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Abstract: Due to its excellent oxygen storage capacity, ceria is a well-known oxidation catalyst.
However, its performance in the oxidation of volatile organic compounds can be improved by the
introduction of gold. Depending on the type of VOC to be oxidized, the surface of gold nanoparticles
and the gold/ceria interface may contribute to enhanced activity and/or selectivity. Choosing a
proper preparation method is crucial to obtain optimal gold particle size. Deposition–precipitation
was found to be more suitable than coprecipitation or impregnation. For industrial applications,
monolithic catalysts are needed to minimize the pressure drop in the reactor and reduce mass and
heat transfer limitations. In addition to the approach used with powder catalysts, the method
employed to introduce gold in/on the washcoat has to be considered.

Keywords: volatile organic compounds; Au; CeO2; VOC total oxidation; noble metal catalysts

1. Introduction

Volatile organic compounds (VOCs) are organic compounds having an initial boiling
point of less than 250 ◦C measured at a standard atmospheric pressure of 101.3 kPa, which
participate in atmospheric photochemical reactions [1].

VOCs are harmful to the environment and human health. They are emitted into
the atmosphere from thousands of sources and recognized as one of the major factors
responsible for the increase in global air pollution. They can also react with NOx and
oxygen to form ozone: VOC + NOx + O2 + hν→ O3 + other products. Ozone causes human
health problems, affects DNA and enzyme functions, is toxic for vegetation, and impairs
the quality of some materials. Therefore, an abatement of VOC emissions is considered
desirable. Anthropogenic VOC emissions are regulated by law [2].

The best available techniques for reducing VOC emissions include the measures
focusing on process design (primary measures) and post-process removal (secondary
measures) [3]. Among secondary measures, catalytic oxidation is the most effective for low
concentrations of VOCs [1,3–9]. It is an efficient, cost-effective and environmentally sound
way to treat these harmful emissions [10,11]. The mechanism of total catalytic oxidation
depends on the type of catalytic material used. Two types of catalysts are employed for
oxidation reactions [3]: (i) metal oxides and (ii) noble metals (supported or not).

Metal oxide catalysts (in particular Cu, Mn, Cr, Co, Mn, Ni, Mo and V oxides) show
appreciable activity; they are cheap but not sufficiently stable [12–16]. In general, noble
metal catalysts possess greater activity than oxide catalysts, contributing to the reduction
of operating costs despite their higher manufacturing cost. Their catalytic activity depends
on the noble metal and varies with the nature of VOC [17]. The mainstream of commercial
catalysts belongs to this group and consists of Pt or Pd or both, supported on high-surface-
area γ-Al2O3 [3,18–27]. Palladium or bimetallic Pt–Pd active phase supported on alumina
or CeO2–Al2O3 mixed oxides are still probably the most studied group of catalysts [28–30].

For a long time, the noticeable exception of noble metals was gold. Au, in the bulk
form, is considered the most noble of all metals [31]. The low adsorption energy of gases
and high energy barriers for their dissociation disadvantage reactivity on gold. Thus, for
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years, it was also the most abundant noble metal in catalysis. Nowadays, gold-based
catalysts attract increasing attention [32]. They have proved a beneficial role in various
catalytic reactions of commercial and environmental status, e.g., exhaust gas purification,
oxidation of glucose, water gas shift, CO oxidation, water or hydrogen purification, air
cleaning, fuel cells and VOC oxidation.

2. Gold Catalysts for VOC Oxidation

The preparation of Au catalysts for VOC oxidation has been widely investigated. The
studies on reaction mechanisms enhance the understanding of the oxidation process using
Au catalysts [33]. To achieve the best performance of the catalyst in the oxidation process,
diverse approaches to design the gold catalysts have been applied. The preparation method,
the loading of gold, the nature of VOC to be oxidized are just some of them [34–38].

According to many authors, the role of support is crucial. It contributes to the control
of the final amount, the size and the shape of gold particles, influencing the activity of
material in VOC oxidation. Typically, different oxide supports are employed, e.g., oxides
of iron [39–47], titan [48–54], aluminum [55–57], vanadium [58–60], manganese [61,62]
or cobalt [56,63–66]. Figure 1 shows the example of gold nanoparticles supported on
ceria–zirconia mixed oxide. According to Scirѐand Liotta [67], VOC deep oxidation over
Au/metal oxide catalysts is governed by both the support and gold properties, which
often amplify their effects due to a synergistic action. However, there is still debate on how
different variables affect support and gold properties and thus the catalytic performance.

1 
 

 

Figure 1. The TEM image of the Au/Ce0.5Zr0.5O2 powder catalyst prepared by impregnation studied
in Ref. [68].

A real catalyst usually contains several components, and its surface composition
and structure may change during the catalytic process. Corma’s group [69] reported that
extremely low concentrations of mononuclear gold complexes in impregnation solution
resulted in catalytically active gold clusters (TOF ca. 107). Thus, new properties of sup-
ported gold catalysts can be reached using nanometer and sub-nanometer structures [70].
Recently, the group of Keiski showed that Au/Al2O3 was more active and selective to HCl
in dichloromethane oxidation than the Pt/Al2O3 catalyst due to small Au particle size
(~5 nm) with narrow size distribution (±5 nm) and good metal dispersion [71].
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It is possible to modify the monometallic gold catalyst by adding a second metal to
improve the dispersion, adsorption and activity towards the oxidation of hydrocarbons [72].
For example, neighboring Pd atoms change Au’s electronic structure, leading to high
activity. Preparation and characterization of the bimetallic catalysts containing Pt and
Au for VOC oxidation were studied by Kim et al. [73]. Influence of Pt–Au molar ratio on
the catalytic activity for toluene oxidation revealed that Pt75Au25 and Pt67Au33 catalysts
concurrently coated with Pt and Au precursors by impregnation method showed higher
activity than monometallic Pt and Au catalyst for toluene oxidation. Kim et al. also
studied Au0.5Ag0.5 alloy films and highlighted that VOCs affect only the surfaces of metal
nanoparticles [74]. Noble metals (Pd, Au) were deposited onto macro-mesoporous metal-
oxide supports to form mono and bimetallic catalysts by Barakat et al. [75]. The catalytic
materials were tested in the oxidation of selected VOCs. PdAu/TiO2 and PdAu/TiO2–ZrO2
80/20 catalysts demonstrated the best activity and life span in the oxidation of toluene
and propene; the lowest coke content after catalytic testing was observed for them too. An
effective method of enhancing catalytic activity is the core–shell construction of nanosized
bimetallic particles [76]. The Au–Pd is one of the core–shell systems that have gained
considerable attention [53,77].

3. CeO2 and Ceria-Supported Noble Metal Catalysts for VOC Oxidation

Cerium oxide can be used as a catalyst or an active phase/support of more complex
catalytic material for VOCs oxidation. However, ceria is rarely used alone in the oxidation
process [78], usually for the matter of comparison [79,80]. The possibilities of mixed
oxides forms [81,82] and combining ceria with other metals (noble or other supported
metals [30,83]) are multiples, as demonstrated in the selected publications gathered in
Table 1 (excluding gold catalysts, which are included in Table 2). The nature of catalytic
components, how they influence each other, a preparation process, and many others
determine the properties of final catalysts; e.g., a preference of reduced centers for surface
positions, stability and activity in the oxidation of different VOCs, etc.

The study of Pitkäaho et al. [84] reports total oxidation of perchloroethylene over Pt,
Pd, Rh and V2O5 metallic monolith catalysts supported on Al2O3, CeO2 and TiO2-doped
Al2O3. It shows that the redox properties of the catalyst and the amount of activated
oxygen may play a bigger role than the acidity in the oxidation of certain VOCs.

Table 1. Recently studied ceria-based catalysts for VOCs oxidation.

1st Author, Publ. Year Ref.
Catalyst Containing

VOCs to Oxidize
Noble Metal Ce and:

Zheng, 2021 [85] Pt - Benzene

Zeng, 2021 [86] - Cu Toluene

Jiang, 2020 [87] Pt - Methanol

Li, 2020 [88] - Co Methanol, Acetone, Toluene, O-xylene

Sophiana, 2020 [89] Cu, Mn, Ni, Zr Benzene

Al-Aani, 2020 [90] - Cu, Mg, Al Methane

Figueredo, 2020 [91] - Mn, Cu Ethylene, Propylene

Jiang, 2020 [92] - Fe Toluene

Zheng, 2020 [93] - Co Acetone

Jiang, 2019 [94] - Mn Ethyl acetate

Wang, 2019 [95] - Cu Methanol, Acetone, Toluene, O-xylene

Genty, 2019 [96] - Co, Al Toluene

Shah, 2019 [97] - Zr Propane, Naphthalene

Chen, 2019 [98] Pd-Pt Al Benzene

Gołąbek, 2019 [99] - zeolite β Trichloroethylene

Okal, 2018 [100] - Ru Iso-butane, N-butane, Propane

Hosseini, 2017 [101] Pd Al-clinoptilolite Toluene
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Table 1. Cont.

1st Author, Publ. Year Ref.
Catalyst Containing

VOCs to Oxidize
Noble Metal Ce and:

Konsolakis, 2017 [102] - Co Ethyl acetate

Piumetti, 2017 [103] - Cu Ethylene

Saedy, 2017 [104] - Al Toluene

Issa, 2017 [105] - Ti Ethyl acetate

He, 2016 [106] - Y, Sm, La Methanethiol

Carabineiro, 2016 [107] - Gd, La, Pr, Nd, Sm Ethyl acetate

Topka, 2016 [108] Pt Zr Ethanol, Toluene

Dinh, 2015 [109] - Mn Trichloroethylene

Abdelouahab-Reddam,
2015 [110] Pt C Ethanol

Xue, 2015 [111] - Y, Zr, montmorillonite Acetone, Toluene, Ethyl acetate

Yosefi, 2015 [112] - Cu, clinoptilolite Toluene

Nousir, 2015 [113] - Zr Ethyl acetate

Yang, 2014 [114] - Cr 1,2-dichloroethane

Deng, 2014 [115] - Cu, Zr Toluene

Perez, 2014 [116] - Co, Mg, Al Toluene

Sedjame, 2014 [83] Pt Al N-butanol, Acetic acid

Urbutis, 2014 [117] - Cu, NaX Benzene, Toluene, O-xylene

Barakat, 2014 Fe, Ni, Ti Toluene

Ozawa, 2013 [81] - Zr Toluene

Konsolakis, 2013 [118] - Cu, Sm Ethyl acetate

Yue, 2013 [119] Pd ZSM 5 Methyl ethyl ketone

Dziembaj, 2013 [120] - Cu Methanol, Acetone

Shi, 2012 [121] Ag Mn Formaldehyde

Pitkäaho, 2012 [84] Pt, Pd, Rh Al, Ti, V Perchloroethylene

Matějová, 2012 [122] Pt, Pd Al Dichloromethane, Toluene, Ethanol

Aranda, 2012 [80] - Cu Naphthalene

Abbasi, 2011 [123] Pt Al Toluene

Pérez, 2011 [124] - Al, Co, Cu, Mg, Pr Ethanol

Weng, 2011 [125] - Cr, Cu, Mn, Ti Toluene

Mayernick, 2011 [126] Pd - Methane

Liao, 2011 [127] - Al, La, Mn, Zr benzene

He, 2011 [78] - - O-xylene

Yu, 2010 [128] - Mn, Ti Toluene

Masui, 2010 [129] Pt Al, Bi, Zr Toluene

Ferreira, 2010 [130] - Cu Methane

Azalim, 2010 [131] - Mn, Zr n-buthanol

Puertolas, 2010 [79] - mesoporous siliceous
KIT-6 Naphthalene

Delimaris, 2008 [132] - Mn Ethyl acetate, ethanol, toluene

Yan, 2008 [133] - Al, Mn, Y, Zr benzene

Zhi Min, 2007 [134] Pt Mn, Y, Zr, Toluene

Gutiérrez-Ortiz, 2004 [82] - Zr Aliphatic C2 chlorohydrocarbons



Catalysts 2021, 11, 789 5 of 22

Similarly, Aranda et al. [80] reported that oxygen defects are the key parameter control-
ling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation
of naphthalene. In perchloroethylene oxidation, the Pt/Al2O3-CeO2 and Pd/Al2O3-CeO2
catalysts exhibited lower amounts of by-products (trichloroethylene, ethylene and CO)
than their analogues without ceria, confirming its positive effect also on the selectivity of
the catalysts [84]. Sedjame et al. [83] showed that the addition of ceria to Pt catalysts leads
to the formation of numerous intermediate products that have mainly been attributed to
ceria-active sites. Nevertheless, this addition improves the catalytic performance for n-
butanol and acetic acid oxidations. The authors highlight that the catalytic activity of ceria
depends on the nature of the VOCs. Recently, Li et al. [88] and Jiang et al. [94] confirmed
the importance of oxygen vacancies that correlated with catalytic activity in the oxidation
of different types of VOCs (Table 1).

4. Au/CeO2 Catalysts for VOC Oxidation

Scirѐet al. [135] studied the catalytic oxidation of volatile organic compounds
over gold/cerium oxide catalysts. Catalytic combustion of 2-propanol, methanol
and toluene was investigated over catalysts prepared by coprecipitation (CP) and
deposition–precipitation (DP). DP has been found to be more suitable than CP to
obtain highly active Au/CeO2 catalysts because DP leads to gold nanoparticles, which
are preferentially located on the surface of ceria [135]. The effect of the preparation
method on the catalytic activity of Au/CeO2 for VOC oxidation was also investigated
by Li and Li [136]. The Au/CeO2 catalysts were synthesized by CP, DP and metallic
colloids deposition (MCD) method, and tested in the total oxidation of toluene. The
best results were obtained with 3 wt.% Au/CeO2 catalyst prepared by the DP method.
The catalytic activity of Au/CeO2 was related to the interaction between gold particles
and supports, and the capability of gold particles to weaken the surface Ce–O bonds
adjacent to Au atoms. The Ce–O bonds are weakened with the reduction of Ce4+ to Ce3+

(Figure 2) due to charge transfer to Ce during Au adsorption, which is accompanied
by an electron charge transfer between the neutral metal atom and neighboring Ce4+

cation. Thus, the mobility of the surface lattice oxygen—involved in the VOC oxidation
through a Mars-van Krevelen reaction mechanism—increases, which then leads to
higher catalytic performance (Figure 3).
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Figure 2. The improved reducibility of the Au/Ce0.5Zr0.5O2 monolithic catalyst studied in Ref. [137]
(blue) compared to the Ce0.5Zr0.5O2 monolithic catalyst (red) as shown by their H2-TPR profiles.
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support (red).

The importance of the interface between gold and ceria was underlined in the operando
IR study of methanol oxidation [139]. The comparison of deposition–precipitation and
impregnation method was studied by Aboukaïs et al. [140] for catalytic oxidation of propy-
lene and toluene. They confirmed that the catalysts prepared by deposition–precipitation
were more active than those prepared by impregnation due to the high number of gold
nanoparticles and Au+ species and the low concentration of Cl− ions present on its sur-
face. Generally, the impregnation method requires the right choice of gold source and
suitable treatment needed for preparing NPs; e.g., when popular source HAlCl4 is used,
gold particles grow rapidly as a consequence of chlorine contamination. A better selec-
tion of gold source during impregnation can be Au(PPh3)(NO3), [Au9(PPh3)8](NO3)3 or
[Au6(PPh3)6](BF4)2 [141]. Similar preparations can lead to catalytic material offering ac-
tivities of a different magnitude. Precursor, methodology or support additives could be
restrictive, and a more general approach is still needed [142].

Small gold nanoparticles (NPs > 5 nm in diameter) with homogeneous dispersions
on the supports seem, so far, the most advantageous for catalytic activity. However,
for a good understanding of the effects of gold particle size on catalytic properties, the
samples with monodisperse size distributions are preferred; for Au/TiO2 cathodic plasma
deposition method was successfully used [143]. On the other hand, it should be noted
that the contribution of large gold agglomerates to the catalytic activity in VOC oxidation
was observed as well (Figure 3) [144]. High-resolution electron microscopy is crucial for
estimating the size of Au nanoparticles (Figure 4). It should be noted that is difficult
to distinguish Au supported on CeO2 in the TEM image mainly due to low diffraction
contrast; HAADF-STEM is more suitable [141]. Moreover, every Au nanoparticle counted
in the particle analysis should be confirmed by EDX (Figure 5). Examples of prepared Au
catalysts containing ceria (and possibly other compounds) for VOC oxidation are listed in
Table 2. The patent of Rhodia company on Au/CeO2-ZrO2 catalysts for the treatment of
tobacco smoke and polluted air is well known.
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Table 2. Recently studied ceria-based Au catalysts for VOC oxidation.

1st Author, Publ. Year Ref.

Catalyst Containing

VOCs to OxidizeAu loading
(wt.%)/Composition Ce and:

Liu, 2021 [145] 1 -, Nb Benzene

Bu, 2020 [146] 1 - Formaldehyde

Gaálová, 2019 [144] 0.20-3.35 Zr Ethanol, Toluene

Nevanpera, 2019 [147] Pt–Au, Cu–Au -, Al Dimethyl disulfide

Aboukaïs, 2016 [148] 4 - Propylene, Toluene

Wang, 2015 [149] 0.91–1.11 Hydroxyapatite Formaldehyde, Benzene

Fiorenza, 2015 [150] Au–Ag, Au–Cu - 2-propanol, Ethanol and Toluene

Idakiev, 2015 [151] 1.36–3.21 Ti, Zr Methanol, Dimethylether

Topka, 2015 [138] 0.3 and 2.8 Zr Chlorobenzene

Barakat, 2014 [152] 2.36–2.99 Ti, Fe, Ni Toluene

Tabakova, 2013 [153] 3 Mn, Fe, Co Methanol

Aboukaïs, 2013 [140] 0.5 and 4 - Propylene and toluene

Mandal, 2013 [154] 3.5 Mn Benzyl alcohol

Matějová, 2013 [155] 0.3 and 2.8 Zr Ethanol and dichloromethane

Petrova, 2013 [156] 3 Co Benzene

Ciftci, 2013 [157] <0.01 to 2.14 - Ethanol and formic acid

Bastos, 2012 [158] 0.75 and 0.77 (compared to Mn) Ethyl acetate, ethanol and toluene

Bazin, 2012 [159] 1 - Methanol

Ilieva, 2012 [160] 3 Co Benzene

Li, 2011 [161] 2.5-3 - Formaldehyde

Solsona, 2011 [162] 2.2 Ni Propane

Gaálová, 2011 [68] 0.3 and 2.5 Zr Ethanol and toluene

Tana, 2011 [163] 3.2 - Carbon monoxide

Bonelli, 2011 [164] 1, 2.2 and 2.7 Fe Methanol and toluene

Ousmane, 2011 [165] 1.1 Al Propene and toluene

Ying, 2011 [166] 1.1 and 1.7 - Benzene

Scirè, 2010 [167] 4.3–4.6 - Methanol, Acetone, Toluene

Lakshmanan, 2010 [168] 1 Al Propene

Delannoy, 2010 [169] 0.25–4 - Propene

Rousseau, 2010 [139] 1 - Methanol

Zhang, 2009 [170] 0.42–0.56 - Formaldehyde

Gennequin, 2009 [171] 2.64 Ti, Zr Propene and toluene

Shen, 2008 [172] 0–0.85 - Formaldehyde

Lamallem, 2008 [173] 1.5–3.3 Ti Propene

Jia, 2008 [174] 1 - Formaldehyde

Gennequin, 2007 [175] 2.7–3.5 Ti Propene

Pina, 2006 [176] 1 Zr Benzene, hexane, chlorobenzene

Andreeva, 2006 [177] 2.8, 2.9 and 3 Mo, Al Benzene

Gluhoi, 2005 [178] 4.5 Al (compared to Co, Mn,
Fe) Propene

Andreeva, 2004 [179] 2.3 and 3 V, Al Benzene

Centeno, 2002 [180] 1.5 and 2.5 Al n-hexane, benzene and 2-propanol
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Bonelli et al. [164] reported the design of nano-sized Au/FeOx catalysts supported on
CeO2 for total oxidation of methanol and toluene. The presence of iron in the CeO2 structure
was found to increase Au dispersion by creating sites with an increased electronic density, which
act in a similar way to oxygen vacancies. The deposition of gold nanoparticles was favored at
these sites. A strong influence of the nature of dopant was observed by Tabakova et al. [181]
as well. The same group evaluated the activity of different doped AuCe catalysts towards
the oxidation of CH3OH; the activity decreased in the order: AuCeCo > AuCe > AuCeFe >
AuCeMn [153].

The different behaviour of noble metals [152,163,167] offers the possibility of de-
signing bimetallic catalysts. Lee and Chen reported on the mutual promotional effect of
Au–Pd/CeO2 bimetallic catalysts on the destruction of toluene [182]. The addition of a
suitable amount of gold to Pd/CeO2 increased the proportion of metallic palladium and
the catalytic activity.

5. Cordierite Monolithic Catalysts for VOC Oxidation

For practical applications, macro-structured catalysts are preferred over powdered cat-
alysts. A low-pressure drop in the exhaust system, good thermal resistance, refractoriness,
good washcoat adherence and compatibility between the washcoat and the catalyst are only
a few excellent operational properties of cordierite monoliths, which are more than suitable
for gas phase applications [183]. A catalytic layer can be deposited onto cordierite monolith
by numerous techniques, selected accordingly to the VOCs to be oxidized. Similar to
powder catalysts, the selectivity to carbon dioxide is important, as the by-products formed
(Figure 6) may be more detrimental than the original VOC.
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Figure 6. The evolution of by-products during ethanol oxidation over the powder Au/Ce0.5Zr0.5O2

catalyst studied in Ref. [68]: ethanol (red), ethylene (blue), acetaldehyde (cyan), acetic acid (magenta)
and ethyl acetate (green).

The catalytic combustion of toluene over Fe–Mn mixed oxides supported on cordierite
monolith was investigated by Ma et al. [184]. The high dispersion of the mixed oxides on the
surface of the cordierite support was the most important factor for the catalytic combustion
of VOCs. Total oxidation of naphthalene at low temperatures using palladium nanoparticles
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supported on inorganic oxide-coated cordierite honeycomb monoliths was the subject of the
research of Varela-Gandía et al. [28]. Thin films of ZSM-5 and BETA zeolites, and a SAPO-5
silicoaluminophosphate (by in situ synthesis), then γ-Al2O3 (by a dip-coating), were coated
onto a cordierite honeycomb monolith. The coated monoliths were impregnated with
polymer-protected Pd nanoparticles and tested for the total oxidation of naphthalene. From
the combined use of the zeolite with polymer-protected nanoparticles, enhanced catalytic
properties were found for the total abatement of the representative of VOCs. A high degree
of stability remained even after undergoing accelerated ageing experiments.

Aguero et al. reported the catalytic combustion of different VOCs: ethyl acetate,
n-hexane, and its mixture [185]. Cordierite monolith was dipped in colloidal alu-
mina slurry, dried and calcined. After that, impregnation with aqueous solutions of
(CH3CO2)2Mn × 4 H2O and (CH3CO2)2Cu × 4 H2O, drying and calcination was car-
ried out. Prepared MnCu-mixed oxide catalysts with homogeneous and well-adhered
coatings revealed very good activity and stability in the oxidation of VOCs.

Zhao et al. tested CuxCo1−x/Al2O3/cordierite monolithic catalysts (x = 0–1) in the cat-
alytic combustion of toluene [186]. A boehmite primer sol was the first washcoat layer, and
copper with cobalt oxides was the activity washcoat layer. The Cu0.5Co0.5/Al2O3/cordierite
catalyst with Co2+ and Co3+ on its surface showed the best catalytic activity; toluene was
completely oxidized at 315 ◦C.

Zhou et al. [187] studied MnOx–CeO2/La–Al2O3 monolithic catalysts prepared by
the deposition–precipitation method, impregnation method and a combination of the
two methods in toluene oxidation. The results showed that the catalyst prepared by
the deposition–precipitation method showed the best catalytic activity and possessed
richer surface oxygen species, a higher proportion of Mn4+ and good low-temperature
redox properties.

From existing patents dealing with catalysts supported on ceramic monoliths with
honeycomb structure for VOCs oxidation, the sequential adsorptive capture and catalytic
oxidation defined in the US 6479022 B1 patent can be mentioned [188]. The inventors
recommend grinding the active component to a powder with a particle size smaller than
20 microns, followed by a coating over the carrier such as cordierite. A method for the
catalytic oxidation of VOC/CO in the presence of organosilicate compounds describes
the patent EP 0993857 B1 [189]. As an example of suitable ceramic materials, it states
cordierite, preferred for the treatment of gases containing halogenated organics. Cordierite-
based monolithic catalyst without coating layer is the key idea of the CN 102989451 A
patent [190]. The acidification treatment and the coating technology of the selected carrier
are not required; the load capacity of the metal active component is controllable; the
metal active component has good stability. The invention mainly solves the problems
of complicated processes and the high cost of the preparation of the existing cordierite
monolithic catalyst.

6. Au Monolithic Catalysts for VOC Oxidation

Gold catalysts for indoor air quality control already appeared as prototype prod-
ucts in the public domain [191]. Air-cleaning devices are required for removing CO,
VOCs and ozone from ambient air in confined spaces such as submarines or space crafts
on long missions and indoor office space [192]. The gold/titanium dioxide photocat-
alytic/thermocatalytic coating (where gold particles have a size lower than 3 nm) is used
by Carrier Corporation (US) for the simultaneous oxidation of VOCs and carbon monox-
ide [193]. When photons of ultraviolet light are absorbed by Au/TiO2 coating, reactive
hydroxyl radicals are formed. They oxidize a contaminant, adsorbed on the coating, to
H2O, CO2 and other substances. Gold is an oxidation catalyst that lowers the barrier
energy of CO to be oxidized to carbon dioxide. It is particularly gainful that the activity
of Au catalysts may be promoted by moisture. Oxidation of VOCs was studied using an
inlet from the electrophotographic printing apparatus vapor stream [194]. The invention
detailed the technology linking an apparatus and method for the oxidation of VOCs from a
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printer, particularly a combination of an unsupported and a supported oxidation catalyst.
A method of dividing the supported oxidation catalyst into sections to obtain efficient
oxidation of VOCs is included in the patent. Gas from within the printer body is conducted
to a catalytic treatment system with separate contact regions for an unsupported oxidation
catalyst (metal selected from the platinum group metals or from the first transition series)
and a supported oxidation catalyst on different ceramic materials. Since 1992, Au/Fe2O3
supported on washcoated honeycomb has been used in Japanese toilets for the elimination
of bad smells [195]. The commercial use of gold-based catalysts is rather limited for now,
but this field is undergoing an exciting period of discovery” [196].

7. CeO2-Based Cordierite Monolithic Catalysts for VOC Oxidation

Ce oxides have been known for many years as active and selective catalysts for VOC
oxidation due to their oxygen storage capacity (OSC), redox properties and catalytic perfor-
mances. The rheological properties of the suspension that contains the active elements are
critical for obtaining a satisfactory washcoating [197]. The viscosity, concentration or pH of
the slurry influences the adhesion ability of oxides towards cordierite honeycombs [198].
Table 3 displays several examples of successful depositions of ceria (possibly with other
compounds) on cordierite monolith for VOC oxidation.

Table 3. Recently studied ceria containing VOC oxidation catalysts supported on cordierite monoliths.

1st Author, Publ. Year Ref.

Catalyst Supported on Cordierite
Monolith Containing VOCs to Oxidize

Noble Metal Ce and:

Sedjame, 2018 [199] Pt Al, Zr, Acetic acid

Zhou, 2018 [187] - Mn, La, Al Toluene

Azalim, 2013 [197] - Mn, Zr N-butanol

Huang, 2013 [200] - Mn Benzene

Jiang, 2013 [201] Pt, Pd Al, Zr Toluene, benzene and
styrene

Papavasiliou, 2009 [202] Pt Al, Zr, La Propene

Liotta, 2009 [203] Pt Al, Zr Propene

Zhi Min, 2007 [134] Pt Al, Zr, Mn, Y, Toluene

González-Velasco, 2002 [204] Pt Zr Propene

Agrafiotis, 2001 [205] Pd, Rh Al, Ca Exhaust gases
(hydrocarbons)

Agrafiotis et al. [205] evaluated nanophase calcia-doped-ceria-based washcoats de-
posited on ceramic honeycombs (via sol-gel methods) with respect to catalytic activity for
hydrocarbons conversion and thermal aging. The activity of the systems was found to
depend strongly on the deposition method (directly from the sol or from suspensions of
sol-gel derived powders), on the type of precursor used for preparing the starting sols
(metallo-organic or inorganic) and on the method used to insert the noble metal(s) in/on
the washcoat.

González-Velasco et al. studied 0.58Pt/Ce0.68Zr0.32O2/ceramic monolith for simulta-
neous elimination of NO, C3H6 and CO [204]. Changes in activity have been related to the
role of platinum and ceria−zirconia mixed oxide in the reaction milieu; the authors claim
the advantages of using ceria−zirconia mixed oxides instead of CeO2/Al2O3 to improve
stability and oxygen storage capacity. Zhi Min et al. [134] demonstrated that the catalytic
activity of Pt/γ-Al2O3/Ce0.50Zr0.50O2 monolithic catalyst could be greatly improved by
doping Y and Mn into Ce0.50Zr0.50O2.
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Remarkable stabilization of the ceria–zirconia solution towards CeAlO3 formation op-
erated by Pt under redox conditions managed to achieved Liotta et al. [203] by preparation
of structured 1Pt/CeZr/Al catalyst, dip-coated over a cordierite monolithic support. Pt
supported catalysts ceria–zirconia was present as a Ce0.6Zr0.4O2 homogeneous solid solu-
tion, and the deposition over the cordierite does not produce any structural modification;
moreover, no Pt sintering occurred.

Among the preparation procedures for Ce–Zr–La modified Pt/γ-Al2O3 catalyst—
(i) simultaneous coprecipitation of γ-alumina and ceria-based solid solution from metal
nitrates, (ii) sequential coprecipitation of these components and (iii) wet impregnation
with different γ-alumina powders—simultaneous coprecipitation led to the most thermally
stable washcoat [202]. Papavasiliou et al. observed higher dispersion of the oxide modifiers
in the alumina carrier, impeding the Pt sintering.

The monolithic Pt–Pd bimetallic catalysts supported on γ-Al2O3 using cordierite
honeycomb ceramics as the first carrier were prepared by thermal adsorption method
by Jiang et al. [201]. The Pt–Pd content of 0.1% was found to be suitable; the prepared
catalyst shows high activity and stability. On the contrary, cerium-based catalyst sup-
ported on cordierite with no noble metal was used for catalytic combustion of benzene by
Huang et al. [200]. Their results specified that the MnCeOx/Cord catalyst with Mn/Ce mo-
lar ratio of 1:1, calcined for 7 h and Mn+/(citric acid) molar ratio of 6 exhibited the highest
catalytic activity. Recently, the direct deposition of Ce–Zr–Mn mixed oxide on the cordierite
has been proposed as an alternative and promising way to the alumina-coated cordierite
followed by noble metal impregnation for VOCs catalytic removal by Azalim et al. [197].
The retaining of the great textural and the redox properties of the Ce0.12Zr0.40Mn0.48O2
mixed oxides, already observed on the powder catalyst, was most likely the main reason
for the excellent catalytic properties of the CeZrMn(0.48)/M monolith.

Several cordierite monolithic catalysts with ceria washcoat for VOC abatement were
patented as well. An instance can be the US-8475755-B2 patent [206], which includes
platinum group metals, one of which is either platinum or ruthenium.

8. Au/CeO2 Cordierite Monolithic Catalysts for VOC Oxidation

Gold and ceria supported on a cordierite monolith are employed in several published
patents. The US-7329359-B2 patent describes the use of Ce–Zr mixed oxides, together with
a promoter from the transition metal oxides group, coated on a ceramic cordierite monolith
for the destruction of VOCs in liquid media [207]. Exhaust gas (including VOCs) treatment
catalyst is proposed in the WO 2013088091 A1 patent [208]. A catalytic system consisting
of an oxide (preferably of fluorite crystalline structure) corresponds to the molar formula:
Ce1−uMyAzDvO2-x, where Ce is cerium, A represents at least one element having several
degrees of oxidation, M represents at least one element chosen from Gd, Y, Se, Sm, Nd, Pr
and Zn, D represents at least one element different from A and chosen from Pt, Pd, Rh, Ru,
Cu, Fe, Ag and Au, u is between 0.05 and 0.45, y is between 0.01 and 0.4, z is greater than 0
and less than 0.4, v is between 0.001 and 0.4 and x is greater than 0. The VOC oxidation
catalysts based on Ce–Zr mixed oxides, noble metals, and promoters are proposed in other
patents [209,210]. For adequate exposure of the catalysts to the contaminated air stream,
without producing excessive back pressure, the catalyst is deposited on structured support.
Another catalyst compositions useful for destruction of VOCs in an oxygen-containing gas
stream at low temperatures (the patent WO 2001045833 A1 [211]) comprises one or more
first metals selected from the group consisting of: Ce and Zr; and at least one of: (a) one
or more second metals selected from the group consisting of: Gd, La, Sr and Sc; (b) one
or more third metals selected from the group consisting of: Ti, V, Mn, Fe, Co, Cr, Ni, Au,
Ag and Cu; and (c) one or more fourth metals selected from the group consisting of Pt, Pd,
Rh, Ru, Re, Os and Ir. Catalyst compositions provided may be single-phase, mixed-metal
oxides, or multi-phase.
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Monoliths coated with perovskites and ion exchange materials are described as highly
efficient catalytic materials for VOCs abatement in the following patents: US 5882616
A [212] and US 6200483 B1 [213].

The method of coating a honeycomb monolith substrate with a catalyst component
is proposed in the WO 2011080525 A1 patent [214]. Ceria is recommended as one of
the suitable coatings for supporting the catalytically active metals, preferably from the
following group: Pt, Pd, Au, Ag, Ir, Ru, Rh and Os. Methods of preparing highly dispersed
monolithic gold catalysts are described in the WO2011106213 patent [215]. Nanosized gold
catalysts are supported on the washcoated monoliths, stabilized by the addition of a third
metal oxide, which may include a variety of transition metal oxides such as cerium oxide.
The introduction of monolithic supported Au catalysts potentially can be beneficial for
environmental catalyses, such as the low-temperature oxidation of VOCs and CO.

Recently, we proposed two methods of gold introduction during the preparation of
Au/Ce0.5Zr0.5O2 cordierite monolithic catalysts [137]. We have demonstrated that the
order of gold and ceria introduction may influence gold particle size and thus the catalytic
activity. The enhanced reducibility of the catalysts with higher Au dispersion led to an
improved catalytic performance in ethanol oxidation.

9. Perspective

Except for further improvement of the preparation methods aimed to obtain required
gold particle size and particle size distribution, the effect of gold nanoparticles on ceria
or ceria–zirconia support and its catalytic activity would deserve further studies. For
example, it is generally accepted that the optimal gold particle size is in the range of
nanometers. However, we have shown that in the oxidation of chlorobenzene, even large
gold particle agglomerates (~100 nm) may contribute to the catalytic performance of the
Au/Ce0.5Zr0.5O2 catalysts (cf. Figure 3) [138]. Furthermore, the role of the Au–CeO2
interface is important and not yet fully understood. Depending on the type of VOC to be
oxidized, the perimeter of Au nanoparticles may form the active site for the reaction. For
example, for ethanol oxidation, it was reported that the presence of highly dispersed Au
nanoparticles induced a new oxidation pathway [216]. Another interesting point might
be the effect of ceria morphology (nanorods, nanocubes). It was already shown that the
morphology of ceria might affect the interaction of the support with gold nanoparticles
and thus the catalytic activity. For example, Bu et al. recently reported that ceria nanorods
with exposed (110) and (100) planes possessed a large number of oxygen vacancies and
promoted the creation of Au3+ near the surface [146].

10. Conclusions

Gold and ceria are well-known catalysts that already proved their performance in the
total oxidation of VOCs. While ceria itself may be highly active, its ability to oxidize given
VOC can be improved by depositing gold nanoparticles. Furthermore, gold nanoparticles
can improve the selectivity of catalysts. This is crucial, as the oxidation by-products may
be more detrimental than the original VOC. Choosing the proper preparation method
is crucial to obtain catalysts that are able to totally oxidize VOCs at low temperatures
and avoiding deactivation. Gold nanoparticles deposited on the partly reducible ceria
is an especially suitable combination due to the oxygen storage/release capacity of such
catalysts. The decisive role of oxygen vacancies and their mobility was confirmed in many
studies. On the other hand, the catalytic activity and selectivity of gold/ceria catalysts may
be substantially influenced by the nature of the VOC to be oxidized.

The kinetic behavior of the supported catalysts is usually affected mainly by their
reducibility, acidobasic properties, morphology, and oxidation state of the active phase.
The number and mobility of surface vacancies and lattice oxygens—involved in VOC
oxidation through a Mars-van Krevelen reaction mechanism—is a key issue. The activity
of the gold/ceria catalysts is influenced by gold particle size. It was revealed that the small
particle size of gold, ~5 nm, has a positive effect on the catalyst performance; such Au/CeO2
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systems are preferably prepared by deposition–precipitation. New approaches, such as
plasma deposition, allow to obtain the narrow size distribution of gold nanoparticles and
achieve a better understanding of the effects of gold particle size. Attention should be
paid to a proper determination of the gold particle size, especially when using an electron
microscope; HAADF-STEM is preferable to distinguish gold nanoparticles on the ceria
surface and should be confirmed by EDX. The limiting factors of the oxidation process
using Au/CeO2 based powder catalysts are poisoning phenomena (ceria is sensitive to
halogen and sulfur-containing compounds), thermal stability (to prevent both gold and
ceria agglomeration) and mass and heat transfer limitations.

Catalytic technology at an industrial scale uses mainly monolithic washcoated cata-
lysts with precious metals (Pt, Pd, Rh) supported on oxygen storage components, such
as ceria or ceria–zirconia mixed oxides. The application of monolithic catalysts to VOC
removal is a crucial issue for practical applications in order to minimize the pressure drop
in the reactor, allowing treatment of high flow rates frequently used in environmental
applications. The factors influencing the activity of Au/CeO2 based washcoats are similar
to powder catalysts. However, the method used to introduce the gold in/on the washcoat
(e.g., washcoating powder Au/CeO2 catalyst or introducing gold to already washcoated
CeO2) may influence the gold particle size and thus the activity of the catalyst.
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