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Abstract: Considering the photocatalytic performance of CDs, ZnO, and the unique porous nanos-
tructure and stability of ZIF-8, we prepared ZnCDs/ZnO@ZIF-8 zeolite composites. The resultant
material represented an enhanced ability for the photodegradation of TC compared with that of
ZnCDs and ZnO. The photocatalytic degradation efficiency reached over 85%. The catalytic activity
of the composites was maintained after four cycles. The experimental result indicated that ·O2 radical
was the active species in the reaction.
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1. Introduction

Tetracycline (TC) is widely used as a broad-spectrum antibiotic for treating a wide
range of diseases, such as mycoplasmal pneumonia, hydatoncus, and the diagnosis of
malignant tumor epidemic typhus [1,2]. However, as with other antibiotics, tetracycline can
be only partially metabolized or absorbed by humans and animals and its residue ends up
in wastewater [3]. Tetracycline residue in hydrosphere inevitably brings underlying hazard
to human health. Consequently, the removal of TC from aqueous solutions is a crucial and
significant goal. So far, researchers have explored various methods such as adsorption [4],
biodegradation [5,6], and electrochemical [7] to combat pollution by antibiotics. However,
most methods have been restricted owing to lack of efficiency, costliness, or sophisticated
instrumentation. Photocatalytic technology has gained attention for the degradation of TC
owing to its high efficiency, low cost, and environmentally friendly properties [8–10].

MOF-based composites have attracted much attention in recent years for their poten-
tial uses in adsorption [11], photocatalysis [12,13], fluorescence sensing [14], etc. Among of
them, zeolitic imidazolate framework (ZIF-8), which is comprised of zinc and 2-methyl
imidazole (2-mIm), is considered a highly appropriate host matrix to form compos-
ites owing to its exceptional chemical and thermal stability and relatively large cavities
(11.6~3.8 Å) [15,16]. Various materials have been successfully combined with ZIF-8 and
have acquired a synergistic effect [17–20]. For example, ZnO is a semiconductor and
has been widely used as a photocatalyst, but it remains challenging to capture the target
molecules for enhanced photocatalysis. It has been found that higher photocatalytic ability
and photochemical activities were achieved as ZnO hybridized with ZIF-8 [21–23]. Nev-
ertheless, the charge conductivity of ZnO@ZIF-8 is still unsatisfactory, which limits the
improvement of photocatalytic capacity further.

Carbon dots (CDs)-based materials have been studied as a new generation of pho-
tocatalytic composites owing to the tunable photoluminescence and high efficiency light
capturing capability [24–26]. For example, CDs@TiO2 absorbs more visible light compared
to bare TiO2, which helps to increase the catalytic efficiency [27]. CDs@ZnO produced
a newly formed conduction band, which contributes to an increased level of electron
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migration to the valence band and thereby enhances their photocatalytic activity [28,29].
It is proposed that CDs can modulate the band structure of semiconductors and improve
the optical properties and impart novel functionalities to the as-synthesized composites.
So, it is anticipated that higher photocatalysis should be achieved by incorporating CDs
into ZnO@ZIF-8.

Herein, we prepared a ZnCDs/ZnO@ZIF-8 zeolite composite, in which ZnCDs/ZnO
heterojunction was encapsulated by ZIF-8 crystal and formed a core–shell structure. It
indicated that the resulting hybrid material exhibits excellent photocatalytic performance
for the degradation of tetracycline. The photocatalytic efficiency reached over 85% after
four cycles. The possible reaction mechanism was investigated using the radical scavenger
technique. It is hoped that this work could pave the way for developing more photocatalytic
zeolite composites.

2. Results and Discussion
2.1. Synthesis of ZnCDs/ZnO@ZIF-8

The synthesis procedure of ZnCDs/ZnO@ZIF-8 composites is shown in Scheme 1.
The mixture of zinc nitrate hexahydrate, folic acid, and DMF was heated at 190 ◦C, and
then cooled down. The product was separated into two parts: the solution was dialyzed
and dried to obtain ZnCDs; the residual precipitate was calcined to form ZnO nanosphere,
which was used as template for the preparation of ZnCDs/ZnO heterostructures. Finally,
2-methylimidazole was coordinated with zinc ions in the suspension of ZnCDs/ZnO to
form the ZIF-8 crystal, which wrapped around ZnCDs/ZnO heterojunction nanosphere.
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Scheme 1. Synthesis of ZnCDs/ZnO@ZIF-8 composites. 
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spherical in shape with a uniform size about 500 nm (Figure 1a). The ZnCDs/ZnO nan-
osphere was rough owing to aggregation of nanoparticles. Further observation from 
Figure 1b shows that many polyhedrons of ZIF-8 (~50 nm) appeared on the surface of 
ZnCDs/ZnO. Energy-dispersive X-ray spectroscopy (EDX) was performed on the 
as-prepared composites which determined the elemental composition to comprise Zn 
(26.35), N (3.07), O (34.80), C (35.78) wt.%. 

TEM analysis of ZnCDs/ZnO@ZIF-8 composites suggests a core–shell nanosphere, 
where the inner core is ZnCDs/ZnO heterojunction (Figure 1c) and the outer shell is ZIF-8 
crystal (Figure 1d). Figure 2a–d are the elemental mapping diagrams of Zn, O, C, and N 
in ZnCDs/ZnO@ZIF-8 composites, respectively. It can be seen from the figures that these 
elements were evenly distributed on the materials. 

Scheme 1. Synthesis of ZnCDs/ZnO@ZIF-8 composites.

2.2. Characterization of ZnCDs/ZnO@ZIF-8

SEM imaging indicates that the morphology of ZnCDs/ZnO heterojunction was spher-
ical in shape with a uniform size about 500 nm (Figure 1a). The ZnCDs/ZnO nanosphere
was rough owing to aggregation of nanoparticles. Further observation from Figure 1b
shows that many polyhedrons of ZIF-8 (~50 nm) appeared on the surface of ZnCDs/ZnO.
Energy-dispersive X-ray spectroscopy (EDX) was performed on the as-prepared composites
which determined the elemental composition to comprise Zn (26.35), N (3.07), O (34.80), C
(35.78) wt.%.

TEM analysis of ZnCDs/ZnO@ZIF-8 composites suggests a core–shell nanosphere,
where the inner core is ZnCDs/ZnO heterojunction (Figure 1c) and the outer shell is ZIF-8
crystal (Figure 1d). Figure 2a–d are the elemental mapping diagrams of Zn, O, C, and N
in ZnCDs/ZnO@ZIF-8 composites, respectively. It can be seen from the figures that these
elements were evenly distributed on the materials.
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Figure 2. Mapping of ZnCDs/ZnO@ZIF-8 composites (a) Zn (b) O (c) C (d) N.

XRD analysis of ZnCDs/ZnO@ZIF-8 shows a series of typical characteristic peaks
with 2θ at 7.32◦ (39.0), 10.36◦ (41.7), 12.71◦ (44.8), 14.68◦ (56.5), 16.42◦ (40.5), 18.01◦ (41.4),
and 22.09◦ (54.5), because of the (011), (002), (112), (022), (013), and (222), (114) diffraction
of ZIF-8 [30]; and the obvious diffraction peaks at 31.77◦ (2.81), 34.43◦ (2.60), 36.26◦ (2.47),
47.55◦ (1.91), 56.61◦ (1.62), 62.87◦ (1.47), and 67.96◦ (1.37), respectively, correspond to the
(100), (002), (101), (102), (110), (103), and (112) of the tetragonal phase ZnO (JCPDS, No. 89-
0511) [31] (Figure 3a). The interplanar distances are listed in the parentheses, respectively.
It shows that ZnCDs/ZnO@ZIF-8 composites were successfully synthesized.
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The FT-IR spectra also confirm the successful synthesis of the composites (Figure 3b).
The ZIF-8 and ZnCDs/ZnO@ZIF-8 both exhibits adsorption peaks at 424, 752, 1141, 1306,
1423, 1582, 2928, and 3143 cm−1, The adsorption peaks at 1582 cm−1 is attributed to the
stretching vibration of C=N bonds. The adsorption peaks at 752, 1141, and 1306 cm−1

are attributed to the bending vibrations of the imidazole ring, while the one at 1423 cm−1

is attributed to the stretching vibration of the imidazole ring [21,32]. The adsorption
peaks at 2928 cm−1 and 3143 cm−1 are attributed to the aromatic and aliphatic C−H
stretches [33]. The widened vibration peak between 400~500 cm−1 in ZnCDs/ZnO@ZIF-
8 could be attributed to the Zn-O stretch in ZnO [28], which indicates ZnCDs/ZnO’s
successful modification with ZIF-8.
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XPS analysis was carried out to understand the surface composition and electronic
states of the constituent elements present in the composites. In common, the high-resolution
survey scan of ZnCDs/ZnO@ZIF-8 revealed four peaks of Zn(2p), C (1 s), N (1 s), and O (1 s)
at the ranges of 1045.2, 285.1, 398.7, 530.6 eV, respectively (Figure 4a). The C (1 s) spectrum
further splits into three peaks at binding energies of 284.32, 285.1, and 286.0 eV, which
are attributed to C=C/C–C, C–N/O, C=N, respectively [34] (Figure 4b). The presence of
Zn−O and hydroxyl group is determined from the XPS spectrum of O 1 s. The peaks are
centered at 530.0, 530.63, and 531.96 eV, respectively (Figure 4c). All of the peak positions
are aligned with the literature [35]. The high-resolution spectrum of N (1 s) revealed a
dominant peak at 398.75 eV, which deconvoluted into two peaks at 398.75 eV and 399.9 eV,
and corresponded to N−C or N-H, respectively [36] (Figure 4d). The peaks of Zn 2p
at 1022.0 eV and 1045.2 eV assigned to Zn 2p3/2 and Zn 2p1/2, respectively (Figure 4e),
proved the presence of Zn2+ in the sample [29]. The high-resolution XPS spectra of bare
ZnO indicates the peaks at 1021.8 and 1044.9 eV, which were reported earlier [37]. Zn LM2
Scan Auger peak of ZnCDs/ZnO@ZIF-8, as shown in Figure 4f, also indicated that the
formation of the composites [38].
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Figure 5. (a) Nitrogen adsorption−desorption isotherm (b) BET of ZnCDs/ZnO@ZIF-8.

Figure 5a shows the nitrogen adsorption−desorption isotherms of ZnCDs/ZnO@ZIF-
8 and related materials ZnO, ZnCDs/ZnO, and ZIF-8. The curves of ZIF-8 are a typical
type I nitrogen adsorption−desorption isotherm [39], which fit well with the microporous
frameworks of ZIF-8. The curves for ZnCDs/ZnO are a type IV isotherm [39], which shows
low adsorption at low pressure and multilayer adsorption at high pressures owing to slits
caused by assembly of ZnO. The specific BET surface area is 9.94 m2/g. For comparison,
the BET surface area of ZnCDs/ZnO@ZIF-8 is 583.3 m2/g, higher than that of ZnCDs/ZnO.
The initial adsorption of ZnCDs/ZnO@ZIF-8 is higher than that of ZnO, indicating that
micropores exist in ZnCDs/ZnO@ZIF-8, which can be attributed to the frameworks of
ZIF-8. The multilayer adsorption at high pressure corresponds to spherical morphology of
the sample, similar to that of ZnO [21]. Figure 5b summarized pore size distribution by
BJH method [40]. It indicates that the pore size of ZnCDs/ZnO@ZIF-8 distribution is wide.
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The optical absorption properties of ZnCDs/ZnO@ZIF-8 and various related materials
are shown in Figure 6a. All the absorptions occurred in the wavelength range of 200~400 nm.
The observation indicates that the absorption intensity of ZnCDs/ZnO@ZIF-8 is higher
than that of ZnO nanospheres and ZIF-8, respectively. The absorption ability in the
visible-light region is enhanced as ZnCDs/ZnO enveloped by ZIF-8, which is conducive
to the utilization of the solar spectrum. The band gap energies (E) of direct transition
semiconductor can be calculated according to the plot of (ahv)2 versus photon energy
(hv) [41]. As shown in Figure 6b, the Eg of ZnCDs/ZnO@ZIF-8 estimated to be 2.41 eV,
which is narrower than that of ZnO (2.72 eV) and ZIF-8 (4.41 eV), respectively, owing to
the incorporation of ZnCDs/ZnO with ZIF-8.
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The fluorescence spectra of the as-synthesized composites and the related samples
exhibit emission peaks centered at around 650 nm (Figure 7a). The absorbance intensity of
ZnCDs/ZnO@ZIF-8 increased with respect to that of ZnCDs/ZnO and ZIF-8. As everyone
knows, the radius of each arc is relevant to charge-transfer resistance: the smaller the
radius of the arc, the lower the corresponding impedance [42]. As displayed in Figure 7b,
ZnCDs/ZnO@ZIF-8 shows the smallest charge-transfer resistance compared with that
of ZnCDs/ZnO, ZnO, and ZIF-8, coinciding with the conclusion of the EIS results. The
transient photocurrent responses and electrochemical impedance spectra of the compos-
ites were employed to further explore the separation efficiency of the photogenerated
charge carriers [43]. As shown in Figure 7c, the photocurrent responses of ZIF-8 are
quite low, which may stem from the fast recombination of electron-hole pairs. Compared
with ZnCDs/ZnO, ZnO, and ZIF-8, ZnCDs/ZnO@ZIF-8 composites exhibits the highest
photocurrent density. It can generate considerably enhanced photo-currents with four
visible-light irradiation on–off cycles. This indicates ZnCDs/ZnO-loading accelerates the
transfer of the photo-generated electrons and holes at the interface between ZnCDs/ZnO
and ZIF-8.
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Figure 8. (a) Linear relationship between the concentration and Uv-vis adsorbance of TC. (b) The
photocatalytic performance of verious materials for the degradation of TC. (c) Linear relationship of
degradation kinetics over ZnCDs/ZnO@ZIF-8 and other related materials. (d) The photocatalytic
activity with different qualities of ZnCDs/ZnO@ZIF-8.



Catalysts 2021, 11, 934 8 of 13

2.3. Catalytic Performance of ZnCDs/ZnO@ZIF-8

Photocatalysis is one of the environmentally friendly and sustainable strategies to
eliminate the TC pollution [44]. Here, ZnCDs/ZnO@ZIF-8 was evaluated for the photo-
catalytic degradation of TC under visible-light illumination (λ > 420 nm). Figure 8a is
the linear relationship between the concentration and Uv-vis adsorbance of TC. Before
the photocatalysis experiments, the suspension was magnetically stirred in the dark for
60 min to make sure an adsorption-desorption equilibrium containing the catalyst powders
and TC aqueous without illumination. As shown in Figure 8b, the photolysis of TC in
the absence of photocatalysts can be neglected, which demonstrates that TC is very stable
and hardly decomposed. Apparently, there was little adsorption phenomenon in ZnO,
ZnCDs/ZnO, and CDs/ZnO, while the samples decorated with ZIF-8 showed a discernible
adsorption. This phenomenon could be ascribed to the strong adsorption capacity of the
wide nanopores interconnected through 0.34 nm windows assembled as an analogue zeolite
sodalite structure of ZIF-8 [45,46]. Significant degradation of TC occurs when ZnCDs/ZnO
hybridized with ZIF-8 (Figure 8c). Furthermore, the degradation rate was effect by the
quantity of ZnCDs/ZnO@ZIF-8, as depicted in Figure 8d, the optimum dosage is 100 mg.
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different scavengers. (b) Cycling runs of Zn-CDs/ZnO@ZIF-8 (c) IR of Zn-CDs/ZnO@ZIF-8. (d) XRD
of Zn-CDs/ZnO@ZIF-8 before and after reaction.

In order to ascertain the reactive species that directly participate in photocatalytic
system, active species trapping experiments were tested. BQ, EDTA-2Na, K2S2O8, and IPA
were employed to quench ·O2−, h+, e− and ·OH in the photocatalytic process, respectively.
As depicted in Figure 9a, the photocatalytic rate did not exhibit a noticeable change in
the presence of EDTA-2Na, K2S2O8, and IPA. This indicates that h+, e−, and ·OH that
participated in the photocatalytic process did not play a leading role. Whereas, when BQ
was added to the reaction system, the degradation of TC was greatly inhibited. This result
demonstrates that ·O2

- is main reactive species for ZnCDs/ZnO@ZIF-8.
Furthermore, the stability of the photocatalyst was investigated through the cyclic

degradation of TC under visible light irradiation. One hundred milligrams of ZnCDs/ZnO-
@ZIF-8 was used in the recycling experiment. After the photocatalysis, the mixture was
centrifuged to obtain a catalyst to characterize IR and XRD, or for the next reaction. It
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can be clearly seen that the photocatalytic activity remained almost constant after five
cycles which proves the as-synthesized composites have high stability (Figure 9b). The
incorporation of ZIF-8 into the ZnCDs/ZnO nanospheres was therefore thought to enhance
the visible light activity of ZnO and also inhibit the photo-corrosion of ZnO, leading to a
stable and durable photocatalytic activity. The IR spectra and XRD of ZnCDs/ZnO@ZIF-8
is almost unchanged before and after the photocatalytic reaction (Figure 9c,d). It indicates
that the catalyst is stable and recyclable during the photocatalytic process.
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On the basis of the above experimental results over ZnCDs/ZnO@ZIF-8, photocat-
alytic mechanism is proposed and illustrated in Figure 10. The photocatalytic activity of
ZnCDs/ZnO@ZIF-8 can be attributed to the ZnCDs/ZnO heterojunction and ZIF-8, which
effectively facilitates the electron transfer and the separation of electron-hole pairs. During
UV irradiation, electrons and holes are excited at the conduction band (CB) and the valence
band (VB) on the composites, respectively. After that, electrons transfer from the excited
state to the ZnCDs/ZnO and transform from O2 to ·O2−. ·O2− and holes at VB finally
contribute to the degradation of tetracycline in the solution.

3. Materials and Methods
3.1. Materials

Zinc nitrate hexahydrate, DMF, alcohol were purchased from Sinopharm Group
Chemical Reagent Co., Ltd. Shanghai, China. Tetracycline hydrochloride (TC) and 2-methyl
imidazole (2-mIm) were purchase from Aladdin Chemical Reagent Co., Ltd. Shanghai,
China. Folic acid was purchased from Macklin Technology Co., Ltd. Shanghai, China.
Dialysis bag (MWCO: 1000 da) imported from the United States. All solvents and reagents
were analytical grade and used without further purification.

3.2. Characterization

Fourier transform infrared spectroscopy (FT-IR) was recorded on a Nicolet iZ10 FT-IR
Spectrophotometer (Thermo Electron Co., USA) with potassium bromide (KBr) as the
dispersant to examine possible chemical bonds in adsorbents. X-ray diffraction (XRD)
patterns were recorded on a German Brooke XRD-D8 Advance D8 with Cu Kα radiation
(λ = 0.15406 nm, voltage 40 kV, current 40 mA) and irradiated at a scan rate of 0.1◦/s in
the range of 5◦–80◦. Ultraviolet-visible (UV-vis) spectra experiments were performed on
Hitachi UV-vis 3010 spectrophotometer (Hitachi Ltd., Tokyo, Japan). The morphology and
microstructure of the samples were characterized by scanning electron microscopy (SEM,
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Hitachi Ltd., Tokyo, Japan) and field emission scanning electron microscopy (FESEM, Hi-
tachi S-4800, Hitachi Ltd., Tokyo, Japan) operated at 5 kV. X-ray photoelectron spectroscopy
(XPS, Thermo Scientifific, EscaLab 250Xi spectrometer, USA) with a monochromatic Al
Kα X-ray source was used to analyze elements (hv = 1486.6 eV, power 150 W, beam spot
650 um, voltage 14.8 kV, current 1.6 A and testing software is advantageous). Charge
correction was carried out using polluted carbon C1s = 284.8 eV. A constant analyzer pass
energy Ep narrow sweep 20 eV, wide sweep 100 eV, and vacuum degree 1×10−10 MBA.
Photoluminescence spectroscopy (PL) was carried out using a Hitachi F-4500 fluorescence
spectrophotometer (Hitachi Ltd., Tokyo, Japan). The sample was excited by a 360 nm
laser light source. UV-vis diffuse reflectance spectroscopy (DRS) were tested in absorption
mode at the range of 200–800 nm by a Shimadzu UV-2450 spectrometer (Shimadzu Ltd.,
Tokyo, Japan) with MgO powder as the reference. The MgO powder was firstly pressed
into thin disc on the holder, and then the powder sample was evenly spread on an MgO
disc and pressed again. A 500 W Xenon lamp was used as the light source (λ ≥ 420 nm).
Electrochemical tests were carried out on a CHI760E electrochemical analyzer (CHIIns.,
Chenhua Ltd., Shanghai, China) in a conventional three-electrode configuration with a
Pt foil as the counter electrode and Ag/AgCl (saturated KCl) as the reference electrode.
The electrolyte solution was 1.0 mol·L−1 Na2SO4. The working electrode was prepared by
mixing 10 mg catalyst with 10 µL 5 % Nafion and 10 mL ethyl alcohol to form a slurry, and
then the slurry was coated onto a 1.0 cm2 ITO conductive glass. The scan rate was 0.1 V/sec
and the testing potential was 2 V to start the scan to sweep until −2 V, maintaining the
scan window between +2 V to −2 V (vs Ag/AgCl) using 1 M Na2SO4 as supporting elec-
trolyte. Specific surface areas of samples were measured using nitrogen sorption isotherms
through a standard Brunauer–Emmett–Teller (BET) analysis (Tristar II 3020, Micromeritics
Instrument Corporation, Norcross, GA, USA).

3.3. Synthesis of ZnCDs

Folic acid (0.1 g) and DMF (10 mL) were mixed with Zn(NO3)2 (0.05 g). The solution
was stirred and then transferred into a 25 mL Telfon steel autoclave and heated at 190 ◦C
for 12 h. The solution of ZnCDs was obtained by dialysis against deionized water through
a dialysis bag (MWCO: 1000 Da). It was evaporated to dryness for further use. A control
sample without metal doping (bare CDs) was prepared under conditions similar to that
of ZnCDs.

3.4. Synthesis of ZnO

Folic acid (0.1 g), DMF (10 mL) were mixed with Zn(NO3)2 (0.05 g). The solution
transferred into a 25 mL Telfon steel autoclave and heated at 190 ◦C for 12 h. After
the mixture was cooled down to room temperature, the precipitate was collected by
centrifugation and washed with H2O and ethanol for several times. The solid was calcined
at 500 ◦C for 4 h to obtain white powder ZnO.

3.5. Synthesis of ZnCDs/ZnO

ZnO (100 mg) was mixed with ZnCDs (10 mg) in CH3CH2OH (20 mL) and stirred
for 6 h. The precipitate obtained was washed with H2O and CH3CH2OH, respectively,
ZnCDs/ZnO formed and then dried in vacuum.

3.6. Synthesis of ZnCDs/ZnO@ZIF-8

Twenty milliliters of methanolic solution including ZnCDs/ZnO (80, 100, 200 mg),
160 mg of zinc nitrate hexahydrate (0.05 mmol), and 20 mL of methanolic solution including
410 mg of 2-methylimidazole (5 mmol) were mixed with stirred continuously at 50 ◦C for
4 h. A white powder, ZnCDs/ZnO@ZIF-8, was collected by centrifugation, then washed
with methanol and dried at 80 ◦C for use. As a contrast, ZIF-8 was prepared according to
the procedure in the literature [47].
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3.7. Photocatalytic Degradation of Tetracycline

The photocatalytic activity of ZnCDs/ZnO@ZIF-8 composites was determined by
the photodegradation of tetracycline. The reaction mixture was irradiated by a 500 W
Xenon lamp for photodegradation while being stirred. During the reaction, a cooling water
circulation device was used to maintain the reaction temperature at around 50~60 ◦C. In a
typical process, 100 mg of photocatalyst ZnCDs/ZnO@ZIF-8 was added in 1000 mL of the
tetracycline solution and stirred for 60 min in the dark to attain anadsorption/desorption
equilibration. For the normal concentration of TC present in the natural environment (in
manure and soil, 0~200 mg·kg−1 [48,49]; in the aquatic environment, 0~20 µg·L−1 [1,50]);
we chose 20 mg·L−1 for the initial concentration of TC. In the photocatalytic process, 3 mL
mixture was extracted and centrifuged to obtain clear liquor for the next residual TC
detection using the spectrophotometer at a maximum absorption wavelength of 371 nm.
Photocatalytic efficiency was calculated by the following formula:

Photocatalytic e f f iciency =
(C0 − C)

C0
× 100

where C0 and C represent concentrations of tetracycline before and after irradiated, respec-
tively.

Additives that could scavenge different active radicals were utilized in compara-
tive trials to illuminate the degradation process of tetracycline. K2S2O8 (1 mM), dis-
odium ethylenediaminetetraacetic acid (EDTA-2Na, 1 mmol·L−1), p-benzoquinone (BQ,
1 mmol·L−1) and tert-butanol (t-BuOH, 1 mmol·L−1) were introduced into the reaction
system to capture electrons (e−), holes (h+), superoxide anion free radicals (·O2

−), and
hydroxyl free radicals (·OH). These tests were performed following the photocatalytic
degradation process mentioned above.

4. Conclusions

In summary, we have prepared ZnCDs/ZnO@ZIF-8 composites via zeolite metal-
organic frame ZIF-8 wrapped around ZnCDs/ZnO heterojunction. The hybrid material
exhibits superior photocatalysis performance for the degradation of tetracycline, which
was induced by synergistic effect of ZIF-8 and ZnCDs/ZnO. Our work may provide
more thought to design zeolite MOF-decorated semiconductors and carbon dots-based
composites that utilize visible light to solve the environmental problems.
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