of the terpolymerization of CO2/CHO/LA by
using zinc acetate complexes 15–22 with aminoimidoacrylate (AIA) ligands (Figure 9) [43].
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In order to obtain a terpolymer with an appreciable amount of polycarbonate linkages,
an excess of CHO in the feed was necessary (CHO:LA = 3:1, pCO2 = 4.0 MPa, T = 90 ◦C,
t = 16 h), giving high molecular weight polymers (Mn = 11.3–41.6 kg mol−1) with narrow
dispersity (Ð = 1.09–1.96). The copolymers obtained by using L-LA instead of rac-LA show
crystallinity with a melting point around 167 ◦C. The authors also reported the terpolymer-
ization by using the (bdi) Zn catalysts developed by Coates (see Figure 2), showing, in this
case, even a major tendency to incorporate a higher amount of polycarbonate linkages (up
to 80%).

The polymer-supported bimetallic catalyst (PBM) 1 of general formula P-Zn[Fe(CN)6]a
Cl2-3a(H2O)b (a ≈ 0.5 and b ≈ 0.76) developed by Liu was also effective in the terpolymer-
ization (pCO2 = 4.0 MPa, T = 50–90 ◦C, t = 16 h) of CO2/PO/CL, giving materials also
containing polyether linkages [44].

A ternary system composed of Y(CCl3COO)3/ZnEt2/glycerin 23 was used by Xi-
anhong and coworkers to synthesize (pCO2 = 4.0 MPa, T = 70 ◦C, t = 10 h) terpolymers
CO2/PO/L-LA with a high molecular weight (Mn = 7.2–15.4 kg mol−1) and broad disper-
sity (Ð = 4.2–9.9), with the molecular weight increasing by decreasing the L-LA content
in the feed [45]. It is worth noting that the presence of L-LA in the polymeric backbone
even at a low content (2.4% mol) results in a considerable increase in the mechanical and
thermal properties.

A major advance came in 2014 when Williams and coworkers reported that the dizinc
complex 24 bearing a reduced Robson-type macrocyclic ligand promotes the ROCOP
of CO2/CHO and the ROP of CL (pCO2 = 0.1 MPa, T = 80 ◦C, t = 2–21 h) only when
activated by CHO, and intriguingly, a polymerization feed composed by a mixture of
CO2/CHO/CHO only leads to the exclusive formation of PCHC (Scheme 5) [46]. Indeed,
the synthesis of PCL-b-PCHC was only possible by sequential monomer addition by
introducing CO2 after the consumption of CL in the presence of CHO or by reverse order
completely removing CO2 after the formation of the PCHC block. The molecular weight
of the resulting polymers was rather low (Mn up to 4.8 kg mol−1), with narrow dispersity
(Ð = 1.38–1.49). This ability to selectively polymerize only one kind of monomer from a
mixture and the ability to oscillate between the ROCOP and ROP mechanisms led to the
definition of “switch catalysis” [47].

By performing the ROCOP of CO2/CHO, it was also possible to obtain a polycarbonate
polyol (pCO2 = 0.1 MPa, T = 80 ◦C, t = 16–25 h) that, after removing CO2, can be used for the
synthesis of ABA triblock copoly(caprolactone-b-cyclohexene carbonate-b-caprolactone) by
adding CL. Remarkably, from the thermal behavior, it was also evident that the presence of
the PCHC block disturbs or, at a higher percentage, suppresses the crystallinity of the PCL
blocks, allowing the preparation of amorphous polymer films with good transparency [48].

The same catalytic system 24 was also used to obtain pentablock copolymers by
alternating ROCOP (anhydrides/epoxide), ROP (lactone) and ROCOP (CO2/epoxide) by
using various epoxides (CHO and VCHO), anhydrides (PA, NA), and DL (ε-decalactone).
The resulting pentablock copolymers show a single Tg (from −35 to 20 ◦C), low molecular
weight (10–16 kg mol−1) [49] and Ð = 1.06–1.16.
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A more sophisticated technique was necessary to synthesize ABA block copolymers
having poly(limonene-carbonate) (PLC) blocks because of the incapability of the dizinc
complex to catalyze the polymerization of limonene oxide (LO) with CO2 [50]. In order
to circumvent this problem, a dual catalytic system was used: (1) the dizinc complex 25
promotes, in the presence of 1,2-cyclohexane diol (CHD), the formation of a hydroxyl-
telechelic PDL by the ROP of DL. This macroinitiator was then used, after the modification
of the end groups for the synthesis of the PLC blocks, by using a second catalytic system
based on the Al aminotriphenolate complex 26 developed by Kleij [51], as shown in
Scheme 6.
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The resulting biopolymers PLC-b-PDL-b-PLC have molar masses Mn spanning from
50.700 to 114.6 kg mol−1 and narrow dispersity (Ð = 1.38–1.49). The thermal and me-
chanical properties are superior compared to PLC, and these terpolymers show good
chemical recyclability through depolymerization with the same dizinc catalyst affording
the starting monomers.

Lately, a heterodinuclear Zn/Mg catalyst 27 (Figure 10) with the same ligand frame-
work promoted the formation of ABA triblock copolymers by using DL with high activ-
ity [52].
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In particular, by performing the ROP of DL a dihydroxyl telechelic PDL was obtained
that, in the presence of CO2, undergoes the transformation into the ABA triblock copolymer
PCHC-b-PDL-b-PCHC. The raw copolymers can incorporate a high amount of CO2 (up to
23%) and possess a high molecular weight (38.0–71.9 kg mol−1) with narrow dispersity
(Ð = 1.07–1.16). These materials display a single Tg (from −44 to −50 ◦C), evidencing the
amorphous nature of the blocks and their complete miscibility, and only the polymers with
a higher content of PCHC (>50%) show a second transition at higher temperatures (81;
110 ◦C). These materials show promising thermal and mechanical properties compared to
PCHC and the possibility to modulate them by regulating the length of the blocks in the
final polymer, potentially giving a wide range of applications.

Rieger and coworkers were able, by using a (bdi)-zinc complex 28 (Scheme 7), to obtain
copolymers by the terpolymerization of CO2/BBL/CHO [53]. In particular, also in this
case the CO2 acts as a switching agent: (A) at pCO2 = 4.0 MPa, the polymerization proceeds
with the exclusive production of PCHC and the formation of the poly(hydroxybutyrate)
(PHB) only starts after releasing CO2 pressure, leading finally to a diblock copolymer
PCHC-b-PHB. (B) In the absence of CO2, obviously, the system evolves to the formation
of PHB and before to the total consumption of BBL feeding CO2 (pCO2 = 4.0 MPa) with
the formation of a PCHC block, finally releasing the CO2 the “residual” BBL polymerizes,
giving, at the end, an ABA triblock copolymer PCHC-b-PHB-b-PCHC. (C) By lowering
the CO2 pressure to pCO2 = 0.3 MPa, the rates of the ROCOP and ROP processes are
comparable and therefore a statistical copolymer was formed.

The copolymers’ molecular weights, in the case of the block copolymers, are higher
(Mn = 77.0–166 kg mol−1) than those obtained in the case of statistical copolymers
(Mn = 34.0–69.0 kg mol−1), in both cases showing narrow dispersity (Ð = 1.2–1.8). PCHC-
b-PHB and PCHC-b-PHB-b-PCHC display two Tg values relative to the PHB and PCHC
blocks, respectively (Tg1 = 1–2 ◦C and Tg2 = 116–118 ◦C), as a consequence of phase
separation between the polycarbonate and polyester blocks, also confirmed by atom
force microscopy (AFM). Conversely, the random copolymers display a single transition
(Tg = 36–91 ◦C) that increases by increasing the amount of carbonate linkages in the poly-
mer chain. Similar results were obtained with cyclopenteneoxide (CPO), but in this case
the polymerization at a higher pressure (pCO2 = 4.0–5.0 MPa) results in the formation
of a gradient copolymer rather than a diblock copolymer. The kinetic study evidenced a
change in the reaction order with respect to CO2 with a zero order dependence at high
pressure (between pCO2 = 0.5–1 MPa) and first-order at lower pressure (pCO2 < 0.5 MPa),
indicating that under the latter conditions the insertion of CO2 became the rate-limiting
step [54]. As expected, the incorporation of polyester segments in both the statistical and
block copolymers leads to an improvement in the mechanical properties compared to the
brittle PCHC with a decrease in the Young modulus and tensile strength and an increase
in the elongation at break for polymers with a high molecular weight (>100 kg mol−1).
Efforts to terpolymerize CO2/BBL/LO (limonene oxide) evidenced that due to the low



Catalysts 2021, 11, 961 13 of 19

ceiling temperature (60 ◦C) of the polylimonenecarbonate (PLC), the only way to obtain
block copolymers is to first obtain the PHB block via the ROP of BBL and then feed CO2
for the formation of the PLC block. Actually, the PHB-b-PLC copolymers possess a high
molecular weight (Mn up to 233 kg mol−1) and narrow dispersity (Ð = 1.23–1.39), showing
two Tg = 1–3/26–133 ◦C. Statistical copolymers were also obtained by adjusting the CO2
pressure (pCO2 = 0.9 MPa), resulting in low conversion (up to 22% LO and 26% BBL in
22 h) and low molecular weight polymers (Mn = 9.0 kg mol−1).
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3.2. Cobalt Complexes

Salen cobalt complexes are highly active catalysts in the ROCOP of CO2 with epoxides
and therefore are, in principle, viable candidates for the terpolymerization of CO2 with
epoxides and lactones. Unfortunately, these complexes are inactive in the ROP of cyclic
esters, and consequently, the implementation of an active catalytic system for obtaining
polycarbonate-b-polyester copolymers requires the use of multi-component systems able
to synthesize the desired polymeric product.

An elegant strategy was developed by Darensbourg and Lu that used a combination
of the bifunctional Co(III) salen complex 29 and DBU (1,8-diazabicyclo[5.4.0]undec-7-
ene) (Figure 11) for the terpolymerization (pCO2 = 1.5 MPa, T = 25 ◦C, t = 2–6 h) of
CO2/SO/LA [55].
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Indeed, the cobalt complex 29 produced with high activity poly(styrene carbonate)
(PSC) from CO2 and SO, after the complete consumption of SO, a given amount of H2O,
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which was added to the reaction mixture, resulting in the production of hydroxy-terminated
PSC. Consequently, the polycarbonate formed, having the hydroxy chain-end, can act as
a macroinitiator for the ROP of LA catalyzed by DBU. As a matter of fact, after adding
two equivalent of H2O with respect to the cobalt catalyst and the removal of CO2, the
addition of LA and DBU results in the production of the AB copolymer PSC-b-PLA with
molecular weight Mn up to 17.2 kg mol−1 and narrow dispersity (Ð = 1.04–1.12). The
copolymers obtained from rac-LA display a single Tg at lower values with respect to PSC
(60–72 ◦C), and by polymerizing D-LA, the resulting diblock copolymers also display a
Tm = 133–137 ◦C depending on the length of the PLA block.

The same authors also used this strategy to synthesize ABA block copolymers from
CO2/PO/LA. They used the system composed of the salen Co(III) complex 29 activated
by PPNY (Y = CF3COO–) and DBU [56]. In this case, the obtaining of PLA-b-PPC-b-PLA
was possible because of the addition of an excess of H2O (5–20 equiv. with respect to CO)
to stop the CO2/PO copolymerization of a PPC with two α,ω hydroxy groups. Indeed,
the presence of a hydroxy group on both chain-ends allows the growth of two PLA blocks,
giving the desired PLA-b-PPC-b-PLA triblock copolymers. The molecular weight was
rather low, Mn up to 20.1 kg mol−1, with narrow dispersity (Ð = 1.02–1.04). Additionally,
in this case, on one hand the copolymers obtained from rac-LA displayed a single Tg at
higher values with respect to PPC (43–44 ◦C), and on the other hand, by polymerizing
D-LA, the resulting ABA copolymers also displayed a Tm = 110–128 ◦C depending on the
length of the PLA blocks.

Later on, Pang and coworkers developed a ternary system composed by the dinuclear
Co(II) and the Co(III) complexes with salen ligands (Figure 12) and PPNCl [57].
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Indeed, the Co(II) complexes (30a–32a) are active in the ROP of LA, and the Co(III)
complexes (30b–32b), in combination with PPNCl, are active in the ROCOP of CO2 with
various epoxides (PO, CHO, SO). The terpolymerization was possible for the chain transfer
between the two metal centers (Scheme 8).
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By using 30a and 30b and PPNCl in an equimolar amount, the terpolymerization
of CO2/LA/PO gives terpolymers, as revealed by 1H and 13C NMR analysis, possess-
ing a multiblock microstructure with Mn up to 13.6 kg mol−1 and narrow dispersity
(Ð = 1.19–1.47). Notably, the dispersity broadens in the absence of PPNCl (Ð = 3.15) and
with two equivalents of PPNCl (Ð = 2.28), confirming the crucial role of the onium salt in
the chain-transfer between the metal centers.

More recently, the same authors further developed this ternary system by changing the
Co(II) and Co(III) complexes (30a and 30b), obtaining a more active system or combining a
salen Co(III) complex with ZnGA and PPNCl [58].

Finally, in the presence of an enantiopure chiral salenCo(III) complex 33 (Figure 13)
in combination with PPN-DNP (PPN = bis(triphenylphosphine)iminium, DNP = 2,4-
dinitrophenoxide), Lu and coworkers also succeeded in producing CO2/CHO/BBL ter-
polymers with isotactic -PCHC blocks [59].
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(pCO2 = 2 MPa, T = 40 ◦C, t = 2–4 h). The resulting copolymers display, in the 1H NMR
spectra, the signals relative to the carbonate-ester linkages, indicating a multiblock struc-
ture. Molecular weights are rather low, Mn = 3.3–14.6 kg mol−1, with narrow dispersity
(Ð = 1.19–1.44), and display thermal behavior with a Tm = 204–220 ◦C, evidencing the
presence of stereoregular crystalline blocks along the polymer chain.

In Table 2, the main data relating to the terpolymerizations of CO2 with epoxides and
cyclic esters discussed in this second part are summarized.

Table 2. Summary of terpolymerization of CO2 with epoxides and cyclic esters.

Catalyst Monomers Polymerization Conditions
pCO2, T, t

Mn * (Ð)
kg mol−1

Polymer
Microstructure Ref.

1 CO2, PO, CL 4.0 MPa, 50–90 ◦C, 16 h - random [44]
4 CO2, PO, CL 2.8 MPa, 60 ◦C, 40 h 27.5 (1.50–2.97) block [41]
4 CO2, PO, CL 1.0 MPa, 60 ◦C, 6 h 10.8 (1.3–1.6) grafted [42]

15–22 CO2, CHO, LA 4.0 MPa, 90 ◦C, 16 h 41.6 (1.09–1.96) alternated/random [43]
23 CO2, PO, L-LA 4.0 MPa, 70 ◦C, 10 h 15.4 (4.2–9.9) tapered/random [45]
24 CO2, CHO, CL 0.1 MPa, 80 ◦C, 2–21 h 4.8 (1.38–1.49) block [46]
24 CO2, CHO, CL 0.1 MPa, 80 ◦C, 16–25 h 13.8 (1.29–1.49) block [48]
24 CO2, CHO, VCHO, PA/NA, CL 0.1 MPa, 100 ◦C 16 (1.06–1.16) block [49]

25–26 CO2, CHD, DL 2 MPa, 40–100 ◦C, 2–24 h 114 (1.38–1.49) block [50]
27 CO2, CHO, DL 2 MPa, 80 ◦C, 21 h 71.9 (1.07–1.16) block [52]
28 CO2, BBL, CHO/CPO 0.3–4 MPa, 60 ◦C, 0.1–7 h 166 (1.2–1.8) random/block [53]
28 CO2, BBL, LO 0.9–4 MPa, 40–60 ◦C, 8–22 h 233 (1.23–1.39) random/block [54]
29 CO2, SO, LA 1.5 MPa, 25 ◦C, 2–6 h 17.2 (1.04–1.12) block [55]
29 CO2, PO, LA 1.5 MPa, 25 ◦C, 1–4 h 20.1 (1.02–1.04) block [56]

30–32 CO2, PO/CHO/SO, LA 2 MPa, 60 ◦C, 4–48 h 13.6 (1.19–3.15) block [57]
33 CO2, CHO, BBL 2.0 MPa, 40 ◦C, 2–4 h 14.6 (1.19–1.44) block [58]

* The highest reported value.

4. Conclusions

The possibility to terpolymerize CO2 with epoxides and other cyclic monomers (cyclic
esters, organic anhydrides) offers not only a simple way to obtain a wide range of mate-
rials with unprecedented properties, but also the possibility to have such material in a
completely sustainable way, combining CO2 with monomers originating from biomasses.
The last decade has witnessed tremendous efforts in the development of efficient catalytic
systems able to combine the ROP of cyclic esters and the ROCOP of CO2 or cyclic organic
anhydrides with epoxides, allowing us to obtain polymers with various microstructural
features spanning from statistical, to AB, ABA, and even more complex architectures.
Notwithstanding these endeavors, however, fine control of the microstructure and the
molecular weight is still a major challenge in the field. Furthermore, the number of metal
centers active in the terpolymerization of CO2 with epoxides and cyclic esters of anhydrides
is still limited, offering active catalysts only in the case of Zn, Cr and Co, and, only in
the case of the terpolymerization with cyclic anhydrides, in the presence of metal-free
borane-based catalysts.

Therefore, this review is not only an overview on the progress in the field, but also
shows that there is a large space for further developments. More precisely, higher control
over the polymer microstructure, an extension to a wider range of monomers and the
development of new catalytic systems based on other metal centers to improve the activity
and the control of the polymerization process will be highly desirable targets in future
developments.
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