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Abstract: In the present article, electrodes containing a composite of platinum on top of a plasma-
oxidized multi-layer graphene film are investigated as model electrodes that combine an exceptional
high platinum utilization with high electrode stability. Graphene is thereby acting as a separator
between the phosphate-based electrolyte and the platinum catalyst. Electrochemical impedance
measurements in humidified hydrogen at 240 ◦C show area-normalized electrode resistance of
0.06 Ω·cm−2 for a platinum loading of ∼60 µgPt·cm−2, resulting in an outstanding mass normalized
activity of almost 280 S·mgPt

−1, exceeding even state-of-the-art electrodes. The presented platinum
decorated graphene electrodes enable stable operation over 60 h with a non-optimized degradation
rate of 0.15% h−1, whereas electrodes with a similar design but without the graphene as separator
are prone to a very fast degradation. The presented results propose an efficient way to stabilize solid
acid fuel cell electrodes and provide valuable insights about the degradation processes which are
essential for further electrode optimization.

Keywords: solid acid fuel cell; graphene; atomic layer deposition; thin platinum film; stability

1. Introduction

Solid acids are an alternative and interesting class of proton conducting electrolytes
for fuel cell applications. After Haile [1–4] demonstrated the general concept employing
CsH2PO4 (CDP) in solid acid-based fuel cells (SAFCs) they were further developed by a
number of researchers [1,3,5–15] and appreciated for their intermediate operating tempera-
ture (230–260 ◦C) in comparison to polymer electrolyte membranes fuel cells (PEMFCs).
Although, SAFCs feature a number of advantages the use of solid acids for fuel cell elec-
trolytes poses at least two major obstacles for their large-scale commercialization. The
first is attributed to the high loading of the expensive catalyst materials in the electrodes.
Over the last 10 years, numerous studies have been devoted to increasing the activity and
reduction of the precious platinum metal catalyst. In a promising approach, a percolat-
ing network of platinum particles as electrodes catalyst was coated directly on the ionic
conductor (CsH2PO4) by employing low-temperature metal-organic chemical vapor depo-
sition (MOCVD) technique [16,17] or atomic layer deposition [18], wherein the platinum
network acts as both the electrochemical catalyst and the electronic conductor. However,
for low platinum loadings, insufficient percolation leads to a drop in power output [16,18].
Consequently, a relatively high platinum loading (>1.5 mg·cm−2) was needed [16]. A better
strategy to improve the electrode’s performance and durability with minimal platinum was
to replace the percolating network of platinum with a conductive support decorated with
the platinum catalysts. Because of the high electrical and thermal conductivity low-cost
carbon materials have been used widely as supports [19–22]. Carbon black is currently
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the most widely used support material to boost platinum activity towards the oxygen
reduction reaction (ORR). These developments, in which a carbon support is employed,
do not solve the second major problem, namely, the degradation and a lack of long-term
stability. During SAFCs operation the platinum catalysts operate under relatively harsh
conditions at the cathode, such as low pH, phosphate-containing electrolyte, high oxygen
concentration and high temperature. Local hotspots were reported to cause local phase
transitions [23]. Unwanted processes such as agglomeration of platinum nanoparticles
(NPs) [20] or phosphate-associated catalyst poisoning are known for high-temperature
PEMFCs and might occur as well in SAFCs [24,25]. The low-performance stability, in gen-
eral, is an ongoing issue for SAFCs. Several more stable nanostructured carbon materials
such as graphene film [26], reduced graphene oxide [27], carbon nanotubes (CNT) [28],
and carbon whisker [29] were suggested and intensively investigated as platinum NPs
catalyst supports. Haile et al. first employed platinum supported on carbon (3D) in the
electrodes for SAFC application. The area-normalized electrode resistance (ANR) under
anode conditions of the electrode was reported to be 0.06 Ω·cm2 with a mass-normalized
activity (MNA) equal to 2.16 S·mgPt

−1 [1,30]. The ANR is calculated as the diameter of the
area normalized Nyquist plot’s arc. Later, Thoi et al. reported a larger electrode impedance
of 1.2 Ω·cm2, with higher MNA values of 78 S·mgPt

−1 by synthesized platinum nanopar-
ticles, via impregnation with H2PtCl6, directly on CNTs (3D) as a conductive substrate
for SAFC electrodes [28]. Tennyson et al. [27] reported 1.3 mg·cm−2 platinum loaded on
different carbon allotropes such as CNTs, carbon black, and graphene flakes. They also
reported that platinum-decorated boron-doped graphene-like flakes exhibit higher stability
toward oxidation during the aggressive SAFCs operating conditions, in comparison to
CNT and polyhedral graphitic platelets. These hybrid materials showed a promising way
for reducing anode and cathode catalyst loading with the enhancement of the platinum
performance on the different carbon allotropes supports.

To synthesize platinum/carbon, several wet-chemical [31,32], and gas-phase pro-
cesses [33,34] have been extensively studied. However, most of these methods, despite
their simplicity and inexpensiveness, involve complicated steps and produce a wide range
of platinum NP size distributions with high platinum loading and low productivity rates,
which demonstrate poor long-term durability. Compared to these methods, [35,36] atomic
layer deposition can have many unique inherent merits for preparing platinum NPs on
carbon supports [37–44]. It allows the vapors of the precursor to interact separately with
the substrates which enables the surface reactions to proceed in a self-limiting manner. The
self-limiting nature of the surface reaction in atomic layer deposition (ALD) enables the
controlled deposition of ultra-small metal amounts on complex 3D morphologies during
each growth cycle [45–48]. This results in a conformal and uniform metal film over large
and complex substrates, with precise control on film thickness, and excellent repeatability.

In the present work, a platinum-decorated oxidized graphene hybrid electrode was
developed as a model electrode to assess the effect of the protective graphene membrane,
between the electrolyte (CDP) and the electrocatalyst (platinum), on the electrode stability.
For that purpose, multilayer (∼5-layers) graphene samples were oxidized with an atmo-
spheric oxygen plasma. Platinum on a two-dimensional oxidized multilayer graphene
is then deposited via ALD technology, creating a high surface thin-film platinum with
adjustable thickness. The electrocatalytic activity was investigated via impedance spec-
troscopy with performance stability observed over 60 h in a constant voltage measurement.

2. Results and Discussion
2.1. Platinum-Decorated Oxidized Graphene

After transferring monolayer CVD-graphene film from the copper to silicon substrates,
nearly continuous coverage with few holes and cracks can be seen in Figure 1a. The defects
are mostly related to the etching process and the mechanical handling of graphene during
transfer. In addition, SEM image indicates line defects such as grain boundaries and
wrinkles. The grain boundaries are produced depending on substrates and processing
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conditions, dividing the graphene film into many grains with different crystallographic
orientations [49,50]. The wrinkles are formed during the cooling step in the growth
of graphene due to different thermal expansion coefficients between the substrate (the
copper foil) and the graphene [51]. Besides that, the SEM image highlights small few-layer
graphitic islands on the continuous graphene film, as shown in Figure 1a. Multilayer
(∼5 layers) graphene films were synthesized via CVD (Figure 1b) and they were stable
enough for use without risk of destruction during the treatment and transfer processes.
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Figure 1. SEM images of transferred graphene films on silicon wafer: (a) Monolayer graphene film grown at working
pressure equal to (1.3 Torr) throughout the graphene growth-step, (b) multilayers (∼5 layers) graphene film grown at
working pressure equal to (15 Torr) throughout the graphene growth-step. (c) The corresponding Raman spectra of
transferred monolayer graphene on a silicon wafer and (d) is the corresponding Raman spectra of transferred multilayers
(∼5 layers) graphene on a silicon wafer. All graphene samples were transferred on a silicon wafer using PMMA and
ammonium persulfate as an etchant.

The growth of monolayer, bi-layers, and triple-layers graphene using a CVD method
and copper substrate was reported [52]. Changing the working pressure and H2/CH4
ratio allows controlling the number of graphene layers grown on copper by the thermal
CVD [52,53], as shown in Figure 1. The Raman spectrum of different graphene-thicknesses
films reveal three characteristic peaks at ca. 1348, 1590 and 2680 cm−1, which are due
to the D, G and 2D (G’) bands respectively [54]. It is seen that the intensity ratio of G
and 2D modes increases with the number of graphene layers [53]. A strong increase
in the G band can be observed with increasing layer numbers changing the G to 2D
ratio from 0.23 (Figure 1c) to 1.48 (Figure 1d). A blue-shift of the 2D peak position from
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2680 cm−1 in single-layer graphene (Figure 1c) to 2695 cm−1 in the ∼5-layers graphene
(5L-Gr) occurred (Figure 1d) as well as an increase in the 2D FWHM (Full width at half
maximum) from 28 cm−1 (monolayer graphene) to 58 cm−1 (5L-Gr), which be associated
with the increase in the graphene layers [53,55]. Atomic force microscopy (AFM) was
employed to measure the graphene nanosheet’s thickness. The average thickness of the
monolayer and 5L-Gr samples are determined to be about 0.35 and 1.6 nm, respectively.
Based on a series of experiments, the 5L-Gr sample turned out to be optimal in terms of
stability, resistance against oxidation and destruction and electron and proton conductivity
for SAFCs application.

Problems when depositing platinum on graphene and other carbon allotropes are
reported in the literature [56–58]. Due to the lack of interaction of platinum-precursor with
the carbon surface, one popular strategy to facilitate deposition is to introduce oxygen
functional groups (OFGs). In this work, tuning of OFGs on the multilayer graphene surface
was achieved by atmospheric oxygen plasma treatment.

During plasma treatment, the oxygen-ion energy is transferred to the graphene when
the oxygen-ion hits the carbon atom in the graphene lattice. This energy transfer leads to
either rearrangement of the carbon ring and formation of Stone-Wales defects or remove
the carbon atom from the lattice and creates vacancies [59], leading to the destruction of the
graphene lattice [60]. A high-power plasma (100 W) with a short exposure time (8 s) was
used for the 5L-Gr oxidation. Without completely destroying the 5L-Gr structure, these
plasma processing conditions allow creating surface pits along the graphene samples with
a sharp increase in the OFGs, which facilitate a highly homogeneous platinum distribution.
Sample nomenclature hereafter follows the system OGrX/Y, where “OGr” is oxidized
graphene, “X” is the exposure time to plasma in seconds, and “Y” is the power of the used
plasma in watt.

Turning to the graphene decoration with platinum films, the deposition of a uniform
and continuous platinum catalyst on the oxidized graphene electrodes was achieved by
atomic layer deposition (ALD). Trimethyl(methylcyclopentadienyl)platinum (IV) was used
as a platinum precursor and oxygen as a co-reactant [61]. Sample nomenclature hereafter
follows the system PtALD-X where X is the ALD cycles number.

The deposition of the platinum depends on the surface functionality of the multilayer
graphene top surface. Figure 2a shows an SEM image of a freshly prepared 5L-Gr film
on a copper substrate where the copper grains are clearly visible [62]. In the case of the
untreated 5L-Gr film, platinum deposition occurs preferably on the edge, fold areas and
grain boundaries, which are usually rich with defects and oxygen functional groups. Only
a small fraction of platinum is deposited on the 5L-Gr basal plane due to its inertness and
hydrophobic nature [63], as shown in Figure 2b. On the contrary, the ∼5-layers oxidized
graphene (5L-OGr8/100) film exhibits very homogenous platinum deposition due to the
high density of oxygen functional groups along the whole graphene surface, Figure 2c.

The evolution of the PtALD NPs on the 5L-OGr8/100 surface depending on the number
of ALD-cycles is shown in Figure 3. The SEM images after 150, 200, and 300 ALD cycles
suggest that the platinum film nucleates on the OGr8/100 substrate as discrete nanoclusters
during the early stage of the ALD process, as shown in Figure 3a. As the number of cycles
increases, the diameter and thickness of the nanoclusters are increased (see Figure 3b)
and the islands begin to coalesce with adjacent platinum islands to form corrugated and
continuous thin-film with worm-like structure at 200 ALD-cycles. The platinum islands
continue to grow laterally after 300 PtALD cycles and the channels between neighboring
islands start filling to eventually form a perfectly coalesced platinum layer on the 5L-
OGr8/100 surface, as shown in Figure 3c.
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2.2. Electrochemical Measurements and Performance

We investigated the electrode performance as a function of the platinum-film thick-
ness. A series of samples were prepared by sputtering different thicknesses of platinum
directly on the CsH2PO4 pellets as shown in Scheme 1b. The sputtered sample nomen-
clature hereafter follows the system PtSP-X, where X is the sputtered Pt-film thickness
in nanometres.

The ANR measured under the same anode SAFCs conditions of different Pt-Sputtering
electrodes are shown in Figure 4a. The Nyquist plots are shown in electronic supplementary
Information Figure S1. Based on the ANR results, the maximum electrode activity was
measured with PtSP-8 electrode, which suggests that the electrode performance is not
limited by the catalyst content. The hydrogen oxidation reaction is taking place dominantly
at the two-phase boundary between CsH2PO4 and platinum, with hydrogen diffusing
through the platinum layer. Thick layer sizes are not increasing the active site density but
hampering the hydrogen diffusion and decreasing triple-phase boundaries [2,4,27,64].
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Figure 4. Measurements of the ANR were obtained by impedance spectroscopy under anode
conditions. (a) Dependency of the ANR with the platinum film thickness of graphene-free electrodes.
The platinum was deposited using magnetron sputtering. (b) Dependency of the ANR of PtSP-8

electrodes in the presence of graphene layers with varying thicknesses. The graphene was transferred
to the CDP surface before platinum deposition via magnetron sputtering using PMMA and iron
chloride in hydrochloric acid as an etchant.

The ANR tendency of different platinum layer thicknesses was in agreement with
the work of Louie et al. [65]. They reported the lowest anode impedance for symmetrical
cell measurements for a thickness of 7.5 nm. However, independent of the platinum layer
thickness, the ANR increased significantly over the course of 24 h, Figure 4a. This could
be changed by introducing a graphene separator between the CDP and platinum layers.
Graphene attracted considerable interest because of its unique electrical, thermal, and me-
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chanical properties [66–74]. These properties are affected by the graphene layers number,
whereas the conductivity decreases with the increase in the graphene thickness [75–84].
The same trend was observed for PtSP-8@3L-Gr and PtSP-8@5L-Gr cells shown in Figure 4b.
Samples were fabricated as shown in Scheme 1c with different graphene layers numbers
and measured under the same anode SAFCs conditions. The ANR after one hour was
lowest for the graphene-free cell, while the resistance increased considerably to 0.4 Ω·cm2

for PtSP-8@3L-Gr and to 2 Ω·cm2 for PtSP-8@5L-Gr. The corresponding Nyquist plots are
shown in electronic supplementary Information Figure S2. The presence of the graphene
separators affected the electrode stability and activity remarkably. The presented results
indicate that the proton passes through the graphene material. While the electrons con-
ductivity of multi-layers oxidizing graphene/graphene can be rationalized, it is important
to note that the diffusion process of the protons through these materials is unclear and
still subject of intense debate. Graphene is a good electrical conductor and therefore can
improve the charge transfer behavior of the electrode. The proton motion through the
Pt-graphene interface and graphene layers can be frequency-dependent and may con-
tribute to the ANR. Several papers and reviews have appeared over the last ten years
on this topic [85–91]. The through-plane proton conductivity of the multilayer graphene
samples can be possibly ascribed to different factors: (i) Geim et al. reported that the proton
transport can be further enhanced by decorating the graphene membranes with catalytic
metal nanoparticles [89]. (ii) The through-graphene proton transport is strongly dependent
on the relative humidity (RH) and temperature for the multi-layer graphene membrane.
A higher RH [87] and temperature [89] tend to give higher proton conductivity. (iii) The
presence of CsH2PO4 with water might assist the expansion of interlayer spacing [88] and
increasing the water-absorbing capacity through the phosphate anion, which generates
additional pathways for proton hopping [86,87]. Finally, (iiii) as mentioned above, the
as-grown CVD graphene films contain defects, graphitic islands, and many polycrystalline
grains with different crystallographic orientations stitched at the grain boundaries along
the whole surface. The grain boundary in polycrystalline graphene sheet is a periodic
arrangement of pentagon−heptagon pairs along the boundary which is a favorable site to
adsorb extrinsic impurities (e.g., oxygen, hydroxyl, hydrogen, etc.) [92,93]. Increasing the
content of the oxygen functional group enhances the proton hopping and thus increase the
protonic conductivity [94].

PtALD-decorated oxidized graphene cells were characterized using impedance spec-
troscopy under anode conditions as well as CstV measurements under fuel cell conditions.
The charge transfer resistance measured under anode conditions for PtALD-200@5L-OGr8/100
(59 µgPt·cm−2 ± 2) and PtALD-300@5L-OGr8/100 (91 µgPt·cm−2 ± 2.3) electrodes are shown
in Figure 5a,b, respectively. The electrode after 200 ALD cycles shows significantly lower
resistance than the electrode prepared by 300 ALD cycles, despite the lower platinum
loading. Based on the very low amount of platinum this results in a very high MNA of
about 280 S·mgPt

−1.
The performance of the PtALD-200@5L-OGr8/100 cathode exhibited relatively high sta-

bility, as observed in the constant voltage measurement at 0.35 V in Figure 5c, especially
compared to the PtSP-30 cathode (54 µgPt·cm−2 ± 3) that has a similar platinum thin-film
design but no graphene separator between the electrolyte and the catalyst. During the
first 1.5 h, the current density of the PtALD-200@5L-OGr8/100-MEA increases. We attribute
the observed increasing current density to the removal of the PMMA-residues and/or to
sintering of the electrolyte layer [64]. After the initial increase period, the current density
of the electrode decreases by only 0.15% h−1. A small jump can be observed after 23 h.
This jump was reported previously by Lohmann et al. and it is due to slight changes of
the electric connections and not inherent to the electrodes [64]. The platinum-decorated
oxidized graphene electrodes show a higher activity compared to the graphene-free PtSP-30-
MEA. One possible explanation for the higher performance is the interfacial design and
the highly conformal PtALD coatings of the platinum/oxidized graphene hybrid electrode,
in particular the triple-phase boundary [27,64].
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compared to the PtSP-30 cathode (54 µgPt·cm−2 ± 3) that has a similar platinum thin-film de-
sign but no graphene separator between the electrolyte and the catalyst. During the first 

Figure 5. Nyquist Plot of the electrode impedance of the PtALD@5L-OGr8/100 samples measured
under anode conditions after (a) 200 and (b) 300 ALD cycles. The electrolyte resistance was subtracted
in both cases. (c) The current density of the PtALD-200@5L-OGr8/100 sample (dashed–dotted line)
over 60 h was measured at 0.35V under fuel cell conditions. The electrodes based on 30 nm Pt films
sputtered directly on the CsH2PO4 pellets are included for comparison (dashed line) in (c). All the
platinum-decorated oxidized graphene samples were transferred using PMMA and iron chloride in
hydrochloric acid as an etchant. The open-circuit voltage was 0.88 V for the PtALD-200@5L-OGr8/100

sample and 0.86 V for the PtSP-30 sample.

We assume that the nanopatterned structure of the PtALD-200 film improves the SAFCs
performance by enhancing the proton and electron pathways through two-dimensional
hybrid electrode structure, resulting in the effective mass transfer of reactants and products
and leading to an increase in the electrochemically active surface area and better platinum
utilization at the electrode. Furthermore, the worm-like structure facilitates the fuel gases
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replenishment and boosts the removal of the reaction products at the electrodes. The most
interesting difference between the PtALD-200@5L-OGr8/100 and the graphene-free PtSP-30-
MEA, however, is the significant improvement in stability Figure 5c. While the current
density of the PtSP-30-MEA decrease rapidly by ∼60% within the first 10 h, the current
density of the PtALD-200@5L-OGr8/100-MEA showed a degradation rate of 0.15% h−1.

Wagner et al. reported a morphological change of CsH2PO4 around the current collec-
tors [12,23] and associated them with the CDP phase transition triggered by local hot spots.
Originating from these morphological changes different degradation mechanisms were
suggested including a deterioration of the catalyst–current collector network and a slow
poisoning of the platinum. Contamination of platinum by phosphate ions is well known
once the platinum is in contact with free phosphate ions, as is the case for phosphoric acid-
based fuel cells [24,25]. Graphene material seems to act as a stable separator between the
electrolyte and the electrocatalyst, providing sufficient coverage of the electrolyte surface
and preventing the platinum catalysts from being contaminated. The high current conduc-
tivity of the graphene layer can further stabilize the connection between the platinum layer
and the current collector, preventing isolated areas.

3. Experimental, Materials and Methods

Unless otherwise specified, chemicals and reagents were used as received from the
supplier without further purification.

3.1. Graphene Preparation via Chemical Vapor Deposition (CVD) on Copper Substrate

Single-layer graphene targets made with a rapid thermal processing cold wall reactor
(Moorfield nanoCVD, Knutsford, Cheshire, UK), where the copper foil (Alfa Aesar, 99.999%,
Kandel, Germany) is heated through a heating stage, and performed in a six-stage process:
(I) as-received copper foil is heated to (930 ◦C) at a heating rate of 9 ◦C/s in an atmosphere
of Ar (flow 198 standard cubic centimeters per min (SCCM)) and H2 (flow 2 SCCM) gases
under vacuum (∼3 Torr). (II) The substrate is annealed for 2 min under the same condition
as in stage (I) to reduce the oxides on the copper surface and for grain growth. (III) Follow
by ramping in the temperature, of the heating stage, from 930 ◦C to 1030 ◦C for over 5 min,
then, (IV) another annealing step for 30 min under the same atmosphere condition as
in stage (I). For graphene growth (V), a mixture of Ar/CH4/H2; Ar pressure 1.04 Torr
(flow 40 SCCM), H2 pressure 0.21 Torr (flow 8 SCCM) and CH4 pressure 0.05 Torr (flow
2 SCCM) gas is then used while the chamber pressure was maintained at 1.3 Torr for 30 min.
Finally (VI) the graphene|copper foil is cooled to room temperature. Multi-layers graphene
samples were grown on the copper substrate by increasing the working pressure during
the growth step.

3.2. Graphene Transfer

Because of the fluorescence background of the copper foil during the RAMAN mea-
surement, a transfer of graphene to a more suitable substrate (e.g., SiO2) is required to
determine the graphene quality. Additionally, transfer the graphene onto the arbitrary
substrates is a critical step in the use of CVD-grown graphene for the most practical appli-
cations. In the lab, as-grown graphene films were transferred onto different substrates by
wet chemically etching of the copper foils in aqueous solutions of ammonium persulfate
(Sigma-Aldrich, ≥98.0%, Taufkirchen, Germany) or iron (III) chloride (VWR, 99–102%) in
hydrochloric acid (HCl, Sigma-Aldrich, 37%, Taufkirchen, Germany). The use of oxidant-
etchant solutions such as FeCl3 causes significant contamination of the graphene surface
with iron species [95]. The presence of iron-metallic impurities alters the efficiency and
durability of the metal-decorated graphene electrode. These changes, however, gained
less coverage in this article and will be discussed elsewhere in depth. Before the wet
etching, the surface of graphene|copper was spin-coated with polymethyl methacrylate
(PMMA, Sigma-Aldrich, Taufkirchen, Germany). PMMA was dissolved in chlorobenzene
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(Alfa Aesar, 99.5%, Kandel, Germany) with a concentration of 0.05 mol dm−3 (4.6 g of
PMMA–100 mL of chlorobenzene).

Raman spectroscopy reveals that graphene is grown on copper foil. Since ammo-
nium persulfate/iron chloride solutions etch only copper, therefore, the bottom-side of
the copper foil was floated on nitric acid (HNO3, Merck KGaA, 65%, Darmstadt, Ger-
many): milli-Q water (1:1.5 v/v) for 30 s to etch the bottom-side graphene and provide an
appropriate profile for the etchant to copper. After the etching of the bottom graphene,
the PMMA|graphene|copper film was sequentially cleaned in milli-Q water in three
separate Petri dishes. Then, 100 mL of the ammonium persulfate (0.04 M) or iron chlo-
ride (0.22 M) in hydrochloric acid (1 M) was poured into a crystallizing dish where the
PMMA|graphene|copper sample was allowed to float on the etchant’s surface, carried
by surface tension forces. A glass cylinder with open ends and a slightly smaller radius
than the crystallizing dish was inserted into the dish, forming a double-walled cylinder,
however, suspended in order to leave a small gap between the cylinder and the bottom of
the dish [96]. After 8 h, the dissolution of the copper foil was complete and the etchant was
removed with Q-milli water by repeatedly draining out the waste solution and adding in
milli-Q water, through the inter-wall region between the crystallizing dish and the glass
cylinder, until neutral pH was reached. This setup allows the exchange of the etchant by the
millipore water without turbulent flow close to the graphene layer and hence avoids ripples
and folding. Then, the graphene layer is transferred onto the desired substrates and dried
with a gentle nitrogen stream. As a final step, the PMMA layer was dissolved by acetone
and then the graphene was annealed for 12 h under a high vacuum (∼7 × 10−8 Torr) at
120 ◦C after the transfer process.

3.3. Oxygen Plasma Treatment

The CVD-graphene films on copper foils were exposed to gas plasma with a radio fre-
quency (RF) plasma system (Junior Plasma System, Europlasma NV, Oudenaarde, Belgium)
equipped with a 300-W kHz generator. In the treatment process, the vacuum chamber
was pumped down to ∼120 mTorr. When the base pressure was reached, 20 SCCM of
oxygen gas was introduced into the chamber via a mass flow controller (MFC) during
a stabilization phase of 180 s. After the stabilization of the pressure, the oxygen plasma
was generated by the radio frequency (RF:13.56 MHz) power source. The samples were
exposed to plasma for varying times at a working pressure of 180–195 mTorr with a radio
frequency power of 100 W. During the time of plasma treatment, the temperature inside the
chamber increased from 25 ◦C to 27 ◦C. After plasma treatment, all samples were stored in
a nitrogen environment.

3.4. Catalyst Deposition
3.4.1. Atomic Layer Deposition (ALD)

Platinum deposition on oxidized graphene substrates was carried out using a home-
built ALD instrument, which provides thermal enhanced ALD configuration. The samples
were loaded on a stainless-steel sample holder, which was then transferred into the ALD
reactor through a load-lock and placed in the center of the reactor. The temperature of the
substrate heating plate in the chamber was maintained at 275 ◦C. The reactor was then
evacuated and thermally equilibrated overnight.

Commercially available trimethyl (methylcyclopentadienyl) platinum (IV) (Pt(MeCp)Me3,
Strem Chemicals, 99%, Newburyport, MA, USA) was used as the platinum precursor
and oxygen as the co-reactant. Because MeCpPtMe3 is air-sensitive, it was loaded to a
customized stainless-steel bubbler (Swagelok) in a glovebox and then connected directly to
the system without exposition to air. The temperature of the solid precursor was maintained
at 50 ◦C in the bubbler to provide enough vapor pressure. The Pt(MeCp)Me3 vapor was
carried by heated nitrogen into the ALD process chamber, through a delivery line which
was heated to 130 ◦C. Ultrahigh purity Nitrogen (99.9995%) was used as a carrier gas
at a flow rate of 150 SCCM. N2 was also used to remove unreacted precursors and any
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byproducts during the reaction. The oxygen was pulsed into the reactor through a needle
valve and a solenoid valve with a flow rate of 60 SCCM during a continuous flow. A
static exposure mode was applied during both ALD half-cycles. The pulse time of the
Pt(MeCp)Me3 precursor was 1 s, after which the valves to the pumping system were kept
closed for another 10 s to prolong the dwell time of the precursor, resulting in a total
exposure time of 11 s, followed by an N2 gas purge for 80 s, in order to completely remove
the reactant gases, then evacuation for 40 s, and then a pulse of O2 dose for 1 s, followed
by another N2 gas purge for 80 s and evacuation for 40 s. Since our reactor is relatively
large, the exposure time of the graphene samples to Pt(MeCp)Me3 vapor was crucial for
platinum deposition. Besides, this 10 s soaking step reduces the platinum precursor usage
and enables a self-limited platinum growth on the oxidized graphene surface.

3.4.2. Sputtering

The platinum depositions on the substrates were achieved in the Edwards Auto 306 RF
Magnetron Sputtering System and the film thickness was measured in real-time during
deposition using a quartz crystal microbalance measurement.

3.5. Electrochemical Cell Characterization
3.5.1. Platinum-Decorated Oxidized Graphene Cell Fabrication

The synthesis of the CsH2PO4 was achieved by dissolving the starting reagents
Cs2CO3 (Alfa Aesar, 99.99%) and H3PO4 (Carl Roth, ≥85%, Karlsruhe, Germany) in a
molar ratio of 1:2 separately in methanol (Carl Roth, ≥99%). The two solutions were mixed
and stirred for 1 h at 1500 r.p.m. Methanol was added to induce immediate precipitation
of CsH2PO4 particles. The CsH2PO4 powder was then filtered, washed with additional
methanol and dried at 80 ◦C. Finally, CsH2PO4 went through an additional lyophilization
step (for 12 h) just before using to remove surface-adsorbed water and detract its influence
on transport properties.

The platinum-decorated oxidized multi-layer graphene cells were structured in
two steps. In the first step and for all graphene cells tested, identical anodes with a
platinum loading of 7.7 mg·cm−2 were formed from the powder mixture as described by
Uda and Haile [3]. Briefly, the powder-mixture electrode was prepared by mixing and
grinding CsH2PO4, platinum-black (Sigma-Aldrich, 99.9%, fuel cell grade), platinum on
carbon (Alfa Aesar, HiSPEC 4100), and naphthalene (Alfa Aesar, 99+%) in a 3:3:1:0.5 mass
ratio. Then, the carbon paper discs (Toray TGP-H-120) and the CsH2PO4 membrane were
pressed uniaxially in a hydraulic press (Atlas Auto 15T, Specac Ltd., London, UK) to the
anode, maintaining 200 MPa for 20 min, as shown in Scheme 2a.
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Scheme 2. A cartoon showing the platinum-decorated oxidized multi-layer graphene cell fabrication: (a) The first step and
(b) the second step. For each membrane electrode assembly (MEA) a total of 160 mg·cm−2 (thickness = 0.6 mm) of the
electrolyte powder was used.

The second step was started with the transfer of platinum-decorated oxidized multi-layer
graphene (PDG) by wet chemical etching of the copper foils (as described in Section 3.2). The
double-walled cylinder system was applied and iron chloride in hydrochloric acid was
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used. However, an additional step after removing the etchant was added. Then, 250 mL of
acetone (Merck, ≥99.8%) was poured gently into the water. This step was crucial to avoid
damaging or dissolving the CsH2PO4 surface after transfer of the wet (PMMA|graphene
or PMMA|PDG). The pellets Scheme 2b were then stored under vacuum (∼6 Torr) for 48 h
in order to improve the adhesion between the graphene and the CsH2PO4 surface. Finally,
the PMMA layer was removed by pure acetone followed by a vacuum annealing step at
120 ◦C for 12 h directly before the impedance measurement.

3.5.2. Impedance Spectroscopy

The electron transfer kinetics of hydrogen electrooxidation in each electrode was
studied by selected electrochemical impedance spectroscopy (EIS) measurements (Biologic,
VSP300, Seyssinet-Pariset, France). The fuel cells were placed between stainless steel
porous meshes (GKN Sinter Metals Filter GmbH, Radevormwald, Germany), which are
served as gas diffusion layers. AC impedance measurements were performed over the
frequency range 10 mHz to 7 MHz with an applied voltage amplitude of 10 mV. Data were
collected at 240 ◦C, with the sample chamber maintained in a humidified H2 atmosphere
(p(H2O) = 0.4 atm) by flowing the inlet gases (flow 30 SCCM) through a Q-water bubbler
(inhouse construction) held at 80 ◦C. During heating and cooling, Ar gas purge 120 SCCM
was used to avoid the possibility of condensation on the cells. The constant voltage
measurements were performed at 240 ◦C using 50 SCCM pure oxygen and hydrogen flow,
each at a dew point of 80 ◦C.

3.6. Characterization Methods

Atomic force microscopy (Bruker Dimension Icon AFM, Billerica, MA, USA) us-
ing OTESPA-R3 cantilevers, in tapping mode, characterized the surface morphology of
graphene samples on SiO2/Si wafer. The obtained data were plane-corrected with the SPIP
6.7.3 software. Scanning electron microscope (SEM) imaging was performed with an Ultra
55 SEM (Carl Zeiss Microscopy GmbH, Jena, Germany) at 2 kV using the in-lens detector.
Raman spectrum is recorded using a laser with a 532 nm excitation wavelength at a very
low laser power level (to avoid any heating effect) coupled to a Horiba LabRam confocal
(X100 Olympus MPlan objective, Center Valley, PA, USA) spectrometer with a resolution of
1.3 cm−1 (600 lines/mm grid to record both the 2D-peak and the G-peak simultaneously).
The mass fraction of platinum on graphene samples was determined using inductively
coupled plasma optical emission spectroscopy (ICP OES, SPECTRO Ciros Vision, SPECTRO
Analytical Instruments GmbH, Kleve, Germany). The use of analytical techniques such
as ICP OES provides more precise and accurate results regarding analyte concentration
determination [97–99]. The platinum sample was digested in 28% vol/vol acid solution
with a 6:1 volume ratio of HCl:HNO3 in Millipore water for 30 min. Afterward, microwave
(MLS Mikrowellen Laborsysteme, microPREP, Leutkirch, Germany) digestion was carried
out for 40min heating at 235 ◦C followed by another digestion step for 24 h at RT.

4. Summary and Conclusions

The treatment of multilayer graphene (∼5-layers) with atmospheric plasma results
in a material that has a finite thickness, mechanical stability and features proton and
electron conductivity. With these features, the oxidized multilayer graphene membrane
is an ideal substrate and separator for the platinum catalyst and the electrolyte in the
intermediate temperature fuel cell electrodes. These hybrid electrodes were designed in
a way to be easily characterized but at the same time, the electrochemical impedance
measurement in humidified hydrogen for the PtALD-200@5L-OGr8/100 electrode displays a
relatively low ANR (0.06 Ω·cm−2), with a very low platinum loading prepared by 200 ALD
cycles (59 µgPt·cm−2 ± 2), resulting in a very high mass-normalized activity of about
280 S·mgPt

−1. Platinum-decorated cathodes utilizing oxidized multi-layers graphene
operates with high stability over 60 h, while a similar cell without graphene was prone to
rapid degradation.
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This study demonstrates promising solutions for improving the platinum utilization
and long-term stability of SAFCs by using the oxidized graphene multi-layer material as a
separator and platinum substrate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11080947/s1, Figure S1: Nyquist Plots of electrodes based on (a) 2 nm, (b) 4 nm,
(c) 6nm, (d) 8 nm, (e) 10 nm, (f) 30 nm, (g) 60 nm, (h) 100 nm Pt films sputtered directly on the
CsH2PO4/powder electrode pellets. The frequency range was 100 kHz to 10 mHz with an applied
voltage amplitude of 10 mV, with frequency decreasing from left to right along the x-axis. The
electrolyte resistance was subtracted; Figure S2: Nyquist Plots of electrodes based on 8 nm Pt films
sputtered on: (a) directly the CsH2PO4/powder electrode pellets, (b) in the presence of ∼3-layers,
and (c) in the presence of ∼5-layers separators between the CsH2PO4 and the sputtered Pt films. The
frequency range was 100 kHz to 10 mHz with an applied voltage amplitude of 10 mV, with frequency
decreasing from left to right along the x-axis. The graphene samples transferred using PMMA and
iron chloride in hydrochloric acid as an etchant. The electrolyte resistance was subtracted.
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