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Abstract: The goal of this mini-review is to shed the light on the existing methodologies to access
arylsulfonyl fluorides. Today, a plethora of methods making use of a different pool of starting
materials and in the presence of catalyst or under catalyst free conditions are disclosed in the literature.
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1. Introduction

Arylsulfonyl fluorides are of prime interest in modern organofluorine chemistry. In
fact, RSO2F molecules are finding a plethora of applications in life science technologies [1–6].
Molecules bearing sulfonyl fluorides are employed as protease inhibitors, covalent pro-
tein modifiers and covalent protein inhibitors, as well as biological probes [7–11]. More
recently, sulfonyl fluorides have been used in polyethylene terephthalate (PET), potential
18F-labelled biomarkers [12,13], polymerization [14–16] and sulfur (VI) exchange (SuFEx)
“click chemistry” [17–20] (Scheme 1). Arysulfonyl fluorides have also been used as fluorinat-
ing agents through the deoxyfluorination of alcohols [21,22]. The strong nature of the S–F
bond confers to sulfonyl fluoride’s considerable stability in comparison to other sulfonyl
halides. Indeed, to some extent, they are stable towards hydrolysis [23–26], resistant to
reduction [27] and resistant to bond cleavage under transition–metal catalysis [28]. Despite
the interest, methods for the synthesis of sulfonyl fluorides remain limited. The goal of this
mini-review is to highlight the existing methodologies to access such compounds.
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2. Direct Arylsulfonyl Fluoride Synthesis Reactions

The direct formation of the C-SO2F bond constitutes the most elegant approach.
Indeed, it allows straightforward access to arylsulfonyl fluorides, which constitutes an
attractive option in late-stage functionalization. For this purpose, several research groups
recently developed different strategies to address this challenge. Overviews of the most
efficient methods are summarized herein.

2.1. Sulfonyl Fluorides Synthesis from Aryl Halides

The first example for the synthesis of arylulfonyl fluorides was reported by the groups
of Willis and Bagley. The developed methodology is a one-pot two-step procedure in which
sulfinates are in-situ formed through cross coupling between aryl bromide derivatives and
DABSO (1,4-diazabicyclo [2.2.2] octane bis(sulfur dioxide) adduct) [29]. The commercially
available PdCl2(AmPhos)2 (AmPhos: di-tert-butyl(4-dimethylaminophenyl)phosphine)
was used as the active catalyst (5 mol%) and the reactions were performed in the presence
of Et3N as the base in iPrOH at 75 ◦C for 24 h. Afterwards, treatment of the reaction
media with 1.5 equivalent of NFSI (N-Fluorobenzenesulfonimide) led to the desired sul-
fonyl fluoride (Scheme 2a). It is worth noting that the reaction conditions tolerate the
presence of several functional groups, and a wide variety of electron-donating and electron-
withdrawing starting aryl bromides were converted to the desired products in good to
excellent yields.

Furthermore, the authors turned their attention to the study of the reactions start-
ing with heterocyclic compounds. Unfortunately, only very low yields were observed
when the previous conditions were applied. In order to foster the reaction outcome,
the authors demonstrated that upon microwave irradiation at 110 ◦C and by using N,N-
Dicyclohexylmethylamine (Cy2NMe) as the base, the conversion of several bromopyridine
derivatives was achieved in moderate to very good yields. The authors assume that the
steric hindrance of the base plays a key role in decreasing the homocoupling process of the
starting aryl bromide as well as the rapid generation of the active palladium (0) catalyst
(Scheme 2b).

It should be noted that a palladium-free procedure was also disclosed by using
Grignard reagents in conjunction with DABSO in THF at room temperature. In that case,
sulfinates were also formed as intermediates and the corresponding arylesulfonyl fluorides
were obtained in very good to excellent yields upon treatment with NFSI (Scheme 2c).

In order to further demonstrate the versatility of the developed methodology, the
authors proved its applicability to N-Boc-L-4-halophenylalanine methyl to generate the
sulfonyl fluoride analogue 4 with good yields, starting from both bromide and iodide
substrate (Scheme 3a). Next, aryl sulfonyl fluoride 4 reacts with the N-Boc-L-lysine methyl
ester to form the sulfonamide 5. Along the same lines, the halogenated tetramer 6 produced
its corresponding sulfonyl fluoride 7 with good yield (Scheme 3b).

Shortly after, the group of Ball reported the synthesis of arylsulfonyl fluorides using
aryl iodides as starting materials in conjunction with DABSO [30]. The reactions were car-
ried out in the presence of Pd(OAc)2 (0.05 equiv.)/CataCXium A (di-adamantylalkylphosphine
or PAd2Bu) (0.08 equiv.) as a precatalyst, Et3N, and iPrOH at 75 ◦C for 16 h. In this method,
Selectfluor was used for the formation of the desired product from the sulfinate. Regarding
the scope, aryl iodides bearing both electron-withdrawing and donating groups were
converted smoothly to their corresponding aryl sulfonyl fluorides, producing products
in good to excellent yields (Scheme 4). The authors also demonstrated that aryl sulfonyl
fluorides react with several nucleophiles yielding the corresponding sulfones in very good
to excellent yields.
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2.2. Sulfonyl Fluorides Synthesis from Arynes

The use of sulfuryl fluoride SO2F2 for the synthesis of aryl sulfonyl fluorides was
reported by the group of Kim [31]. They performed a multicomponent reaction (MCR)
involving the in-situ generation of aryne precursors from (trimethylsilyl) phenyl trifluo-
romethanesulfonate, secondary amines and SO2F2. This methodology allows the straight-
forward synthesis of 2-dialkyl-, 2-alkylaryl-, or 2-diarylamino-substituted arylesulfonyl
fluoride derivatives.

Depending on the substituents of the secondary amines, different reaction temper-
atures were used as shown in (Scheme 5). For instance, high yields were obtained with
alkylarylamines with a reaction temperature of −10 ◦C (Scheme 5a). The o-dialkylamino
substituted benzenesulfonyl fluorides were obtained in good yields when reactions in-
volving dialkylamines were conducted at room temperature (25 ◦C) (Scheme 5b). Finally,
reactions involving diarylamines were conducted at −30 ◦C and reduced yields were
obtained due to the decreased activity at low temperatures (Scheme 5c).
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Scheme 5. Multi-component fluorosulfurylation of arynes.

The authors proposed the following mechanism (Scheme 6): upon the generation
of the aryne B with the fluoride anion, a nucleophilic attack of the amine leads to the
intermediate C. The latter reacts with SO2F2 via hydrogen bonding with the ammonium
intermediate (enhancing the electrophilic character of SO2F2) to finally produce the desired
product E after the loss of HF.
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2.3. Sulfonyl Fluorides Synthesis from Grignard Reagents

By also using SO2F2, the groups of Sammis and Ball disclosed a new method for the
direct synthesis of sulfonyl fluorides by making use of alkyl, aryl and heteroaryl Grignard
reagents [32]. The reactions were performed in THF at room temperature and the desired
compounds were obtained in moderate to good yields.

Regarding the scope of the fluorosulfurylation of substituted phenylmagnesium bro-
mide reagents, substrates bearing halogen, including para-F or Cl, were effective in mod-
erate to very good yields. Aryl magnesium bromides substituted with electron-donating
groups were smoothly converted to the desired products, 10d and 10f–10h. The arylmag-
nesium bromide, substituted with two trifluoromethyl substituents 10i, is sluggish toward
the transformation.

The authors have also proved that this protocol encompasses heteroaryl sulfonyl
fluoride derivatives (Scheme 7b). Indeed, thiophene and thiazole, as well as pyridine
derivatives, were converted to their corresponding products with moderate to good reac-
tion outcomes.

2.4. Sulfonyl Fluorides Synthesis from Aryldiazonium Salts

Recently, the group of Liu and Chen disclosed a new copper-based method for con-
verting a large series of aryldiazonium salts to arylsulfonyl fluorides in the presence of
DABSO and KHF2 [33].

The reactions were carried out in MeCN in the presence of catalytic amounts of CuCl2
(20 mol%) and 6,6′-dimethyl-2,2′-dipyridyl (dmbp) (20 mol%) at room temperature. Aryl-
diazonium salts were converted to the desired arylsulfonyl fluoride analogues in good
yields. Both electron rich and electron poor arenes were converted in moderate to good
yields. Furthermore, quite a large number of functionalities were tolerated under the reac-
tion conditions. Indeed, aryldiazonium salts bearing amide 12e, ester 12f and ketone 12i, as
well as cyano 12j groups, were smoothly converted to their corresponding arylsulfonyl flu-
oride products. Additionally, the authors demonstrated that various heteroaryldiazonium
salts could also be used under the reaction conditions (Scheme 8).

To further demonstrate the versatility of the methodology, product 12b was synthe-
sized on the gram scale with a good reaction outcome.

The authors proposed two plausible mechanisms. On the one hand, aryldiazonium
salt A easily generates the aryl radical through reduction by Cu(I) species via a single
electron transfer (SET) process. The aryl radical is quickly trapped by SO2 to produce the
resulting relatively stabilized arylsulfonyl radical [ArSO2

•]. Afterwards, a Sandmeyer-type
reaction occurs by transferring a chloride to the arylsulfonyl radical to form ArSO2Cl and
regenerates the Cu(I). Finally, a fluorine/chlorine exchange takes place to generate the
desired product B (Scheme 9, path A).
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Scheme 9. Proposed mechanism for the synthesis of arylesulfonyl fluorides via copper-catalyzed fluorosulfonylation
of aryldiazonium.

On the other hand, aryldiazonium salt A easily generates the aryl radical through
activation with DABSO and is quickly trapped by SO2 under the reaction conditions
to produce the resulting relatively stabilized arylsulfonyl radical [ArSO2•], which can
combine with the fluorine anion offered by KHF2 to give the radical anion [ArSO2F−•]. The
radical anion could be responsible for the reduction of the aryldiazonium salt A through
SET, generating a new aryl radical and the desired product B (Scheme 9, path B).

More recently, Weng and co-workers reported a copper-free fluorosulfonylation of
aryldiazonium salts using sodium metabisulfite as the source of sulfur dioxide and Select-
fluor as the fluorinating agent [34]. The reaction was performed in MeOH at 70 ◦C. The
aryldiazonium tetrafluoroborates bearing either electron-donating or withdrawing groups
were obtained with good yields. Interestingly, this protocol was applied to diazonium salts
derived from a neratinib (anticancer) intermediate, producing the corresponding sulfonyl
fluorides 13k in a synthetically useful yield. Radical scavenger and radical clock experi-
ment suggested the formation of aryl radical in this transformation as a key intermediate
(Scheme 10). The latter reacts with sodium metabisulfite to form the sulfonyl radical. The
desired compound is formed after reaction with Selectfluor.
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Scheme 10. Fluorosulfonylation of aryldiazonium salts.

A step further; the direct use of commercially available anilines as starting materials for
the synthesis of arylsulfonyl fluorides has also been undertaken. The authors demonstrated
that a one-pot two-step procedure could take place for the generation of the diazonium
salt followed by the synthesis of the desired product with a moderate reaction outcome
(Scheme 11).
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Very recently, we demonstrated that aryl sulfonyl fluorides could be obtained under
visible-light metal-free procedures by using cyanoarenes as organophotocatalysts [35–40].
Indeed, the association of diazonium salts with DABSO in the presence or not of an ex-
ternal fluoride source (KHF2) allows access to a wide variety of arylsulfonyl fluorides
with moderate to very good yields (Scheme 12). The reactions were performed in MeCN
as a solvent at room temperature under blue LED irradiation. Both electron withdraw-
ing and electron donating groups were tolerated under the reaction conditions (15a–15d
and 15i–15l). Interestingly, the reaction in the presence of halogen substituents gave the
desired products in synthetically useful yields (15e–15h). To some extent, heterocyclic
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compounds 15m and 15n were also tolerated under this protocol. More interestingly, the
complex molecular structure of the estrone derivative 15o was smoothly converted to the
corresponding arylsulfonyl fluoride.
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In order to shed the light on the mechanism, several techniques were combined. Lu-
minescence quenching allows the confirmation of the reduction of the diazonium salt.
Quantum yield measurement allows the confirmation of the stepwise nature of the mecha-
nism. Moreover, EPR spectroscopy confirmed the formation of aryl radical formed through
single electron transfer from the exited photocatalyst to the diazonium salt, and the cor-
responding adduct was obtained with N-tert-butyl-α-phenylnitrone (PBN) as a radical
trapping agent. Performing the same reaction with DABSO also allows the confirmation of
the presence of the ArSO2 radical and this adduct was also observed with PBN. Finally,
density functional theory (DFT) calculations allow us to confirm the presence of a sulfo-
nium intermediate formed through radical–radical coupling between ArSO2 radical and
DABCO.+ generated through the reduction of PC.+ to regenerate the catalyst at its ground
state (Scheme 13).
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3. Indirect Arylesulfonyl Fluoride Synthesis Reactions

In addition to direct synthetic strategies, indirect methodologies are an alternative
for the synthesis of arylsulfonyl fluorides and are well described in the literature. They
actually complete the toolbox, offering a variety of retrosynthetic options to access the
desired compounds. Herein, indirect methodologies are outlined.

3.1. Sulfonyl Fluorides Synthesis from Arylsulfonyl Chlorides

The best known methodology makes use of arylsulfonyl chlorides as the starting
materials [17,41,42]. In 1977, Bianchi and co-workers reported an easy and simple method
for the synthesis of sulfonyl fluorides using 18-crown-6 ether and potassium fluoride. The
reaction takes place at room temperature in the presence of the 18-crown-6 ether catalyst,
sulfonyl chlorides and an excess of potassium fluoride in acetonitrile. Sulfonyl chlorides
undergo fluorine substitution with excellent reaction outcomes (Scheme 14).
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Sharpless and co-workers also used sulfonyl chlorides as starting materials for the
formation of sulfonyl fluorides derivatives [17]. The reactions were carried out in the
presence of saturated aqueous solution of KFHF in acetonitrile, which produces a biphasic
mixture (THF or CH2Cl2) at room temperature.

A wide variety of electron-donating and electron-withdrawing functional groups
gave the desired products in excellent yields. A large functional group tolerance was also
observed, including carboxylic acid 17e, nitro 17b and cyano 17c groups. The presence of
an unsaturated alkene is also tolerated 17f (Scheme 15).
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3.2. Sulfonyl Fluorides Synthesis from Sulfonyl Hydrazides and Sodium Arylsulfinates

Tang and Wang have developed a simple and effective fluorination method using
sulfonyl hydrazide in water without additives or catalysts to obtain sulfonyl fluorides in
good to excellent yields [43]. Selecfluor was used as a fluorinating agent and the reactions
were performed in water at 60 ◦C.

The reaction scope encompasses a large panel of starting materials including electron-
donating and electron-withdrawing substituents with moderate to excellent reaction out-
comes. Aliphatic substrates were also effective under the reaction conditions. The reaction
was also scaled-up, 1.86 g of compound 18a was obtained in 88% yield (Scheme 16).

Furthermore, the authors have shown that the use of sodium arylsulfinates as start-
ing materials under the same reaction conditions is also effective for the formation of
arylesulfonyl fluorides with similar yields to those obtained with sulfonyl hydrazides
(Scheme 16).

The radical inhibitor (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) inhibits the
reaction, thus favoring a radical mechanism (Scheme 16).

3.3. Sulfonyl Fluorides Synthesis from Thiols and Disulfides

Hallstrom and Wright reported a new method using heteroaromatic thiols as a start-
ing material for the synthesis of heteroaromatic sulfonyl fluorides [44]. Heteroaromatic
thiols are oxidized with aqueous sodium hypochlorite to obtain the corresponding sul-
fonyl chlorides, then KHF2 is added to perform a Cl–F exchange, forming the sulfonyl
fluoride products.

The authors have shown that a wide variety of heteroaromatic thiols, even in the
presence of electron-donating groups, are tolerated under these conditions, including
pyrimidine 19a and 19c, pyridine 19b and pyridazine 19d (Scheme 17).



Catalysts 2021, 11, 830 13 of 20
Catalysts 2021, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
Scheme 16. Synthesis of sulfonyl fluorides from sulfonyl hydrazides or sodium aryl sulfinates. 

3.3. Sulfonyl Fluorides Synthesis from Thiols and Disulfides 
Hallstrom and Wright reported a new method using heteroaromatic thiols as a start-

ing material for the synthesis of heteroaromatic sulfonyl fluorides [44]. Heteroaromatic 
thiols are oxidized with aqueous sodium hypochlorite to obtain the corresponding sul-
fonyl chlorides, then KHF2 is added to perform a Cl–F exchange, forming the sulfonyl 
fluoride products. 

The authors have shown that a wide variety of heteroaromatic thiols, even in the 
presence of electron-donating groups, are tolerated under these conditions, including py-
rimidine 19a and 19c, pyridine 19b and pyridazine 19d (Scheme 17). 

 
Scheme 17. Synthesis of heteroaryl sulfonyl fluorides from heteroaryl thiols. 

Later, the group of Kirihara used disulfides as starting materials for the synthesis of 
arylsulfonyl fluorides. Selectfluor was used in high amounts (6.5 equiv.) as both the oxi-
dant and the electrophilic source of fluorine [45]. 

Scheme 16. Synthesis of sulfonyl fluorides from sulfonyl hydrazides or sodium aryl sulfinates.

Catalysts 2021, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
Scheme 16. Synthesis of sulfonyl fluorides from sulfonyl hydrazides or sodium aryl sulfinates. 

3.3. Sulfonyl Fluorides Synthesis from Thiols and Disulfides 
Hallstrom and Wright reported a new method using heteroaromatic thiols as a start-

ing material for the synthesis of heteroaromatic sulfonyl fluorides [44]. Heteroaromatic 
thiols are oxidized with aqueous sodium hypochlorite to obtain the corresponding sul-
fonyl chlorides, then KHF2 is added to perform a Cl–F exchange, forming the sulfonyl 
fluoride products. 

The authors have shown that a wide variety of heteroaromatic thiols, even in the 
presence of electron-donating groups, are tolerated under these conditions, including py-
rimidine 19a and 19c, pyridine 19b and pyridazine 19d (Scheme 17). 

 
Scheme 17. Synthesis of heteroaryl sulfonyl fluorides from heteroaryl thiols. 

Later, the group of Kirihara used disulfides as starting materials for the synthesis of 
arylsulfonyl fluorides. Selectfluor was used in high amounts (6.5 equiv.) as both the oxi-
dant and the electrophilic source of fluorine [45]. 

Scheme 17. Synthesis of heteroaryl sulfonyl fluorides from heteroaryl thiols.

Later, the group of Kirihara used disulfides as starting materials for the synthesis
of arylsulfonyl fluorides. Selectfluor was used in high amounts (6.5 equiv.) as both the
oxidant and the electrophilic source of fluorine [45].

The reaction was performed in a refluxed mixture of MeCN–water (10:1). This reaction
tolerates the presence of electron-donating groups and the desired products were formed
in good to excellent yields (20a–20d). In contrast, electron-withdrawing disulfides were
not tolerated (Scheme 18).

Recently, the group of Noël disclosed an electrochemical approach for the synthesis
of sulfonyl fluorides [46]. This method makes use of thiols or disulfides as starting mate-
rials, with KF (5.0 equiv.) as the source of fluorine and supports electrolyte and pyridine
(1.0 equiv.) at room temperature in a mixture of MeCN/HCl aq (1:1). The reagents were
introduced into an undivided cell with a graphite anode and a stainless-steel cathode. The
current was set at 20 mA, or constant voltage (3.2 V).
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This electrochemical method tolerates substrates with electron-donating and with-
drawing groups 21a–21g and halogen 21h–21i, as well as protected amines 21j. The desired
compounds were obtained with moderate to excellent reaction outcomes. Furthermore,
heterocyclic thiols were also successfully applied 21k–21l (Scheme 19).
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Several versatile organic reactions were performed thanks to electrochemical transfor-
mations, which are known for their powerful mode of activation [47–49]. This electrochem-
ical method allows the oxidization of thiols and disulfides without the addition of external
oxidants, which makes this chemistry more in line with the current environmental con-
cerns. Compared to conventional thermal methods, the parameters of the electrochemical
approach can be easily adjusted [47,50,51]. This methodology is able to overcome certain
challenges, allowing this transformation to take place. These challenges include the low
solubility of potassium fluoride in organic solvents and the difficulty of forming the S–F
bond by combining a nucleophilic fluorinated reagent with thiols [52–54]. Pyridine plays
the role of both electron mediator and of a phase–transfer catalyst to transfer fluorine to
the organic phase.
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Various experiments have been carried out to obtain information about the reac-
tion mechanism. In particular, kinetic experiments have revealed a rapid conversion of
thiols into disulfides, and the addition of radical scavengers confirms the presence of
radical intermediates.

In the presence of hydrochloric acid and pyridine, the KF is transferred into the organic
phase to react with the disulfides obtained from the oxidation of thiols through the single
electron transfer (SET) process. Then, after two consecutive oxidation steps, the desired
sulfonyl fluorides are formed (Scheme 20).
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3.4. Sulfonyl Fluorides Synthesis from Sulfonates and Sulfonic Acids

Recently, the group of Qin and Sun used sulfonic acids and sulfonates as starting
substrates to synthesize sulfonyl fluorides in a one-pot two-step procedure [55]. This
method makes use of cyanuric chloride, as a source of chlorine, and KHF2, as a source
of fluorine. This method is based on the formation of sulfonyl chlorides using cyanuric
chloride in the presence of 5 mol% of a catalyst (Tetrabutylammonium bromide TBAB or
tetramethylammonium chloride TMAC) at 60 ◦C in acetonitrile. Then, KHF2 is added to
exchange chlorine with fluorine and form the sulfonyl fluoride products.
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Various sodium sulfonate substrates, including electron-donating (22b and 22c),
electron-withdrawing (22e) and aromatic (22f and 22g) compounds, were tolerated with
this method, yielding the desired products in moderate to good yields (Scheme 21a).
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To test the effectiveness of this protocol, the authors examined a series of sulfonates
containing several cations (Scheme 21b). The monovalent sulfonate salts Y3a–Y3d were
easily converted to the corresponding sulfonyl fluorides with moderate to good yields.
However, the sulfonate salts of the divalent metals Y3e–Y3g reacted only slightly, resulting
in poor yields. To widen the range of the substrates, they started from sulfonic acids
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as starting reagents using TMAC as catalyst instead of TBAB. A series of aryl sulfonic
acids carrying electron-donating groups (23b and 23c) were obtained with moderate to
good yields. Naphthalene-2-sulfonyl fluoride was also obtained with a good yield 23d
(Scheme 21c).

3.5. Sulfonyl Fluorides Synthesis from Sulfonamides

Very recently, the group of Cornella reported a direct method for the synthesis of sul-
fonyl fluorides from sulfonamides [56]. The method consists of forming sulfonyl chlorides
from sulfonamides through activation with a pyrylium tetrafluoroborate (Pyry-BF4) and
MgCl2, and the subsequent in-situ conversion to sulfonyl fluorides by the addition of KF.
The reactions were performed in MeCN at 60 ◦C and the desired compounds were obtained
with moderate to very good yields. The high chemoselectivity of Pyry-BF4 towards amino
groups allows the formation of sulfonyl fluorides in complex structures. This was proven
by examining a wide variety of complex sulfonamides containing various functionalities
(Scheme 22).
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4. Conclusions

Arylsulfonyl fluorides are attracting considerable attention in modern organic chem-
istry due to their wide range of applications. Thus, developing new synthetic strategies
towards the incorporation of the sulfonyl fluoride moiety is of high interest. We have
described herein the existing methods to access fluorosulfonylated compounds using ei-
ther direct or indirect methodologies. These various works offer different and versatile
approaches to form such compounds, tolerating a large variety of functional groups. The
easy access to the starting material/catalysts of the developed methodology will definitely
foster the emergence of new applications.
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