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Abstract: Chiral 2-methylpiperidine (2-MPI) is an important building block that has potential for
applications in pharmaceuticals and pesticides. In this study, we observed that the hydrolase in
Arthrobacter sp. K5 exhibits high (S)-selectivity toward rac-N-pivaloyl-2-MPI to yield (S)-2-MPI
with 80.2% enantiomeric excess (ee) in a 38.2% conversion. The hydrolase, which was identified by
analyses of partial amino acid sequences of the purified enzyme and genome sequence of Arthrobacter
sp. K5, exhibited moderate homology with amidohydrolases up to 67% (molinate hydrolase from
Gulosibacter molinativorax). The hydrolase gene was overexpressed in Rhodococcus erythropolis. The
recombinant cells produced (S)-2-MPI with 83.5% ee in a 48.4% conversion (E = 26.3) from 100 mM
rac-N-pivaloyl-2-MPI. These results suggest the possibility of an efficient preparation of chiral 2-MPI
in kinetic resolution.

Keywords: hydrolase; Arthrobacter sp. K5; kinetic resolution; cyclic chiral amine

1. Introduction

Chiral cyclic amines, which comprise a piperidine, piperazine, or pyrrolidine skele-
ton, are widely used as building blocks of pharmaceuticals and pesticides [1–9]. Among
them, 2-methylpiperidine (2-MPI) is used for the synthesis of piperocaine [6], piperalin [7],
menabitan [8], SS220 [9] (Figure 1), and promising candidates for developing pharmaceuti-
cals [3–5]. In the synthesis of SS220, (S)-2-MPI moiety makes it effective or more effective
than the most widely used insect repellent, N,N-diethyl-m-toluamide (DEET) [10–12]. The
enzymatic synthesis of optically active cyclic amines has been successfully done via asym-
metric reduction using imine reductases [13–16]; however, the method requires the synthe-
sis of cyclic imines as substrates. Kinetic resolution is another approach for preparing chiral
compounds, in which the racemates are used as substrates. Since racemic cyclic amines
can be commercially available as inexpensive raw materials, in this study, we focused on
stereoselective hydrolases for 2-MPI production.
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Optically active amines can be prepared from racemic amine by diastereomeric salt
formation using chiral carboxylic acids [17] or by stereoselective bioconversion of racemic
N-acyl amine using enzymes [18–20]. Several studies on chiral cyclic amines’ preparation
via chemical or enzymatic resolution have been reported (Scheme 1) [21–33]. In the en-
zymatic method, racemic piperidines are stereoselectively acylated or hydrolyzed by a
lipase or protease to obtain the desired enantiomer [21–24]. Conversely, the racemates are
chemically resolved by chiral acylating reagents to provide enantioenriched amines [25–27].
Other chemical resolutions have been reported [28–30]; however, these chemical processes
require chiral reagents for kinetic resolution. Considering the need of chiral compounds
that are also synthesized from chiral precursors, the discovery of highly stereoselective
hydrolase is desired for chiral cyclic amines’ preparation. Until now, the existing hydro-
lases described above have been used to synthesize chiral secondary amines; however,
their variation was limited. Other enzymatic processes need cyclic amines with functional
groups, such as 2-hydroxymethylpiperidine, to yield products with low enantioselectivity
in many cases due to the low chirality-recognition ability of the enzyme [31–33]. Interest-
ingly, there is no approach to directly obtain chiral 2-substituted piperidines from racemic
N-acyl derivatives by kinetic resolution using a hydrolase. Given these backgrounds, it is
necessary to improve the enantioselectivity of existing hydrolases or find a novel hydrolase.
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purified and characterized the hydrolase of Arthrobacter sp. K5. To ensure efficient chiral
piperidine preparation, we further constructed recombinant cells expressing the hydrolase
gene and investigated the optically pure 2-MPI production via whole cells reaction.
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2. Results and Discussion
2.1. Screening of Microorganisms

To obtain microorganisms exhibiting hydrolase activity toward N-acyl-2-MPI, we
isolated 294 strains from soil samples using a medium containing N-acetyl-2-MPI as the
sole carbon source. Among 60 bacteria that hydrolyzed N-acetyl-2-MPI, the majority of
them did not display high stereoselectivity. Only the strain K5 revealed moderate (S)-
selectivity kinetically, yielding racemic 2-MPI (Figure 2a). We predicted that the acyl
group affected the enantiomeric recognition of the hydrolase in strain K5. To improve
the enantioselectivity of the hydrolysis, we substituted the acetyl group with a bulky
pivaloyl group for appropriate chiral recognition. The reaction using whole cells of strain
K5 exhibited good (S)-stereoselectivity toward N-pivaloyl-2-MPI to yield (S)-2-MPI with
22% conversion and 88% ee in 72 h (Figure 2b). The strain K5 was identified as Arthrobacter
sp. based on 16S rDNA sequence analysis.
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Figure 2. Hydrolysis of N-acetyl-2-MPI (a) and N-pivaloyl-2-MPI (b) using Arthrobacter sp. K5 cells. Closed squares;
(S)-2-MPI, open squares; (R)-2-MPI. The reactions were performed at 30 ◦C in 2 mL of 100 mM potassium phosphate buffer
(pH 7.0) containing 10 mM N-acyl-2-MPI and whole cells derived from 4 mL culture broth.

2.2. Optimization of Culture Conditions and Kinetic Resolution Using Optimized Whole Cells

To enhance the hydrolase activity in Arthrobacter sp. K5 cells, cyclic amine derivatives
were added to the culture medium, and the hydrolase activity was examined. The addition
of N-acetyl-2-MPI, N-acetylpiperidine, or N-acetyl-2-methylpyrrolidine resulted in a high
induction of the hydrolase activity, with the best compound being N-acetylpiperidine,
which also enhanced Arthrobacter sp. K5 growth (Table S1). The highest activity was found
in the cells cultivated for one day with 0.4% (v/v) N-acetylpiperidine (Tables S2 and S3).
Prolonged cultivation (≥2 days) decreased enzyme activity. The culture conditions were
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optimized as follows: time, 24 h and culture medium, 0.4% (v/v) N-acetylpiperidine, 5 g L−1

of polypeptone, 5 g L−1 of meat extract, 2 g L−1 NaCl, and 0.5 g L−1 yeast extract in tap
water (pH = 7). Using the cells cultivated under optimal conditions, we performed kinetic
resolution of N-pivaloyl-2-MPI. In the reaction with a 100 mM concentration of N-pivaloyl-
2-MPI, Arthrobacter sp. K5 cells achieved 38.2% conversion to (S)-2-MPI at 80.2% ee (E = 14.8)
after 115 h. However, the whole cells reaction stopped after 75 h, unable to achieve 50%
conversion of the substrate. This result suggested the possibility of the enzyme inactivation
caused by a long-time reaction or insufficient stability of the hydrolase.

2.3. Properties of the Hydrolase

To obtain a homogeneous enzyme, the hydrolase was purified from the cell-free ex-
tract of Arthrobacter sp. K5 through five steps, including ammonium sulfate fractionation,
ion-exchange chromatography on DEAE-Sephacel, and hydrophobic interaction chro-
matography on phenyl-Sepharose and butyl-Toyopearl (Table S4). The purified enzyme
was obtained with a specific activity of 35.5 µmol min−1 mg−1. The overall purification was
10.8-fold (yield = 22%). The molecular mass of the hydrolase was estimated to be 50 kDa
by SDS-PAGE and 238 kDa by gel permeation high performance liquid chromatography
(HPLC), which suggested it to be a homo-tetrameric hydrolase. The optimum reaction
temperature and pH of the hydrolase were 45 ◦C and pH = 8.0 (Tris-HCl), respectively
(Figures S2 and S3). The enzyme retained 75% of its maximum activity <40 ◦C; however,
its activity decreased at a temperature >45 ◦C (Figure S4). Conversely, it retained 80% of its
maximum activity at pH = 6.0–7.5 and more than 80% inhibition of the hydrolase activity
was observed at other pH values (Figure S5). According to amino acid sequence analy-
sis, the N-terminal and internal amino acid sequences of the hydrolase were obtained as
ATQTVITNGTLIDGTGNQPQ and GGVTTVFDTWNA, respectively. Based on the amino
acid sequence and genome DNA sequence of Arthrobacter sp. K5, we identified (S)-selective
hydrolase (SHA). The enzyme gene was composed of 1384 bp, and coded for a protein of
481 amino acids with the molecular mass of 49,725 Da. This value is in agreement with
molecular mass determined on SDS-PAGE. A BLAST search with full-length amino acid
sequence of SHA revealed moderate sequence identity with the amidohydrolase protein
family, including phenylurea hydrolases (<66%), and the highest sequence identity (67%)
with the molinate hydrolase from Gulosibacter molinativorax. These results suggested SHA
as a novel enzyme.

2.4. Substrate Specificity

We examined the substrate specificity of purified SHA using various N-acyl cyclic
amines and comparing the activity toward them with the activity toward N-benzoyl-
2-MPI (Table 1). The hydrolase exhibited almost the same activity toward N-benzoyl-
2-MPI and N-pivaloyl-2-MPI; however, the latter was more hydrolyzed with higher
(S)-selectivity. N-Acetyl-2-MPI was hydrolyzed with 24.8-fold higher activity than N-
benzoyl-2-MPI. SHA displayed high activity on N-acyl 2-unsubstituted cyclic amines,
such as N-benzoylpiperidine, N-benzoyl-3-MPI, N-pivaloyl-3-MPI, N-benzoyl-4-MPI, and
N-benzoylpyrrolidine but showed no stereoselectivity toward N-acyl-3-MPI. N-benzoyl-2-
methylpyrrolidine displayed four-fold higher reactivity than N-benzoyl-2-MPI, whereas
enantioselectivity was low in slight favor of the (R)-enantiomer (11% ee). N-benzoyl-2-
methylindoline was also a preferable substrate, reacting with medium enantioselectively (S-
or R-enantiomers not determined); however, N-pivaloyl-2-methylindoline and N-benzoyl-
1,2,3,4-tetrahydroquinaldine were not hydrolyzed. The reactivity and stereoselectivity of
SHA for tested compounds depended on the acyl groups and the distance between the
acyl group and chiral center. SHA exhibited no activity toward N-acetyl D- or L-amino
acid (data not shown).
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Table 1. Substrate specificity of SHA 1.

Substrate Relative Activity (%) 3 Conversion (%) Optical Purity (% ee)

N-Benzoyl-2-MPI 100 21 (48 h) 5 63 (S)
N-Pivaloyl-2-MPI 102 31 (48 h) 5 88 (S)
N-Acetyl-2-MPI 2480 46 (2 h) 5 43 (S)

N-Crotonoyl-2-MPI 1210 56 (4 h) 5 55 (S)
N-Benzoylpiperidine 81200 n.d. 4 n.d.

N-Benzoyl-3-MPI 7640 50 (2 h) 5 0
N-Pivaloyl-3-MPI 3120 42 (24 h) 5 0
N-Benzoyl-4-MPI 9320 n.d. n.d.

N-Benzoylpyrrolidine 1280 n.d. n.d.
N-Benzoyl-2-methylpyrrolidine 409 49 (24 h) 5 11 (R)
N-Benzoyl-2-methylindoline 2 40 53 (48 h) 5 50 (n.d. 4)
N-Acetyl-2-methylindoline 2 101 56 (3 h) 5 45 (n.d.)

N-Pivaloyl-2-methylindoline 2 0 n.d. n.d.
N-Acetyl-1,2,3,4-tetrahydroquinaldine 2 trace n.d. n.d.

N-Benzoyl-1,2,3,4-tetrahydroquinaldine 2 0 n.d. n.d.
1 The reaction was performed at 30 ◦C in 100 mM of potassium phosphate buffer (pH = 7.0) containing 10 mM of substrate and
0.0158 mg mL−1 of purified enzyme. 2 1 mM of substrate instead of 10 mM was added to the reaction with 5% (v/v) acetonitrile.
3 100% = 0.123 µmol min−1 mg−1. 4 n.d. = not determined. 5 Reaction time in brackets.

2.5. (S)-2-MPI Synthesis Using Recombinant Cells

Since the SHA gene sequence has GC-content, we overexpressed the gene in Rhodococ-
cus erythropolis L88, which are high GC-content bacteria that can express high GC-content
genes [34]. Rhodococcus sp. cells are robust and show resistance to various stress conditions,
expecting tolerance to organic solvent, high concentration of substrates, and long-time
reaction [35]. The reaction with 100 mM of N-pivaloyl-2-MPI using the recombinant cells
reached 48.4% conversion to (S)-2-MPI with 83.5% ee (E = 26.3) in 74 h (Figure 3, closed
circles). Compared with the reaction using Arthrobacter sp. K5 cells that almost stopped
after 60 h with the conversion level of <40% (Figure 3, closed triangles), R. erythropolis
transformant retained the hydrolase activity and the reaction proceeded to 50% conversion
after 72 h. Compared to the two-step preparation using the Aspergillus sp. protease and
acylation of the racemic cyclic amine by the lipase with 3-methoxyphenyl allyl carbonate
(Scheme 1B,C), the kinetic resolution by Arthrobacter sp. K5 hydrolase achieved one-step
preparation of (S)-2-MPI requiring only inexpensive reagents. However, optical purity
of 2-MPI was decreased due to gradual hydrolysis of the (R)-enantiomer. For the kinetic
resolution of chiral 2-MPI production, it is essential to transfer the higher stereoselectivity
toward N-pivaloyl-2-MPI to SHA using protein engineering.
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Figure 3. Synthesis of (S)-2-MPI from N-pivaloyl-2-MPI by Arthrobacter sp. K5 cells (closed triangles)
or recombinant cells (closed circles). The reactions were performed at 30 ◦C in 100 mM of potassium
phosphate buffer (pH = 7.0) containing 100 mM of N-pivaloyl-2-MPI and whole cells derived from
the culture broth equivalent to a five-fold amount of the reaction volume.
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3. Materials and Methods
3.1. General Information

Commercially available reagents were used without purification and purchased from
Tokyo Chemical Industry Co. Ltd. (Tokyo, Japan), FUJIFILM Wako Pure Chemical Corpo-
ration (Osaka, Japan) and Sigma-Aldrich (Darmstadt, Germany) unless stated otherwise.
The following products from each supplier were used: polypeptone (Nippon Seiyaku,
Tokyo, Japan), meat extract (Kyokuto Seiyaku, Tokyo, Japan), and yeast extract (Oriental
Yeast, Tokyo, Japan). Thin-layer chromatography (TLC) was performed on TLC silica gel
60F254 (Merck KGaA, Darmstadt, Germany). Column chromatography was performed on
Wakosil® 60 (FUJIFILM Wako Pure Chemical Corporation, spherical, 64–210 µm). HPLC
analyses were performed using LC-10AT pump, SPD-10A detector (Shimadzu, Kyoto,
Japan), Atlantis dC18 5 µm 4.6 × 150 mm column (Waters, Massachusetts, USA), CHI-
RALPAK AD-H 4.6 × 250 mm column (Daicel, Osaka, Japan), and TSK-GEL G-3000SW
column (7.5× 600 mm; Tosoh, Tokyo, Japan). The conversion rate and optical purity
were determined by HPLC after derivatization of amines with 2,3,4,6-tetra-O-acetyl-β-D-
glucopyranosyl isothiocyanate (GITC) at 40 ◦C for 1 h. The E value was calculated using
Chen’s equation [36]. 1H and 13C NMR spectra were recorded on a JEOL ECA600 spectrom-
eter (600 MHz for 1H and 150 MHz for 13C) in CDCl3 or CD3OD using tetramethylsilane
as an internal standard (δ = 0 ppm). Polymerase chain reaction (PCR), restriction enzyme
digestion, and DNA ligation were performed using TaKaRa PCR Thermal Cycler Dice®

mini (Takara Bio, Shiga, Japan).

3.2. N-Pivaloyl-2-MPI Synthesis

A solution of pivaloyl chloride (13 mL, 107 mmol) in acetonitrile (10 mL) was added to
a solution of 2-methylpiperidine (12 mL, 102 mmol) and triethylamine (14.2 mL, 102 mmol)
in acetonitrile (60 mL) at 0 ◦C with stirring. The reaction mixture was warmed to room tem-
perature and stirred overnight. The reaction mixture was filtered to remove triethylamine
hydrochloride and the resulting supernatant was concentrated under reduced pressure
with a rotary evaporator (EYELA, Tokyo, Japan). The residue was purified by column chro-
matography (silica gel, n-hexane:ethyl acetate = 6:1) to yield N-pivaloyl-2-methylpiperidine
(17.06 g, 91%) as a colorless oil. 1H NMR configurations were as follows: CDCl3 (600 MHz),
δ (ppm) 1.19, (3H, brs), 1.27 (9H, s), 1.36–1.43 (1H, m), 1.51–1.53 (1H, m), 1.59–1.71 (4H, m),
2.93 (1H, brs), 4.18 (1H, brs), and 4.73 (1H, brs). 13C NMR configurations are as follows:
CDCl3 (150 MHz), δ (ppm) 15.84, 18.88, 26.06, 27.11, 27.89, 28.43, 30.11, 38.83, and 176.12.

3.3. N-Acyl Cyclic Amines Synthesis

Acyl chloride (50 mmol) was added to a solution of cyclic amine (50 mmol) and
pyridine (50 mmol) in dichloromethane (200 mL) at 0 ◦C. The reaction was performed
overnight at room temperature with stirring. The reaction mixture was concentrated under
reduced pressure. Ethyl acetate was added to the residue, and pyridine hydrochloride
was removed by filtration. The supernatant was concentrated under reduced pressure
and purified by column chromatography (silica gel, n-hexane:ethyl acetate = 6:1) to obtain
N-acyl cyclic amines in moderate to good yield.

3.4. Hydrolysis of N-Pivaloyl-2-Methylpiperidine Using Whole Cells of Arthrobacter sp. K5

The reaction was performed at 30 ◦C with shaking (120 rpm) in 25 mL of 100 of mM
potassium phosphate buffer (pH = 7.0) containing 100 mM of N-pivaloyl-2-MPI and whole
cells derived from 125 mL of culture broth. Samples were collected multiple times and
analyzed by HPLC after derivatization of samples with GITC.

3.5. Substrate Specificity of Purified Enzyme

Substrate specificity was investigated using the following 1 or 10 mM of N-acyl
cyclic amines: N-benzoyl-2-MPI, N-pivaloyl-2-MPI, N-acetyl-2-MPI, N-acryloyl-2-MPI,
N-crotonoyl-2-MPI, N-benzoylpiperidine, N-benzoyl-3-MPI, N-pivaloyl-3-MPI, N-



Catalysts 2021, 11, 809 7 of 9

benzoyl-4-MPI, N-benzoylpyrrolidine, N-benzoyl-2-methylpyrrolidine, N-benzoyl-
2-methylindoline, N-acetyl-2-methylindoline, N-pivaloyl-2-methylindoline, N-acetyl-
1,2,3,4-tetrahydroquinaldine, N-benzoyl-1,2,3,4-tetrahydroquinaldine, and N-acetyl amino acids.

3.6. Genome Sequence of Arthrobacter sp. K5

Arthrobacter sp. K5 cells were lysed at room temperature overnight with 0.5 mg mL−1

of achromopeptidase (crude) in 10 mM of Tris-HCl (pH = 8.0). To this solution, 0.02 mg mL−1

of proteinase K, 10 mM of CaCl2, and 0.5% (w/v) SDS were added, and the mixture was
incubated overnight at 37 ◦C. To an equal volume of the lysed cells, 2×CTAB solutions
were added and incubated at 60 ◦C for 1 h. The 2×CTAB solution contained 20 g L−1 of
cetyltrimethylammonium bromide, 50 mM of Tris-HCl, 20 mM of EDTA, 111 g L−1 of NaCl,
and 10 g L−1 of polyvinylpyrrolidone in distilled H2O. To an equal volume of the treatment
solution, a mixture of phenol, chloroform, and isoamyl alcohol (25:24:1, v/v/v) was added,
mixed gently, and centrifuged at 4 ◦C and 8000 rpm for 30 min. The supernatant was
washed with chloroform and one-tenth the volume of 3 M of sodium acetate (pH = 5.2)
was added and mixed with isopropanol until genome DNA was thoroughly precipitated.
The genome DNA obtained was washed twice with 70% (v/v) ethanol and diluted with
distilled H2O. Genome analysis was commissioned to Gifu University NGS service.

3.7. Hydrolase Overexpression in Rhodococcus Erythropolis L88

The SHA gene was identified based on the partial amino acid sequence of SHA and
genome sequence analysis of Arthrobacter sp. K5. The gene sequence was deposited in
the DDBJ database under the accession number LC633519. The gene amplification was
performed via PCR using the primers 5′-CTATCCATGGCAACGCAGACAGTG-3′ and
5′-TAATCTCGAGTCAGACGTTGTCGTCGAGG-3′ with PrimeSTAR® Max DNA Poly-
merase (Takara Bio). The amplified DNA fragments and pTipQC1 vector (Hokkaido System
Science, Hokkaido, Japan) were digested with Nco I and Xho I and ligated using a DNA
Ligation Kit (Takara Bio). The resulting plasmid was transformed into Rhodococcus erythro-
polis L88 cells (Hokkaido System Science) by electroporation with Eporator® (Eppendorf,
Hamburg, Germany). The transformed cells were cultivated with 30 µg mL−1 of chloram-
phenicol at 120 rpm and 28 ◦C in 5 mL of the nutrient medium containing 10 g L−1 of
tryptone, 5 g L−1 of yeast extract, 4 g L−1 of Na2HPO4, 1 g L−1 of KH2PO4, 1 g L−1 of NaCl,
0.2 g L−1 of MgSO4·7H2O, and 0.01 g L−1 of CaCl2·7H2O in tap water. The preculture was
inoculated into 90 mL of the nutrient medium and 0.2 µg ml−1 of thiostrepton was added
and incubated at 20 ◦C and 120 rpm for 24 h. The cells were harvested by centrifugation,
washed twice with 0.85% (w/v) NaCl, and suspended in the same solution.

3.8. (S)-2-MPI Synthesis Using Recombinant Cells

The reaction was performed at 30 ◦C with shaking (120 rpm) in 2 mL of 100 mM of
potassium phosphate buffer (pH = 7.0) containing 37 mg (100 mM) of N-pivaloyl-2-MPI
and whole cells obtained from 10 mL of culture broth. Samples were collected multiple
times and analyzed by HPLC after derivatization with GITC.

4. Conclusions

SHA exhibited high (S)-selectivity toward N-pivaloyl-2-MPI to produce (S)-2-MPI with
80.2% ee. We successfully overexpressed the SHA gene in R. erythropolis L88 and improved
the hydrolase activity. The biocatalytic process achieved a kinetic resolution of 100 mM of
N-pivaloyl-2-MPI in one step using inexpensive synthetic substrates, forming (S)-2-MPI
with 48.4% conversion and 83.5% ee. As a potential enzyme for practical applications, SHA
may allow highly enantioenriched (S)-MPI production by improving its stereoselectivity in
the future.
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