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Abstract: The selective oxidation of alcohols to aldehydes has attracted a lot of attention because of
its potential use in agrochemicals, fragrances, and fine chemicals. However, due to homogenous
catalysis, low yield, low selectivity, and hazardous oxidants, traditional approaches have lost their
efficiency. The co-precipitation method was used to synthesize the silver-cobalt bimetallic catalyst
supported on functionalized multi-walled carbon nanotubes (Ag-Co/S). Brunauer Emmet Teller
(BET), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray
diffraction (XRD) were used to characterize the catalyst. For the oxidation of cinnamyl alcohol (CA)
with O2 as an oxidant, the catalyst’s selectivity and activity were investigated. The impacts of several
parameters on catalyst’s selectivity and activity, such as time, temperature, solvents, catalyst dosage,
and stirring speed, were comprehensively studied. The results revealed that in the presence of
Ag-Co/S as a catalyst, O2 could be employed as an effective oxidant for the catalytic oxidation of
cinnamyl alcohol to cinnamaldehyde (CD) with 99% selectivity and 90% conversion. In terms of cost
effectiveness, catalytic activity, selectivity, and recyclability, Ag-Co/S outperforms the competition.
As a result, under the green chemistry methodology, it can be utilized as an effective catalyst for the
conversion of CA to CD.

Keywords: silver-cobalt bimetallic catalyst; CNTs; selective oxidation; cinnamyl alcohol; cinnamaldehyde

1. Introduction

The functional transformation of molecules to carbonyl compounds contributes sig-
nificantly to the organic synthesis. The selective oxidation of alcohols in the presence of
different stoichiometric reagents, such as chromium and manganese has been well investi-
gated [1]. The oxidation of cinnamyl alcohol, a simple aromatic allylic alcohol, is one of
the most studied heterogeneously catalyzed oxidation reactions. The carbonyl compound
cinnamaldehyde is a significant chemical intermediate in organic transformations and has
a wide range of applications in the food and fragrance industries. It is also used in animal
repellant, plant protection against nematodes, flea repellent, and antibacterial agent. The
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synthesis of metal catalysts for the catalytic the oxidation of target molecules in the presence
of molecular oxygen as an oxidant has received more attention due to the atom economy
and related environmental issues under the protocol of green chemistry. Few catalysts with
suitable reactivity and stability are currently available for large-scale applications of aerobic
oxidation of alcohols. So far, monometallic catalysts with platinum-group metals have
dominated for the oxidation of cinnamyl alcohol. Furthermore, bimetallic nanoparticles
have also received significant attention in comparison to monometallic particles because
of their multifunctionalities, selectivity, and activity, and their use in a variety of research
fields such as optics, water purification, electronics, and catalysis [2,3]. As a result, scien-
tists are interested in synthesizing bimetallic nanoparticles in various shapes in order to
improve their efficiency through different approaches, such as chemical approaches, sol-gel
and precipitation methods [4]. Silver-cobalt (Ag-Co) bimetallic nanoparticles has become
notable in several industries and various fields of science including catalysis, biotechnology
and energy storage [5]. Hydrothermal reduction, sol-gel, and co-precipitation procedures
have been used to prepare the bimetallic Ag-Co nanoparticles [6].

Erdogan and his co-workers used a co-precipitation approach to synthesize Ag-Co
bimetallic nanoparticles and examined their role in the oxidation of carbon monoxide [7].
Alonso et al. investigated the antiseptic properties of Co and Ag mono metallic nanopar-
ticles as well as Ag/Co composites [8]. Lima et al. prepared bimetallic nanoparticles
of silver and cobalt in various molar ratios and studied their ability to reduce oxygen
in alkaline environments [9]. Herein, the Ag and Co nanoparticles were synthesized
through co-precipitation method and supported on functionalized multi walled carbon
nanotubes [10]. The functionalized multi walled carbon nanotubes (FCNTs) was used as a
support for nanoparticles due to its mechanical properties, stability, surface area, compara-
tively excessive oxidation stability, conductivity and selectivity [11]. Ag and Co bimetallic
nanoparticles on the surface of FCNTs (Ag-Co/S) were used to catalyze the oxidation of
cinnamyl alcohol to cinnamaldehyde. According to the literature review, the utilization of
Ag-Co/S for the oxidation of cinnamyl alcohol in this study is a novel strategy because
the supported nanoparticles showed increased selectivity, % conversion, recyclability, and
stability. This FCNTs-supported Ag-Co catalyst, on the other hand, might be used well in
industries for alcohol oxidation.

2. Results and Discussion
2.1. Characterization of of Ag-Co/S Nanoparticles

The supported nanoparticles were morphologically studied using SEM. Figure 1
shows that silver and cobalt bimetallic nanoparticles are present on the surface of FCNTs in
a well-dispersed form. Kazici et al. [12] also conducted a similar investigation and reported
the same findings. The existence of silver, cobalt, carbon, and oxygen was confirmed in the
elemental composition of the supported bimetallic nanoparticles, as shown in ,. Metal oxide
production and MWCNTs functionalization with organic acids (COOH) caused oxygen
peaks in the results. The Ag-Co/S surface area measured by BET was 217.5 m2/g, which
is consistent with the literature. The MWCNTs are identified by the diffraction peak at
2θ = 26.1 in Figure 3. The diffraction peaks at 2θ = 38.1◦, 66◦ and 78.4◦ correspond to Ag
crystal lattices, while the peaks at 2θ = 41◦, 44◦, 47◦ and 76◦ correspond to cobalt crystal
lattices. Kanwal et al. [13] also studied Co-Ag nanoparticles and found similar results.
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Figure 1. Scanning electron microscopy (SEM) image of Ag-Co/S nanoparticles.

Figure 2. Energy dispersive X-ray spectrum of Ag-Co/S nanoparticles.

Figure 3. X-ray diffractometry image of Ag-Co/S nanoparticles.

2.2. Oxidation of Cinnamyl Alcohol as a Model Reaction

To confirm the absence of autocatalysis of cinnamyl alcohol, a substrate solution (CA
in ethanol) was introduced in the reactor without Ag-Co/S, and the percent conversion
and selectivity were calculated at 75 ◦C, 750 rpm, 760 torr (O2), and 80 min. The reaction
was next studied in the presence of Ag-Co/S in order to determine its catalytic effect on
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CA oxidation under the same experimental circumstances. Furthermore, multiple tests
were carried out to study the effect of various parameters on percent conversion and
selectivity, such as time duration, temperature, catalyst quantity, solvent, stirring speed,
and recyclability. The percent conversion and selectivity were calculated by applying
Equations (1) and (2).

% Conversion =
moles o f reactant disappeared

moles o f initial reactant
× 100 (1)

% Selectivity =
Ccompound

∑ Cproduct
× 100 (2)

In the current investigation, Ag-Co/S was determined to be an outstanding catalyst in
terms of selectivity and perecnt conversion when compared to the other reported catalysts
(Table 1).

Table 1. Comparative study of the catalytic performance of our synthesized nanoparticles to that reported in the literature
for the oxidation of CA to CD.

Catalysts Conv/Sel (%) Reaction Conditions References

Bi-Pt/AC 34/84 Temp; 60 ◦C, Solvent; Toluene,
Time; 2 h [14]

Fe2O3/AC 44/89 Temp; 80 ◦C, Solvent; Water,
Time; 2 h [15]

Bi-Pt/Alumina >90/>90 Temp; 100 ◦C, Detergents; [16]

Au–Pd/TiO2 82/64 Temp; 100 ◦C, Solvent; Toluene,
Time; 7 h [17]

Ag-Co/S 90/99 Temp; 75 ◦C, Solvent; Ethanol,
Time; 80 min The current research

2.3. Impact of Different Reaction Parameters
2.3.1. Effect of Time

To study the effect of time on both percent conversion and selectivity of the oxidation
of CA to CD, the reaction was periodically monitored. The reaction was carried out at
75 ◦C with 25 mg of the catalyst added to the substrate solution (1 mmole CA/10 mL
ethanol) at 1 atm and 750 rpm stirring. Figure 4 showed that the percent conversion and
selectivity grew in a linear fashion up to 80 min, after which both percent conversion and
selectivity gradually dropped due to the formation of by-products, as demonstrated by GC.
As a result, the remaining processes were assigned an optimal response time of 80 min. A
comparable study was conducted by Zhao et al. [18].
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Figure 4. Time effect on percent conversion and selectivity of CA to CD with Ag-Co/S as a catalyst.
Conditions of Reaction: CA; 1 mmol, Cat; 25 mg, Stirring speed; 750 rpm, oxidant; O2 (760 torr), and
temperature; 75 ◦C.

2.3.2. Effect of Temperature

The temperature has a significant effect on percent conversion and selectivity. By
adopting experimental conditions constants, both percent conversion and selectivity for
cinnamyl alcohol to cinnamaldehyde oxidation were investigated at temperatures ranging
from 25 to 100 ◦C in the presence of ethanol as a solvent. As demonstrated in Figure 5, both
percent conversion and selectivity rose until 75 ◦C, after which they both declined due to
solvent evaporation and the generation of by-products. As a result, for CA to CD oxidation,
all subsequent reactions were carried out at 75 ◦C. Wu et al. conducted a similar analysis
and found that cinnamaldehyde had a maximum selectivity of 64 percent at 100 ◦C [17].
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Figure 5. Effect of temperature on percent conversion and selectivity of CA to CD in the presence
of Ag-Co/S. Conditions of reaction: Cat; 25 mg, CA; 1 mmol in 10 mL solvent, Solvent; ethanol,
Oxidant; O2 (1 atm), Time; 80 min, Stirring speed; 750 rpm.



Catalysts 2021, 11, 863 6 of 11

2.3.3. Effect of Stirring Speed

The stirring speed has a considerable effect on the percent conversion and selectivity
of CA to CD. The experiment was carried out with a range of stirring speeds (200–1000 rpm)
while keeping all other experimental variables constant in order to optimize the stirring
speed. Figure 6 indicated that percent conversion and selectivity both increased in the
early phases, with the maximum percent conversion and selectivity occurring between 750
and 800 rpm, and a little drop occurring above 800 rpm due to by-product production. All
subsequent trials were carried out at a stirring speed of 750 rpm to eliminate the probability
of mass transfer. Sadiq et al. synthesized cinnamaldehyde, which is consistent with the
findings of this study [19].
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Figure 6. Effect of stirring speed on percent conversion and selectivity of CA to CD in the presence
of Ag-Co/S. Conditions of reaction: Cat; 25 mg, CA; 1 mmol, Solvent; ethanol, Oxidant; O2 (1 atm),
Time; 80 min, Temperature; 75 ◦C.

2.3.4. Catalyst Dose Study

By maintaining the entire parameters constant, a catalyst dose study was done to
evaluate the percent conversion and selectivity of CA to CD oxidation. Up to 25 mg of
catalyst, the percent conversion rose linearly with the amount of catalyst used, with no
decrease in selectivity. A catalyst dose of 25 mg resulted in a maximum conversion of 90%
with 99 percent selectivity, as illustrated in Figure 7. Due to the adsorption of oxidized
products on the surface of the Ag-Co/S catalyst, increasing the catalyst loading causes a
noticeable decrease in both conversion and selectivity. As a result, subsequent experiments
were carried out using 25 mg of the catalyst. Breen et al. also used the Ir/C catalyst for the
selective hydrogenation of CD to CA [20].
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Figure 7. The effect of catalyst quantity on percent conversion and selectivity of CA to CD in
the presence of Ag-Co/S. Conditions of reaction: CA; 1 mmol, Solvent; ethanol, Time; 80 min,
Temperature; 75 ◦C; Oxidant; O2 (1 atm), Stirring Speed; 750 rpm.

2.3.5. Effect of Solvents

As shown in Figure 8, the nature of solvents has a significant impact on the conversion
of CA to CD. This graph compares the effects of several solvents such as water, n-hexane,
acetonitrile, toluene, and ethanol on the conversion of CA to CD while maintaining all other
variables constant. Among the solvents used, ethanol yielded the highest conversion rate.
Acetone, water, acetonitrile, toluene, and ethanol were seen in ascending order of percent
conversion. The solubility of oxygen in different solvents has an impact on the CA to CD
conversion. Guo et al. studied the effect of solvents on the catalytic hydrogenation of CD
to CA and came to the same conclusion [21]. Nyamunda et al. investigated the influence of
different solvents on the selectivity of cinnamaldehydes and found that cinnamaldehyde
had an 84 percent selectivity [14].
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2.4. Leaching and Recyclability of Ag-Co/S

To ensure that the solvents were inert, Ag-Co/S was mixed and stirred in them at
optimal conditions. The appearance of a single signal in the chromatograph confirmed the
solvents’ inert nature. CA was added to the filtrate and stirred under the same experimental
conditions to check the heterogeneous nature of the catalysts. There was no CA to CD
conversion, indicating that Ag-Co/S was stable in the chosen solvents and had true
heterogeneous behavior. The reaction took place when 25 mg of Ag-Co/S was added to
the solution (CA/ethanol) under the given conditions, and cinnamaldehyde was produced
in a significant amount with 90% conversion. In ethanol, the recyclability of Ag-Co/S
was tested. The catalyst was separated from the reaction mixture, washed, and dried
at about 100 ◦C before being exposed to the cinnamyl alcohol solution for up to five
cycles without experiencing any noticeable decrease in catalytic activity in terms of percent
selectivity, but a 10% decrease in conversion was observed (Figure 9). These results
suggested that Ag-Co/S can be used effectively several times for the oxidation of cinnamyl
alcohol. Sadiq et al., on the other hand, investigated the recyclability and stability of Zn-
Mn bimetallic nanoparticles as a catalyst for CA to CD oxidation under mild reaction
conditions [20].

Catalysts 2021, 11, x FOR PEER REVIEW 8 of 11 
 

 

2.4. Leaching and Recyclability of Ag-Co/S 
To ensure that the solvents were inert, Ag-Co/S was mixed and stirred in them at 

optimal conditions. The appearance of a single signal in the chromatograph confirmed the 
solvents’ inert nature. CA was added to the filtrate and stirred under the same experi-
mental conditions to check the heterogeneous nature of the catalysts. There was no CA to 
CD conversion, indicating that Ag-Co/S was stable in the chosen solvents and had true 
heterogeneous behavior. The reaction took place when 25 mg of Ag-Co/S was added to 
the solution (CA/ethanol) under the given conditions, and cinnamaldehyde was produced 
in a significant amount with 90% conversion. In ethanol, the recyclability of Ag-Co/S was 
tested. The catalyst was separated from the reaction mixture, washed, and dried at about 
100 °C before being exposed to the cinnamyl alcohol solution for up to five cycles without 
experiencing any noticeable decrease in catalytic activity in terms of percent selectivity, 
but a 10% decrease in conversion was observed (Figure 9). These results suggested that 
Ag-Co/S can be used effectively several times for the oxidation of cinnamyl alcohol. Sadiq 
et al., on the other hand, investigated the recyclability and stability of Zn-Mn bimetallic 
nanoparticles as a catalyst for CA to CD oxidation under mild reaction conditions [20]. 

 
Figure 9. Reusability of Ag-Co/S for oxidation of CA to CD. 

3. Materials and Methods 
3.1. Materials and Chemicals 

The chemicals and reagents used in this study were of high purity (Sigma Aldrich, 
Saint Louis, MO, USA, Alfa Aesar, Thermo Fisher, Kandel, Germany, and Merck, New 
Jersey, United States). The multi-walled carbon nanotubes (MWCNTs; O.D. × L 6–13 nm 
× 2.5–20 µm) were furnished by Sigma Aldrich. Gases such as oxygen and nitrogen were 
supplied by the British Oxygen Company (BOC), West Wharf Karachi, Pakistan. To re-
move traces from the applied gases, certain filters such as (C.R.S.Inc.202223) and 
(C.R.S.Inc.202268) were used. 

3.2. Synthesis of Ag-Co/S Catalyst 
Following the co-precipitation approach, equimolar solutions of metal salts such as 

AgNO3∙2H2O and CoCl2∙2H2O (0.01 M) were prepared and titrated against ammonium 
hydroxide (NH4OH). As a result, dense metal hydroxides developed in the form of pre-
cipitates. The precipitates were filtered, washed with deionized water several times, and 
then treated with 0.1 N HCl in a modified Soxhlet apparatus using a glass thimble until 
the pH was neutral. Then it was let to dry overnight. Chemically altering the surface of 
carbon nanotubes (CNTs) can give them a desired feature. In general, functionalization 

Figure 9. Reusability of Ag-Co/S for oxidation of CA to CD.

3. Materials and Methods
3.1. Materials and Chemicals

The chemicals and reagents used in this study were of high purity (Sigma Aldrich,
Saint Louis, MO, USA, Alfa Aesar, Thermo Fisher, Kandel, Germany, and Merck, New
Jersey, United States). The multi-walled carbon nanotubes (MWCNTs; O.D. × L 6–13 nm ×
2.5–20 µm) were furnished by Sigma Aldrich. Gases such as oxygen and nitrogen were
supplied by the British Oxygen Company (BOC), West Wharf Karachi, Pakistan. To remove
traces from the applied gases, certain filters such as (C.R.S.Inc.202223) and (C.R.S.Inc.202268)
were used.

3.2. Synthesis of Ag-Co/S Catalyst

Following the co-precipitation approach, equimolar solutions of metal salts such as
AgNO3·2H2O and CoCl2·2H2O (0.01 M) were prepared and titrated against ammonium
hydroxide (NH4OH). As a result, dense metal hydroxides developed in the form of precipi-
tates. The precipitates were filtered, washed with deionized water several times, and then
treated with 0.1 N HCl in a modified Soxhlet apparatus using a glass thimble until the pH
was neutral. Then it was let to dry overnight. Chemically altering the surface of carbon
nanotubes (CNTs) can give them a desired feature. In general, functionalization has been
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accomplished through the use of oxidants such as HNO3, KMnO4, and others. Carboxyl
groups, on the other hand, serve to functionalize CNTs defects and ends. The present
goal of the study was to design a simple and quick approach for functionalizing carbon
nanotubes. For the functionalization of multi-walled carbon nanotubes (MWCNTs) with
an amine-containing group, we used a covalent chemical method. As a result, MWCNTs
were treated with p-aminobenzoic acid to make them functional. Functionalized multi-
walled carbon nanotubes (FCNTs) were separated by centrifugation, washed multiple
times with deionized water until pH was neutral, and then dried for 12 h at 100 ◦C. The
synthesized silver-cobalt nanoparticles were dispersed in ethanol/water (50% v/v) and
a specific amount of FCNTs were added to the suspension to incorporate the prepared
bimetallic nanoparticles on the FCNTS. At room temperature, the resultant mixture was
sonicated for an hour. Bimetallic nanoparticles of silver and cobalt supported on FCNTs
were separated by centrifugation, washed, dried and stored in a desiccator [22].

3.3. Characterization of Ag-Co/S Catalyst

The morphology of the catalyst Ag-Co/S was investigated using scanning electron
microscopy (SEM, JSM 5910, JEOL, Tokyo, Japan). Elemental analysis of the supported
nanoparticles was carried out by Energy dispersive X-ray spectroscopy (EDX, JSM 5910,
JEOL, Tokyo, Japan). X-Ray diffractometer (XRD, JDX-3532, JEOL, Tokyo, Japan) with
operating voltage of 20–40 kV and 2θ range of 0–160◦ was used to analyze the phase
of nanoparticles. The BET surface area of the Ag-Co/S nanoparticles was measured
using a surface area and pore size analyzer (NOVA2200e, Quantachrome, Boynton Beach,
FL, USA).

3.4. Catalytic Test

In a 100 mL three necked double walled round bottom batch reactor with a quick
fit thermometer and a condenser, a substrate solution (CA/10 mL ethanol) and 25 mg
Ag-Co/S as a heterogeneous catalyst were added. As shown in Scheme 1, the reaction
mixture was vigorously stirred (200–1000 rpm) for 80 min at 75 ◦C while delivering a
steady supply of oxygen (40 mL/min). For the analysis of the reaction mixture, two types
of analytical methods were applied. Gravimetric and gas chromatographic methods. In
gravimetric method, phenyl hydrazine was used for the detection of the product. The
supported nanoparticles were separated from reaction mixture and then 1 mL of phenyl
hydrazine was added to 10 mL reaction mixture. This resulted in the formation of a
precipitate in an hour, which was filtered out and dried at 70–80 ◦C. Gas chromatography
(GC, Clarus 580, Perkin Elmer, Waltham, MA, USA) with a flame ionized detector and
capillary column (cross-linked methyl siloxane capillary column; length: 30 m, ID: 0.32 mm,
and film thickness: 0.25 µm) was used to measure percent conversion and selectivity. A
nitrogen generator (G6010E, Parker Domnick hunter, Team Valley Trade Est, NE11 0PZ
Gateshead, UK) and a hydrogen generator (PGXH2 100, Perkin Elmer, Waltham, MA, USA)
were used to provide nitrogen and hydrogen gases. In gas chromatographic technique,
the sample was spiked with authentic standard, the sharpening of the given peak at that
particular retention time, confirmed the formation of the desired product.

Scheme 1. Oxidation of CA to CD with 25 mg catalyst, 10 mL substrate solution (1 mmole of CA/10 mL ethanol) at 75 ◦C
for 80 min under stirring 750 rpm in the presence of O2.
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4. Conclusions

In the present study, Ag-Co/S was synthesized effectively by co-precipitation method
and characterized through SEM, EDX, XRD, and the BET surface area analyzer. The
prepared nanoparticles were tested as a heterogeneous catalyst for the selective oxidation
of CA to CD using different solvents such as water, acetone, acetonitrile, toluene and
ethanol under mild reaction conditions in the presence of cost effective and ecofriendly
oxidant. The Ag-Co/S has shown increased potential in terms of percent conversion (90%)
with selectivity (99%) at optimal conditions such as catalyst; 25 mg, cinnamyl alcohol;
1 mmol, solvent; ethanol, temperature; 75 ◦C, time; 80 min, stirring speed; 750 rpm and
oxidant; O2 at 1 atm. The Ag-Co/S is a potent heterogeneous catalyst for the oxidation of
cinnamyl alcohol to cinnamaldehyde because of their ease of preparation, high catalytic
activity, cost effectiveness, heterogeneous behavior, and recyclability. Future research into
the kinetics of adding an oxidant as well as changing the catalyst support could result in
major changes in catalyst selectivity/activity and may diverse their applications in organic
transformation of other alcohols.
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