
catalysts

Article

Palladium-Catalyzed Dehydrogenative C-2 Alkenylation of
5-Arylimidazoles and Related Azoles with Styrenes

Marco Lessi , Attilio Nania, Melania Pittari, Laura Lodone †, Angela Cuzzola and Fabio Bellina *

����������
�������

Citation: Lessi, M.; Nania, A.;

Pittari, M.; Lodone, L.; Cuzzola, A.;

Bellina, F. Palladium-Catalyzed

Dehydrogenative C-2 Alkenylation of

5-Arylimidazoles and Related Azoles

with Styrenes. Catalysts 2021, 11, 762.

https://doi.org/10.3390/catal

11070762

Academic Editor: Corinne Fruit

Received: 27 May 2021

Accepted: 21 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, 56124 Pisa, Italy; marco.lessi@unipi.it (M.L.);
a.nania@studenti.unipi.it (A.N.); m.pittari@studenti.unipi.it (M.P.); laura.lodone@sgs.com (L.L.);
angela.rosa.cuzzola@unipi.it (A.C.)
* Correspondence: fabio.bellina@unipi.it; Tel.: +39-0502219282
† Present address: SGS Italia S.p.A., Via Colombara 115, 30176 Malcontenta, VE, Italy.

Abstract: The construction of carbon–carbon bonds by direct involvement of two unactivated
carbon–hydrogen bonds, without any directing group, ensures a high atom economy of the en-
tire process. Here, we describe a simple protocol for the Pd(II)/Cu(II)-promoted intermolecular
cross-dehydrogenative coupling (CDC) of 5-arylimidazoles, benzimidazoles, benzoxazole and 4,5-
diphenylimidazole at their C-2 position with functionalized styrenes. This specific CDC, known as
the Fujiwara–Moritani reaction or oxidative Heck coupling, also allowed the C-4 alkenylation of the
imidazole nucleus when both 2 and 5 positions were occupied.

Keywords: C-H activation; imidazoles; Fujiwara–Moritani reaction; dehydrogenative coupling;
oxidative Heck coupling; styrenes; palladium catalysis; copper salts

1. Introduction

Transition metal-catalyzed carbon–carbon bond-forming reactions that occur by the
breaking of carbon–hydrogen bonds are attracting increasing interest in modern synthetic
organic chemistry since this approach does not require any pre-activation of the starting
materials [1–11]. When compared with conventional cross-coupling methodologies that
require the use of organic halides and/or preformed organometallic reagents, this strategy,
known as cross dehydrogenative coupling (CDC), allows the obtainment of a high degree
of atom economy and structural complexity in the target molecule, while ensuring high
chemoselectivity. In addition, unlike traditional cross-couplings, the possibility of avoiding
the use of metals and halogens in stoichiometric quantities reduces the production of
inorganic waste.

In this context, the palladium-catalyzed cross-coupling between (hetero)arenes and
terminal alkenes, known as the Fujiwara–Moritani reaction or even oxidative Heck cou-
pling [12–14],represents one of the most classic CDC reactions for the functionalization of
(hetero)arenes [2–4,6,11,15–17].

Although this reaction was first reported in 1967 [12], and thus historically precedes
the development of the Mizoroki–Heck alkenylation [18,19], problems related to poor
regioselectivity and the need to use oxidants have in the past limited its application in favor
of both the aforementioned Mizoroki–Heck alkenylation and the traditional cross-coupling
procedures, and also the most recent direct alkenylation of aromatic C-H bonds, also cat-
alyzed by transition metals, involving alkenyl halides [20–26]. If problems associated with
the use of oxidants in stoichiometric quantities can be overcome by the latest electrochemi-
cal approaches [27–30], the achievement of high regioselectivity is still often an issue to be
solved. In this regard, however, it is important to note that when the reaction is conducted
using a heteroarene as a partner, the presence of one or more heteroatoms leads to an innate
distinction among the different C-H bonds, thus allowing, with appropriate optimization
of the reaction conditions, the selective involvement of a specific Csp2-H bond.
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Due to our continuous interest in the development of methods for the palladium-
catalyzed regioselective C-H functionalization of azoles and in their application to the
preparation of new organic materials [31–36], we recently decided to evaluate the Fujiwara–
Moritani reaction as an atom economy way to achieve the preparation of styryl-substituted
imidazoles. Our interest in this investigation was also given by the fact that while sev-
eral procedures are reported for the dehydrogenative alkenylation of indoles, pyrroles,
and oxazoles [4,11], to the best of our knowledge only two papers reported the synthe-
sis of styryl-substituted imidazoles by dehydrogenative alkenylation, both using only
unfunctionalized styrene as the coupling partner.

In a study mainly devoted to the dehydrogenative C-2 alkenylation of benzoxazole, in
2014, Ong and coworkers reported the synthesis of 1-methyl-2-styrilimidazole and 1-methyl-
2-styrilbenzimidazole starting from the corresponding 1-methylazoles and 2.5–5 equiv of
styrene, in the presence of 10–20 mol% palladium(II) trifluoroacetate (Pd(TFA)2) as the pre-
catalyst, 15–30 mol% 1,10-phenantroline (1,10-Phen) as the ligand, 1.0–2.0 equiv of silver(I)
trifluoroacetate (AgTFA) as the oxidant, in toluene at 130 ◦C for 16 h (Scheme 1) [37].
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Scheme 1. Cross-dehydrogenative C-2 alkenylation of 1-methylimidazole and 1-methylbenzimidazole
with styrene, according to Ong and co-workers [37].

In 2018, Joo and co-workers described a protocol for the regioselective C-5 alkenyla-
tion of 1-substituted imidazoles (Scheme 2) [38]. The optimized conditions involved the
coupling of 1-methylimidazole with 2.0 equiv of styrene in the presence of 10 mol% palla-
dium(II) acetate (Pd(OAc)2, 2.0 equiv potassium pivalate (KOPiv) in N,N-dimethylacetamide
(DMA) at 120 ◦C for 24 h under an oxygen atmosphere. When 1,2-disubstituted imidazoles
were used as the reaction partners, the authors found it better to perform the coupling
using copper (II) acetate (Cu(OAc)2) as the stoichiometric oxidant instead of oxygen, in
dioxane at 100 ◦C for 15 h.

In this paper, we are pleased to summarize our efforts in finding an effective and
simple protocol for the dehydrogenative alkenylation of imidazole derivatives, which
allowed us to develop a simple procedure for the dehydrogenative alkenylation of 5-aryl-1-
methylimidazoles and some related azoles with functionalized styrenes (Scheme 3). The
optimized reaction conditions involve the use propanoic acid as the solvent at 120 ◦C, in
the presence Pd(OAc)2 as the pre-catalyst and Cu(OAc)2 as the oxidant.
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2. Results and Discussion
2.1. Screening of the Reaction Conditions

At the onset of our study, we decided to test the efficiency of the Ong protocol by
trying a dehydrogenative alkenylation of 5-(4-methoxyphenyl)-1-methyl-1H-imidazole (1a)
with styrene (2a), chosen as model reaction partners. Hence, 1a and 2.5 equiv of 2a were
reacted in the presence of 10 mol% Pd(TFA)2, 15 mol% 1,10-Phen and 2.0 equiv AgTFA
(Scheme 4).

Catalysts 2021, 11, x  3 of 18 
 

 

In this paper, we are pleased to summarize our efforts in finding an effective and 
simple protocol for the dehydrogenative alkenylation of imidazole derivatives, which al-
lowed us to develop a simple procedure for the dehydrogenative alkenylation of 5-aryl-
1-methylimidazoles and some related azoles with functionalized styrenes (Scheme 3). The 
optimized reaction conditions involve the use propanoic acid as the solvent at 120 °C, in 
the presence Pd(OAc)2 as the pre-catalyst and Cu(OAc)2 as the oxidant. 

 
Scheme 3. Our protocol for the cross-dehydrogenative Pd(II)/Cu(II)-mediated alkenylation of imid-
azoles. 

2. Results and Discussion 
2.1. Screening of the Reaction Conditions 

At the onset of our study, we decided to test the efficiency of the Ong protocol by 
trying a dehydrogenative alkenylation of 5-(4-methoxyphenyl)-1-methyl-1H-imidazole 
(1a) with styrene (2a), chosen as model reaction partners. Hence, 1a and 2.5 equiv of 2a 
were reacted in the presence of 10 mol% Pd(TFA)2, 15 mol% 1,10-Phen and 2.0 equiv Ag-
TFA (Scheme 4). 

 
Scheme 4. Dehydrogenative alkenylation of imidazole 1a with styrene (2a) using the Ong protocol 
[37]. 

After stirring the reaction mixture for 16 h at 130 °C in toluene, an unsatisfactory 59% 
GLC conversion of 1a was observed. Moreover, the required alkenyl-substituted imidaz-
ole 3a was formed in a 58:42 GLC ratio with the 2-alkylimidazole 4. These derivatives were 
isolated in 24 and 12% yields, respectively, and their structures confirmed by NMR anal-
yses. The unexpected formation of compound 4 can be explained by admitting that the 
carbopalladation of styrene by the Pd-imidazole complex (resulting from the activation of 
the heteroaromatic C2-H bond, see later) occurred with incomplete regioselectivity [11]. 

An even worse result was observed when 1a and 2a were reacted using the Joo pro-
tocol [38], i.e., in the presence of 10 mol% Pd(OAc)2 and 2.0 equiv of KOAc in DMA under 
an oxygen atmosphere. In fact, the GLC conversion of 1a after 24 h at 120 °C was less than 
15% (result not shown). 

These unsatisfactory results prompted us to search for alternative reaction condi-
tions. Considering that classical Fujiwara–Moritani protocols require the use of simple 
carboxylic acid (such as acetic acid) as the reaction solvent [3,13], and that many of the 
reported procedures for the dehydrogenative alkenylation of azoles have been carried out 
in acidic solvents [4,11], we decided to start a screening of the reaction conditions using a 
carboxylic acid as the solvent and examining the influence of the nature of the solvent, the 
oxidant, and the palladium pre-catalyst on the reaction outcome. 

Due to the fact that no protocols for the dehydrogenative alkenylation of imidazoles 
using acidic solvents were reported, we started our trial performing the reaction between 
imidazole 1a and styrene (2a) under reaction conditions very similar to those described 
by Miura and co-workers in 2010 for the regioselective C-5 dehydrogenative alkenylation 
of 2-substituted oxazoles and thiazoles [39]. Hence, 1a and 2.0 equiv of 2a were stirred at 

Scheme 4. Dehydrogenative alkenylation of imidazole 1a with styrene (2a) using the Ong protocol [37].

After stirring the reaction mixture for 16 h at 130 ◦C in toluene, an unsatisfactory
59% GLC conversion of 1a was observed. Moreover, the required alkenyl-substituted
imidazole 3a was formed in a 58:42 GLC ratio with the 2-alkylimidazole 4. These derivatives
were isolated in 24 and 12% yields, respectively, and their structures confirmed by NMR
analyses. The unexpected formation of compound 4 can be explained by admitting that
the carbopalladation of styrene by the Pd-imidazole complex (resulting from the activation
of the heteroaromatic C2-H bond, see later) occurred with incomplete regioselectivity [11].

An even worse result was observed when 1a and 2a were reacted using the Joo
protocol [38], i.e., in the presence of 10 mol% Pd(OAc)2 and 2.0 equiv of KOAc in DMA
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under an oxygen atmosphere. In fact, the GLC conversion of 1a after 24 h at 120 ◦C was
less than 15% (result not shown).

These unsatisfactory results prompted us to search for alternative reaction conditions.
Considering that classical Fujiwara–Moritani protocols require the use of simple carboxylic
acid (such as acetic acid) as the reaction solvent [3,13], and that many of the reported
procedures for the dehydrogenative alkenylation of azoles have been carried out in acidic
solvents [4,11], we decided to start a screening of the reaction conditions using a carboxylic
acid as the solvent and examining the influence of the nature of the solvent, the oxidant,
and the palladium pre-catalyst on the reaction outcome.

Due to the fact that no protocols for the dehydrogenative alkenylation of imidazoles
using acidic solvents were reported, we started our trial performing the reaction between
imidazole 1a and styrene (2a) under reaction conditions very similar to those described
by Miura and co-workers in 2010 for the regioselective C-5 dehydrogenative alkenylation
of 2-substituted oxazoles and thiazoles [39]. Hence, 1a and 2.0 equiv of 2a were stirred
at 120 ◦C in propionic acid (EtCOOH), in the presence of 5 mol% palladium(II) acetate
(Pd(OAc)2) and 3.0 equiv of silver(I) acetate (AgOAc) (entry 1, Table 1). After 24 h the
expected C-2 alkenylated imidazole 3a was obtained in 33% GLC yield, along with a
higher molecular weight side product, that was preliminarily identified by GLC-MS and
UPLC-MS analyses to be the bis-alkenylated imidazole 5a.
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Interestingly, under acidic conditions the formation of the 2-alkyimidazole 4 was not
observed in the crude reaction mixture, proving that propionic acid as solvent cleanly
increases the regioselectivity of the carbopalladation step of the mechanistic pathway
(see later).

With the aim of evaluating the influence of the carboxylic acid, we then carried out the
Ag(I)-promoted coupling using acetic acid and pivalic acid as the reaction solvent (entries 2
and 3, Table 1). However, both the acidic solvents revealed less effectiveness in promoting
the alkenylation when compared with propionic acid, scoring 24 and 23% GLC yields,
respectively. As recently reported [40], the efficiency of C-H activation reactions carried
out using palladium catalysts with carboxylate ligands strictly depends on the pKa of the
carboxylic acid used as the solvent. It is in fact necessary to find a balance between the
generation of an active catalyst and the N-3 protonation of the imidazole nucleus with
its consequent deactivation. In our case, the pKa of propionic acid (4.87) is intermediate
between that of pivalic acid (5.05) and acetic acid (4.76), which means that acetic acid gave
a higher percentage of unreactive imidazolium salt, while pivalic acid is not enough acid
to generate an active catalyst.

Notably, while the use of silver(I) salts different from AgOAc gave GLC yields ranging
from 32 to 38% (entries 4–6, Table 1), when the alkenylation was performed in the presence
of 3.0 equiv of copper(II) acetate (Cu(OAc)2), a relevant increase in the GLC yield of 3a was
observed, and the C-2 alkenylated product was isolated in a satisfactory 56% yield (entry 7,
Table 1). From the crude reaction mixture, we were also able to isolate the side-product 5a
in a 13% yield.
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Table 1. Screening of the reaction conditions for the palladium-catalyzed dehydrogenative alkenylation of 1-methyl-5
(4-methoxyphenyl)imidazole (1a) with styrene (2a).
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Compound 5a was also isolated in 13% yield. 5 This reaction was carried out using 0.5 mmol of 2a. 6 This reaction was performed at 80 ◦C
(oil bath temperature). 7 This reaction was carried out under a dioxygen atmosphere. 8 This reaction was carried out using PdCl2 (0.025
mmol) as pre-catalyst. 9 This reaction was carried out using Pd(acac)2 (0.025 mmol) as pre-catalyst.

In an attempt to reduce the amount of undesired double alkenylated imidazole 5a, we
lowered the amount of styrene to 1.0 equiv, but a parallel lowering of the 3a yield without
a significant increase in the selectivity was observed (entry 8, Table 1).

Lowering the reaction temperature from 120 ◦C to 80 ◦C led to a complete recovery
of the reactants (entry 9, Table 1), and a similar negative result was observed when the
coupling was performed under a dioxygen atmosphere (entry 10, Table 1).

None of the other typical copper(II) salts tested gave results comparable with that ob-
tained when Cu(OAc)2 was used. CuO gave 3a in 31% GLC yield (entry 11, Table 1), while
no reaction was observed when CuCl2 was employed as the oxidant (entry 12, Table 1). The
use of two typical organic oxidants, i.e., NMO and PhI(OAc)2 gave unsatisfactory results
(entries 13 and 14, Table 1).

As regards the palladium pre-catalyst, replacing Pd(OAc)2 with PdCl2 gave 3a in
a 50% GLC yield (entry 15, Table 1), while a lower 37% GLC yield was obtained when
Pd(acac)2 was employed (entry 16, Table 1).

In order to reduce the amount of propionic acid, we tried also the alkenylation involv-
ing 1a and 2a using 1:1 (v:v) mixtures of propionic acid with, respectively, DMF or NMP
(entries 17–18, Table 1), but the presence of an organic solvent depletes the formation of the
required alkenylimidazole 3a.

2.2. Scope of the Pd-Catalyzed Dehydrogenative Alkenylation of Imidazoles and Related Azoles

Considering the results of the preliminary screening, the scope and limitations of
this regioselective C-2 dehydrogenative alkenylation under the experimental conditions of
entry 7, Table 1, were then evaluated by us. Hence, 5-aryl-1-methylimidazoles 1a–f and
styrenes 2a–g (Figure 1) were reacted in the presence of 5 mol% Pd(OAc)2 and 3.0 equiv of
Cu(OAc)2 in EtCOOH at 120 ◦C (Table 2).
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Table 2. Pd-catalyzed, Cu(II)-promoted synthesis of 2-alkenyl-5-aryl-1-methylimidazoles 3a–r by intermolecular dehydro-
genative alkenylation of imidazoles 1a–f with styrenes 2a–g.
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2 b 4-MeOC6H4 4-MeOC6H4 41 77:23
3 c 4-MeOC6H4 4-CF3C6H4 61 85:15
4 d 4-MeOC6H4 4-MeC6H4 49 79:21
5 e 4-MeOC6H4 6-MeO-naphth-2-yl 51 77:23
6 f 4-MeOC6H4 4-NO2C6H4 44 82:18
7 g 4-CF3C6H4 C6H5 43 78:22
8 h 4-CF3C6H4 4-MeOC6H4 41 75:25
9 i 4-CF3C6H4 4-MeC6H4 44 75:25
10 j 4-CF3C6H4 4-CF3C6H4 50 79:21
11 k 4-ClC6H4 C6H5 45 78:22
12 l 4-ClC6H4 4-MeOC6H4 28 5 nd
13 m 4-ClC6H4 4-CF3C6H4 46 93:7
14 n 4-ClC6H4 4-pyridyl 16 6,7 nd
15 o 4-ClC6H4 4-NO2C6H4 27 6,8 nd
16 p 3-F,4-MeOC6H3 4-MeOC6H4 56 78:22
17 q 4-NO2C6H4 4-MeOC6H4 30 9 nd
18 r 3,4-MethylendioxyC6H3 4-MeOC6H4 52 76:24

1 Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), Pd(OAc)2 (0.025 mmol), Cu(OAc)2 (1.5 mmol), EtCOOH (5.0 mL) for 24 h at 120 ◦C
(oil bath temperature) under an argon atmosphere, unless otherwise reported. 2 Isolated yield. 3 After 24 h the GLC conversion of 1 was
>95% unless otherwise noted. 4 AP% is the area percent of the products in the GLC chromatogram. AP% values are uncorrected for the
differences in GLC response factors. 5 The GLC conversion of 1c was 49%. 6 The coupling was carried out for 72 h. 7 The GLC conversion
of 1c was 45%. 8 The GLC conversion of 1c was 56%. 9 The GLC conversion of 1e was 53%.

As summarized in Table 2, all the 5-arylimidazoles 1a–f gave the required 2-alkenyl
substituted analogues in moderate to good yields. In details, 5-arylimidazoles 1a, 1d,
and 1f, bearing electron-rich aryl rings at their 5-position gave slightly better results, giv-
ing the alkenylated products 3a–f, 3p and 3r in 41–61% isolated yield (entries 1–6, 16, and 18,
Table 2). In contrast, 5-(4-trifluoromethylphenyl) imidazole 1b, 5-(4-chlorophenyl)imidazole
1c, and 5-(4-nitrophenyl)imidazole 1e gave lower yields and sometimes incomplete GLC
conversions when reacted with styrenes 2a–d (entries 7–13, and 17, Table 2), confirming
that the efficiency of this dehydrogenative coupling is related to the electronic nature of the
C-5 aromatic substituent.

That electron-poor substituents negatively influence the coupling is evidenced also
when styrenes 2f and 2g were employed as reaction partners, and it seems synergic with
the effect exerted by electron-withdrawing groups at C-5 on the imidazole counterpart.
Actually, while an acceptable 44% isolate yield was observed when imidazole 1a was
reacted with 4-nitrostyrene 2g (entry 6, Table 2), a more significant reduction in the chemical
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yield was recorded when the 4-chlorophenyl substituted imidazole 1c reacted with the
electron-poor styrenes 2f and 2g (entries 14 and 15, Table 2).

Regarding the results summarized in Table 2, it is also important to note that the
efficiency of the coupling strongly depends also on the relative stability of the substituted
styrenes 2 in the acid medium. It is in fact well known that electron-rich styrenes, such as
4-methoxystyrene 2b, are highly susceptible to polymerization in an acidic environment,
while electron-poor analogues such as 4-nitrostyrene 2g are almost inert under the same
conditions [41]. For this reason, it is not possible to make a clear correlation between the
nature of the coupling partners 1 and 2 and the observed isolated yields of compounds 3.

We were pleased to find that the reaction conditions summarized in Table 1, entry 7, are
also well suited for the C-2 dehydrogenative alkenylation of 1-methyl-1H-benzimidazole (6)
and 1H-benzimidazole (7). As summarized in Scheme 5, 1-methyl-2-styrylbenzimidazole
8 and 2-styrylbenzimidazole 9 were isolated in a satisfactory 87 and 64% yield, respec-
tively. In contrast, the reaction involving benzoxazole 10 with styrene gave the required
2-styrylbenzoxazole 11 in a lower isolated yield (30%) (Scheme 5), while no product was
observed when benzothiazole was submitted to the dehydrogenative alkenylation (result
not shown).
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Scheme 5. Pd-catalyzed, Cu(II)-promoted dehydrogenative alkenylation of azoles 6, 7, 10, 12, and 14
with styrene (2a).

A positive result was instead obtained in the C-2 alkenylation of 4,5-diphenyl-1-
methyl-1H-imidazole (12) with styrene (2a). In fact, the expected 2-styryl-substituted
derivative 13 was isolated in a satisfactory 55% yield (Scheme 5). However, when the
coupling was carried out using the analogue NH-free imidazole 14 the expected 4,5-
diphenyl-2-styrylimidazole 15 was recovered in 36% isolated yield (Scheme 5).

Considering also that the C4-H bond seems to be reactive when the other two positions
on the imidazole ring are occupied due to the formation of side-products 5, we also tried to
force the C-4 alkenylation by using 5-(4-methoxyphenyl)-1,2-dimethyl-1H-imidazole (16)
as a typical 2,5-disubstituted imidazole. Fortunately, when the reaction was carried out
using 2-methyl substituted imidazole 16 and 5.0 equiv of 2a, the expected C4-alkenylated
imidazole 17 was recovered in a 50% isolated yield (Scheme 6).
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Scheme 6. Pd-catalyzed, Cu(II)-promoted dehydrogenative alkenylation of 5-(4-methoxyphenyl)-1,2-
dimethyl-1H-imidazole (16) with styrene (2a).

With the intention of verifying the regioselectivity of our new Pd/Cu-mediated dehy-
drogenative alkenylation protocol, we set up a model reaction involving 1-methylimidazole
18 and styrene (2a) the experimental conditions of entry 7, Table 1. Hence, 18 and 2.0 equiv
of 2a were reacted in the presence of 5 mol% Pd(OAc)2 and 3.0 equiv of Cu(OAc)2 in
EtCOOH (Method A, Scheme 7). To our delight, after stirring at 120 ◦C for 24 h, the GLC
conversion of 18 was 83%, and we were able to isolate (E)-1-methyl-2-styryl-1H-imidazole
(19) in 45% yield confirming the expected C-2 selectivity.
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Scheme 7. Pd-catalyzed dehydrogenative alkenylation of 1-methyl-1H-imidazole (18) with styrene (2a) according to our
new protocol (Method A), or to Ong procedure (Method B) [37].

In contrast, when the same coupling was carried out using the Ong protocol [37], i.e.,
reacting 16 and 2.5 equiv of 2a in a closed vessel for 16 h at 130 ◦C in toluene in the presence
of 10 mol% Pd(TFA)2, 15 mol% 1,10-Phen and 2.0 equiv AgTFA, the GLC conversion of 16
was lower (70%), and the required imidazole 19 was observed in only 33% isolated yield
(vs. a reported 67% yield [37]) (Method B, Scheme 7). It is worth mentioning that also
in this case GLC-MS analysis of the crude reaction mixture evidences the presence of the
side-product 22, a structural analogue to imidazole 4 already observed when the same
reaction was performed with 1-methylbenzimidazole 1a (Scheme 4), in a 77:23 GLC ratio
with 19.

As already noted for Pd/Cu-mediated direct arylation reactions of 1,3-azoles with aryl
halides [44–46], it is thought that an initial N-3 protonation or complexation with copper
enhances the acidity of the C2-H bond, allowing a fast and regioselective palladation to give
the imidazole intermediate A. The subsequent regioselective carbopalladation yields the
intermediate B, which decomposes through β-elimination to generate the desired product
3 and Pd(0). Finally, the reoxidation of Pd(0) to Pd(II) by Cu(II) closed the catalytic cycle.

Based on previous reports [2,11,13,42,43] and according to the results described here,
a plausible reaction mechanism is summarized in Figure 2.
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3. Materials and Methods

Melting points were recorded on a hot-stage microscope (Reichert Thermovar). Pre-
coated silica gel PET foils (Sigma-Aldrich, St. Louis, MO, USA) were used for TLC analyses.
GLC analyses were performed on a Dani GC 1000 instrument equipped with a PTV injector
and recorded with a Dani DDS 1000 data station. Three types of capillary columns were
used: an Agilent J&W HP-5 ms column (30 m × 0.25 mm i.d. × 0.25 µm), an Agilent
J&W DB-5 column (30 m × 0.25 mm i.d. × 1 µm) and an Alltech AT-35 FSOT column
(30 m × 0.25 mm i.d. × 0.25 µm). EI-MS spectra were recorded at 70 eV by GLC-MS,
performed on an Agilent 6890N gas-chromatograph interfaced with an Agilent 5973N mass
detector. The ESI spectra were acquired on an Acquity QDa Water spectrometer (Tempera-
ture Probe: 600 ◦C; ESI capillary voltage 1.5 V; Cone voltage 15 V; mass range 200–1000)
coupled with an Acquity HUPLC Water (Phase A 95/5 H2O/ACN + 0.1% Formic Acid,
Phase B 5/95 H2O/ACN + 0.1% Formic Acid; Column Acquity UPLC 2.1 × 100 mm, BEH
C18, 1.7 µm; Flow 0.6 mL/min). Elementar analyses were acquired with an Elementar
Vario Micro Cube in CHNS mode. 1H NMR spectra were recorded on a Varian Gem-
ini 200 or on a Bruker 400 MHz spectrometer using TMS as an internal standard. The
following notation was used in order to report NMR spectra: s = singlet, bs = broad
singlet, d = doublet, dd = double doublet, t = triplet, dt = double triplet, q = quadruplet.
The 13C NMR spectra were recorded at 50 or 100 MHz, using Varian Gemini or Bruker
instrument respectively, and the spectra were referred to as the signal of the solvent.
Copies of 1H and 13C NMR spectra of all the new compounds are provided as Supple-
mentary Materials. Unless otherwise stated all the reactions were performed under a
positive atmosphere of argon by standard syringe, cannula and septa techniques. All
the liquid styrenes 2a–d,f were purified by distillation at reduced pressure over CaH2.
Propionic acid was distilled at atmospheric pressure. 5-(4-Methoxyphenyl)-1-methyl-1H-
imidazole (1a), 1-methyl-5-(4-(trifluoromethyl)phenyl)-1H-imidazole (1b) 1-methyl-5-(4-
chlorophenyl)-1H-imidazole (1c), 5-(3-fluoro-4-methoxyphenyl)-1-methyl-1H-imidazole
(1d), 5-(4-nitrophenyl)-1-methyl-1H-imidazole (1e), 5-(benzo[d][1,3]dioxol-5-yl)-1-methyl-
1H-imidazole (1f) were synthesized according to literature procedure previously devel-
oped by us [47]. The following compounds were prepared according to reported proce-
dures: 1-Methyl-4,5-diphenyl-1H-imidazole (12) (yield: 80%) [48], 5-(4-methoxyphenyl)-1,2-
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dimethyl-1H-imidazole (16) (yield: 66%) [49], 1-nitro-4-vinylbenzene (2g) (yield: 61%) [50].
All the other commercially available reagents and solvents were used as received.

3.1. (E)-5-(4-Methoxyphenyl)-1-methyl-2-styryl-1H-imidazole (3a) and
5-(4-methoxyphenyl)-1-methyl-2-(1-phenylethyl)-1H-imidazole (4)

As summarized in Scheme 4, a mixture of 5-(4-methoxyphenyl)-1-methyl-1H-imidazole
(1a) (94.0 mg, 0.5 mmol), styrene (2a) (0.14 mL, 130 mg, 1.25 mmol), Pd(TFA)2, (16.6 mg,
0.05 mmol), 1,10-phenantroline (13.5 mg, 0.075 mmol), and AgTFA (27.3 mg 1.0 mmol)
in toluene (2 mL) was stirred in a Paar Microwave 50® reactor for 16 h at 130 ◦C. After
cooling to room temperature, the mixture was diluted with AcOEt (20 mL) then filtered
on celite and the filter was washed with 15 mL AcOEt and 20 mL CH2Cl2. The crude
reaction mixture was concentrated under reduced pressure and the residue was purified
by flash chromatography on silica gel with a mixture of toluene and AcOEt (50:50) as
eluent. Concentration of the first eluted chromatographic fractions allowed the isolation
of compound 3a (34.8 mg, 24 %) light-pink solid: m.p. 150–152 ◦C. 1H NMR (400 MHz,
CDCl3): δ 7.63 (d, 1H, J = 15.85 Hz), 7.54 (d, 2H, J = 7.54), 7.40–7.22 (m, 5H), 7.09 (s, 1H),
7.00–6.92 (m, 3H), 3.84 (s, 3H), 3.64 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.39, 146.26,
136.69, 134.34, 132.12, 130.06 (2C), 128.68 (2C), 128.07, 127.49, 126.66 (2C), 122.23, 114.15(2C),
113.86, 55.24, 30.95. EI-MS m/z (%): 290 (31), 289 (100), 274 (6), 245 (10), 144 (5). C19H18N2O
(290.37): calcd. C, 78.59; H, 6.25; N, 9.65; found C 78.64, H 6.26, N 9.67.

Concentration of the last eluted chromatographic fractions with AcOEt allowed the
isolation of compound 4 (17.5 mg, 12% yield) as a light orange oil. 1H NMR (400 MHz,
CDCl3): δ 7.35–7.27 (m, 3H), 7.26–7.18 (m, 4H), 7.02 (s, 1H), 6.95–6.90 (m, 2H), 4.16 (q, 1H,
J = 7 Hz), 3.82 (s, 3H), 3.26 (s, 3H), 1.77 (d, 3H, J = 7Hz). 13C NMR (100 MHz, CDCl3):
δ 159.30, 150.65, 143.87, 133.72, 130.24 (2C), 128.80 (2C), 127.30 (2C), 126.59, 125.50, 122.83,
114.07 (2C), 55.33, 38.91, 30.91, 21.86. EI-MS m/z (%): 292 (100), 277 (90), 262 (10), 233 (20),
215 (12), 201 (40). C19H20N2O (292.38): calcd. C, 78.05; H, 6.90; N, 9.58; found C 77.98,
H 6.89, N 9.56.

Compound 3a was also obtained in a 56% isolated yield from the Pd(OAc)2-catalyzed
reactions of 1a and 2a carried out using Ag2O, AgTFA, or Cu(OAc)2 as oxidant (en-
try 7, Table 1), and in 42% isolated yield when the alkenylation was performed using
PdCl2/Cu(OAc)2 as pre-catalyst/oxidant (entry 15, Table 1).

3.2. Procedure for the Screening of the Reaction Conditions for the Pd-Catalyzed Dehydrogenative
C2-Alkenylation of 5-(4-Methoxyphenyl)-1-Methyl-1H-Imidazole (1a) with Styrene (2a) Using
Carboxylic Acids as Reaction Solvents

A mixture of 5-(4-methoxyphenyl)-1-methyl-1H-imidazole (1a) (94 mg, 0.5 mmol),
styrene (2a) (0.12 mL, 104 mg, 1.0 mmol), palladium pre-catalyst (0.025 mmol), oxidant
(1.5 mmol), in the selected solvent (5 mL) was stirred for 24 h at 120 ◦C. After cooling
to room temperature, when an Ag(I) oxidant was used the crude reaction mixture was
diluted with AcOEt, and PPh3 was added as internal standard. When a Cu(II) salt was
used as oxidant, the crude reaction mixture was diluted with AcOEt and poured into a
saturated aqueous NH4Cl solution. The resulting mixture was basified with a few drops of
aqueous NH4OH, stirred in the open air for 0.5 h, and then extracted with AcOEt and with
CH2Cl2. The organic extract was washed with water, dried, filtered, and PPh3 was added
as internal standard.

All the resulting mixtures were analyzed by GLC, GC–MS, and UPLC-MS. Table 1
summarizes the results of this screening.

(E)-5-(4-methoxyphenyl)-1-methyl-2-styryl-1H-imidazole (3a) and
5-(4-methoxyphenyl)-1-methyl-2,4-di((E)-styryl)-1H-imidazole (5a)

The crude reaction mixture (entry 7, Table 1) was concentrated at reduced pressure and
the residue was purified by flash chromatography on silica gel with a mixture of toluene and
AcOEt (90:10) as eluent. Concentration of the first eluted chromatographic fractions allowed
the isolation of compound 5a (25.5 mg, 13%) as a yellow solid: m.p 57–58 ◦C. 1H NMR (400
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MHz, CDCl3): δ 7.75 (d, J = 15.8 Hz, 1H), 7.59–7.57 (m, 2H), 7.47–7.43 (m, 2H), 7.39–7.36
(m, 2H), 7.31–7.24 (m, 5H), 7.18–7.15 (m, 2H), 7.04–7.03 (m, 2H), 6.98 (d, J = 15.8 Hz, 1H),
6.89 (d, J = 15.8 Hz, 1H), 3.90 (s, 3H), 3.55 (s, 3H). 13CNMR (100 MHz, CDCl3): δ 159.8,
145.9, 138.2, 137.2, 136.8, 133.3, 132.5, 131.9 (2C), 128.8 (2C), 128.5 (2C), 128.3, 127.2, 126.9
(2C), 126.8, 126.3 (2C), 121.6, 119.6, 114.4 (2C), 113.7, 55.4, 31.1. EI-MS m/z (%): 392 (90), 391
(100), 207 (6), 157 (10), 144 (13) 115 (6). C27H24N2O (262.35): calcd. C, 82.62; H, 6.16; N, 7.14;
found C 82.57, H 6.12, N 7.16.

The concentration of the last fractions, eluted with a mixture of toluene and AcOEt
(50:50) allowed the isolation of compound 3a (81.1 mg, 56%) as a light-pink solid, m.p.
151–152 ◦C. The physical and spectral properties of this compound are in agreement with
those reported in Section 3.1.

3.3. General Procedure for the Pd(II)/Cu(II)-Promoted Dehydrogenative Alkenylation of Azoles
with Styrenes

To a suspension of the appropriate azole 1a–f, 6, 7, 10, 12 or 14 (0.5 mmol), Pd(OAc)2
(5.6 mg, 0.025 mmol), Cu(OAc)2 (272.5 mg, 1.5 mmol) in EtCOOH (5 mL), the appropriate
styrene 2a–g (1.0 mmol) was added under vigorous stirring. The resulting mixture was
heated for 24 h at 120 ◦C. After cooling to room temperature, the crude reaction mixture
was diluted with AcOEt (50 mL) and sequentially washed with a 2:1 (v:v) solution of
saturated aqueous NH4Cl and aqueous NH4OH (2 × 20 mL), H2O (1 × 20 mL), and brine
(1 × 20 mL). The aqueous phase was extracted with CH2Cl2 (2 × 20 mL). The combined
organic extracts were washed with water, dried, and concentrated under reduced pressure.
The residue was purified by flash chromatography on silica gel. This procedure was used
to prepare compounds 3b–r (Table 2), 8, 9, 11, 13, 15 (Scheme 5) and 17 (Scheme 6).

3.3.1. (E)-5-(4-Methoxyphenyl)-2-(4-methoxystyryl)-1-methyl-1H-imidazole (3b)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with
2b (entry 2, Table 2), was purified by flash chromatography on silica gel with a mixture of
CH2Cl2 and MeOH (97:3) as eluent to give 3b (65.7 mg, 41%) as a light-orange solid: m.p.
= 173–175 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.58 (d, 1H, J = 15.9 Hz), 7.48 (d, 2H, J = 8.5
Hz), 7.30 (d, 2H, J = 8.7), 7.07 (s, 1H), 6.97 (d, 2H, J = 8.6 Hz), 6.90 (d, 2H, J = 8.5 Hz), 6.82
(d, 1H, J = 15.9 Hz), 3.84 (s, 3H), 3.82 (s, 3H), 3.62 (s, 3H). 13C NMR (100 MHz, CDCl3):
δ 159.87, 159.54, 146.81, 134.21, 132.20, 130.27 (2C), 129.69, 128.17 (2C), 127.45, 122.58, 114.31
(4C), 111.88, 55.46, 55.43, 31.14. EI-MS m/z (%): 320 (39), 319 (100), 304 (7), 276 (5),160 (5).
ESI-MS (+): m/z (%) = 321 (100) [M+H]+. C20H20N2O2 (320.39): calcd. C, 74.98; H, 6.29; N,
8.74; found C, 75.05, H, 6.31, N, 8.76.

3.3.2. (E)-5-(4-Methoxyphenyl)-1-methyl-2-(4-(trifluoromethyl)styryl)-1H-imidazole (3c)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with
2c (entry 3, Table 2), was purified by flash chromatography on silica gel with a mixture
of toluene and AcOEt (65/35) as eluent to give 3c (109.2 mg, 61% yield) as yellow solid:
m.p. = 174–175 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.60–7.47 (m, 5H), 7.26–7.23 (m, 2H),
7.05 (s, 1H), 6.97 (d, 1H, J = 15.09 Hz), 6.94–6.90 (m, 2H), 3.79 (s, 3H), 3.60 (s, 3H). 13C NMR
(100 MHz, CDCl3): δ 159.77, 145.86, 140.41, 135.05, 130.53, 130.38(2C), 129.80 (q, J = 32.4 Hz),
128.18, 126.92 (2C), 125.82 (q, 2C, J = 3.8 Hz), 124.29 (q, J = 271.9 Hz), 122.26, 116.29, 114.42
(2C), 55.51, 31.23. EI-MS m/z (%): 358 (30), 357 (100), 342 (5), 313 (10). ESI-MS (+):
m/z (%) = 359 (100) [M+H]+. C20H17F3N2O (358.36): calcd. C, 67.03; H, 4.78; N, 7.82; found
C, 66.97, H, 4.79, N, 7.80.

3.3.3. (E)-5-(4-Methoxyphenyl)-1-methyl-2-(4-methylstyryl)-1H-imidazole (3d)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with
2d (entry 4, Table 2), was purified by flash chromatography on silica gel with a mixture of
toluene and AcOEt (20/80) as eluent to give 3d (74.5 mg, 49% yield) as dark orange solid:
m.p. = 124–129 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.60 (d, 1H, J = 15.9 Hz), 7.46–7.42 (m, 2H),
7.32–7.26 (m, 2H), 7.18–7.14 (m, 2H), 7.09 (s, 1H), 6.99–6.95 (m, 2H), 6.89 (d, 1H, J = 15.9 Hz),
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3.84 (s, 3H), 3.62 (s, 3H), 2.35 (s, 3H).13C NMR (100 MHz, CDCl3): δ 159.56, 146.67, 138.28,
134.35, 134.14, 132.46, 130.29 (2C), 129.56 (2C), 127.63, 126.79 (2C), 122.56, 114.32 (2C), 113.05,
55.45, 31.15, 21.41. EI-MS m/z (%): 304 (30), 303 (100), 288 (5), 259 (10), 144 (5). ESI-MS (+):
m/z (%) = 305 (100) [M+H]+. C20H20N2O (304.39): calcd. C, 78.92; H, 6.62; N, 9.20; found C,
79.02; H, 6.63; N, 9.22.

3.3.4. (E)-2-(2-(6-Methoxynaphthalen-2-yl)vinyl)-5-(4-methoxyphenyl)-1-methyl-1H-
imidazole (3e)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with
2e (entry 5, Table 2), was purified by flash chromatography on silica gel with a mixture
of toluene and AcOEt (60/40) as eluent to give 3e (94.5 mg, 51% yield) as brown solid:
m.p. = 184–186 ◦C.1H NMR (200 MHz, CDCl3): δ 7.83–7.70 (m, 5H), 7.33–6.96 (m, 8H),
3.90–3.83 (m, 6H), 3.66 (s, 3H).13C NMR (50 MHz, CDCl3): δ 159.36, 157.89, 134.43, 133.11,
131.82, 131.73, 130.08 (2C), 129.62, 128.85, 127.24, 127.10, 126.62, 123.80 (2C), 121.93, 119.03
(2C), 114.11, 113.83, 112.37, 105.80 (2C), 55.28 (2C), 31.17. EI-MS m/z (%): 370 (52), 369 (100),
326(8), 281 (7), 207 (60). ESI-MS (+): m/z (%) = 371 (100) [M+H]+ C24H22N2O2 (370.45):
calcd. C, 77.81; H, 5.99; N, 7.56; found: C, 77.96; H, 6.00; N, 7.55.

3.3.5. (E)-5-(4-Methoxyphenyl)-1-methyl-2-(4-nitrostyryl)-1H-imidazole (3f)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1a with
2g (entry 6, Table 2), was purified by flash chromatography on silica gel with a mixture of
toluene and AcOEt (60/40) as eluent to give 3f (73.5 mg, 44% yield) as red solid: m.p. =
195–197 ◦C. 1H NMR (200 MHz, CDCl3): δ 8.24–8.20 (m, 2H,), 7.71–7.62 (m, 3H), 7.35–7.26
(m, 2H), 7.16 (s, 1H), 7.08–6.95 (m, 3H), 3.87 (s, 3H), 3.71 (s, 3H). 13C NMR (50 MHz, CDCl3):
δ 159.66, 146.88, 145.33, 143.26, 135.39, 130.23 (2C), 129.16 128.43, 127.04 (2C), 124.20 (2C),
121.83, 117.86, 114.31 (2C), 55.46, 31.25. EI-MS m/z (%): 335 (28), 334 (100), 304(14), 288 (38),
207 (13). ESI-MS (+): m/z (%) = 336 (100) [M+H]+. C19H17N3O3 (335.36): calcd. C, 68.05; H,
5.11; N, 12.53; found C, 68.18; H, 5.12; N, 12.52.

3.3.6. (E)-1-Methyl-2-styryl-5-(4-(trifluoromethyl)phenyl)-1H-imidazole (3g)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b with
2a (entry 7, Table 2), was purified by flash chromatography on silica gel with a mixture
of toluene and AcOEt (80/20) as eluent to give 3g (70.6 mg, 43% yield) as yellow solid:
m.p. = 163–165 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.73–7.65 (m, 3H), 7.58–7.47 (m, 4H),
7.40–7.35 (m, 2H), 7.32–7.28 (m, 1H), 7.22 (s, 1H), 6.97 (d, 1H, J = 15.9 Hz), 3.71 (s, 3H).13C
NMR (100 MHz, CDCl3): δ 147.91, 133.74, 133.70, 133.68, 133.26, 129.85 (q, 1C, J = 32.6 Hz),
129.26, 128.92 (2C), 128.72 (2C), 128.59, 126.99 (2C), 125.91 (q, 2C, J = 3,75 Hz), 124.14 (q, 1C,
J = 272.2 Hz), 113.49, 31.51. EI-MS m/z (%): 328 (30), 327 (100), 312 (10), 128 (5). ESI-MS (+):
m/z (%) = 329 (100) [M+H]+.C19H15F3N2 (328.34): calcd. C, 69.50; H, 4.61; N, 8.53; found C,
69.60; H, 4.62; N, 8.52.

3.3.7. (E)-2-(4-Methoxystyryl)-1-methyl-5-(4-(trifluoro-methyl)phenyl)-1H-imidazole (3h)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b with
2b (entry 8, Table 2), was purified by flash chromatography on silica gel with a mixture
of toluene and AcOEt (60/40) as eluent to give 3h (73.4 mg, 41% yield) as yellow solid:
m.p. = 193–195 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.71–7.67 (m, 2H), 7.63 (d, 1H, J = 15.8
Hz), 7.54–7.46 (m, 4H), 7.21 (s, 1H), 6.93–6.89 (m, 2H), 6.83 (d, 1H, J = 15.9 Hz), 3.83(s, 3H),
3.69 (s, 3H).13C NMR (100 MHz, CDCl3): δ 160.13, 148.34, 133.81, 133.43, 133.00, 129.75 (q,
1C, J = 32.9 Hz), 129.40, 129.12, 128.70 (2C), 128.41 (2C), 125.87 (q, 2C, J = 3.7 Hz), 124.16(q,
1C, J = 271.8 Hz), 114.39 (2C), 111.36, 55.45, 31.49. EI-MS m/z (%): 358 (30), 357 (100), 342
(8), 314 (15), 299 (8). ESI-MS (+): m/z (%) = 359 (100) [M+H]+. C20H17F3N2O (358.36): calcd.
C, 67.03; H, 4.78; N, 7.82; found C, 67.16; H, 4.79; N, 7.81.
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3.3.8. (E)-1-Methyl-2-(4-methylstyryl)-5-(4-(trifluoro-methyl)phenyl)-1H-imidazole (3i)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b
with 2d (entry 9, Table 2), was purified by flash chromatography on silica gel with a
mixture of toluene and AcOEt (40/60) as eluent to give 3i (75.3 mg, 44% yield) as yellow
solid: m.p. = 200–202 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.71–7.67 (m, 2H), 7.65 (d, 1H,
J = 15.9 Hz), 7.52–7.48 (m, 2H), 7.47–7.43 (m, 2H), 7.21 (s, 1H), 7.20–7.16 (m, 2H), 6.91 (d, 1H,
J = 15.8 Hz), 3.69 (s, 3H), 2.36 (s, 3H).13C NMR (100 MHz, CDCl3): δ 148.13, 138.70, 133.83,
133.75, 133.12, 129.75 (q, 1C, J = 32.7 Hz), 129.64 (2C), 129.19 (2C), 128.67 (2C), 126.94 (2C),
125.87(q, 2C, J = 3,70 Hz), 124.23 (q, 1C, J = 272.0 Hz), 112.50, 31.50, 21.44. EI-MS m/z (%):
342 (30), 341 (100), 326 (5), 170 (5). ESI-MS (+): m/z (%) = 343 (100) [M+H]+. C20H17F3N2
(342.37): calcd. C, 70.16; H, 5.01; N, 8.18; found C, 70.20; H, 5.02; N, 8.17.

3.3.9. (E)-1-methyl-5-(4-Trifluoromethyl)phenyl)-2-(4-(trifluoromethyl)-styryl)-1H-
imidazole (3j)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1b with
2c (entry 10, Table 2), was purified by flash chromatography on silica gel with a mixture
of petroleum ether and AcOEt (70/30) as eluent to give 3j (82.7 mg, 50% yield) as yellow
solid: m.p. = 146–148 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.75–7.61 (m, 7H), 7.55–7.51 (m,
2H), 7.25 (s, 1H), 7.06 (d, 1H, J = 15.8 Hz), 3.75. (s, 3H). 13C NMR (100 MHz, CDCl3): δ
147.24, 140.07, 133.75, 133.48, 131.87, 130.12 (q, 2C, J = 32.7 Hz), 129.57, 128.86 (2C), 127.07
(2C), 125.99 (q, 2C, J = 3.8 Hz), 125.89 (q, 2C, J = 3.8 Hz), 124.24 (q, 1C, J = 271.8 Hz), 124.14
(q, 1C, J = 271.8 Hz), 115.77, 31.55. EI-MS m/z (%): 396 (30), 395 (100), 380 (10), 378 (10), 327
(5), 196 (5). ESI-MS (+): m/z (%) = 397 (100) [M+H]+. C20H14F6N2 (396.34): calcd. C, 60.61;
H, 3.56; N, 7.07; found C, 60.55; H, 3.57; N, 7.06.

3.3.10. (E)-5-(4-Chlorophenyl)-1-methyl-2-styryl-1H-imidazole (3k)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with
2a (entry 11, Table 2), was purified by flash chromatography on silica gel with a mixture
of CH2Cl2 and MeOH (97/3) as eluent to give 3k (70.5 mg, 45% yield) as yellow solid:
m.p. = 163–165 ◦C. 1H NMR (400 MHz, CDCl3) δ: 7.65 (d, 1H, J = 15.9 Hz), 7.56–7.52
(m, 2H), 7.45–7.27 (m, 7H), 7.15 (s, 1H), 6.95 (d, 1H, J = 15.9 Hz), 3.65 (s, 3H). 13C NMR
(100 MHz, CDCl3): δ 147.28, 136.70, 134.07, 133.48, 133.17, 129.99 (2C), 129.14 (2C), 128.88
(2C), 128.51, 128.44, 126.92 (2C), 113.67, 31.31. EI-MS m/z (%): 296 (10), 295 (30), 294 (28),
293 (100), 278 (10), 128 (10). ESI-MS (+): m/z (%) = 295 (100), 297 (39) [M+H]+. C18H15ClN2
(294.78): calcd. C, 73.34; H, 5.13; N, 9.50; found C, 73.15; H, 5.14; N, 9.49.

3.3.11. (E)-5-(4-Chlorophenyl)-2-(4-methoxystyryl)-1-methyl-1H-imidazole (3l)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c
with 2b (entry 12, Table 2), was purified by flash chromatography on silica gel with a
mixture of toluene and AcOEt (70/30) to give 3l (45.4 mg, 28% yield) as yellow solid:
m.p. = 169–171 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.59 (d, 1H, J = 15.8 Hz), 7.50–7.46
(m, 2H), 7.42–7.38 (m, 2H), 7.31–7.27 (m, 2H), 7.12 (s, 1H), 6.91–687 (m, 2H), 6.80 (d, 1H,
J = 15.9 Hz), 3.81(s, 3H), 3.62 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.96, 147.62, 133.88,
133.17, 132.83, 129.88 (2C), 129.44, 129.06 (2C), 128.62, 128.25, 128.23, 114.30 (2C), 111.51,
55.39, 31.25. EI-MS m/z (%): 326 (10), 325 (34), 324 (32), 323 (100), 308 (7), 280 (10). ESI-MS
(+): m/z (%) = 325 (100), 327 (36) [M+H]+. C19H17ClN2O (324.81): calcd. C, 70.26; H, 5.28;
N, 8.62; found C, 70.41; H, 5.27; N, 8.63.

3.3.12. (E)-5-(4-Chlorophenyl)-1-methyl-2-(4-(trifluoromethyl)styryl)-1H-imidazole (3m)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with
2c (entry 13, Table 2), was purified by flash chromatography on silica gel with a mix-
ture of CH2Cl2 and MeOH (99/1) to give 3m (83.3 mg, 46% yield) as an orange solid:
m.p. = 127–129 ◦C. 1H NMR (400 MHz, CDCl3): δ 7.70–7.58 (m, 5H), 7.47–7.43 (m, 2H),
7.35–7.31 (m, 2H), 7.18 (s, 1H), 7.05 (d, 1H, J = 15.9 Hz), 3.70 (s, 3H). 13C NMR (100 MHz,
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CDCl3): δ 146.68, 140.22, 134.41, 134.04, 131.37, 130.13 (2C), 130.05 (q, 1C, J = 32.7 Hz),
129.27 (2C), 128.93, 128.39, 127.03 (2C), 125.90 (q, 2C, J = 3.8 Hz), 124,.92 (q, 1C, J = 271.9 Hz),
115.98, 31.40. EI-MS m/z (%): 364 (10), 363 (35), 362 (30), 361 (100), 346 (10), 196 (5). ESI-MS
(+): m/z (%) = 363 (100), 365 (38) [M+H]+. C19H14ClF3N2 (362.78): calcd. C, 62.91; H, 3.89;
N, 7.72; found C, 62.89; H, 3.90; N, 7.71.

3.3.13. (E)-4-(2-(5-(4-Chlorophenyl)-1-methyl-1H-imidazol-2-yl)vinyl)-pyridine (3n)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with
2f (entry 14, Table 2), was purified by flash chromatography on silica gel with a mixture of
CH2Cl2 and MeOH (97/3) to give 3n (23.8 mg, 16% yield) as pale brown wax. 1H NMR
(200 MHz, CDCl3): δ 7.60–6.98 (m, 9H), 3.71 (s, 3H). 13C NMR (50 MHz, CDCl3): δ 149.99,
143.7, 134.22 (2C), 131.32, 129.86 (2C), 129.75 (2C), 129.18, 129.01 (2C), 128.80 (2C), 127.87,
117.58, 31.29. EI-MS m/z (%): 297 (9), 296 (36), 295 (27), 294 (100), 279 (6), 242 (4). ESI-MS
(+): m/z (%) = 296 (100), 298 (35) [M+H]+. C17H14ClN3 (295.77): calcd. C, 69.04; H, 4.77; N,
14.21; found C, 69.01; H, 4.78; N, 14.20.

3.3.14. (E)-5-(4-Chlorophenyl)-1-methyl-2-(4-nitrostyryl)-1H-imidazole (3o)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1c with
2g (entry 15, Table 2), was purified by flash chromatography on silica gel with a mix-
ture of toluene and AcOEt (70/30) to give 3o (45.8 mg, 27% yield) as pale red solid:
m.p. = 187–189 ◦C. 1H NMR (200 MHz, CDCl3): δ 8.24–8.20 (m, 2H), 7.74–7.60 (m, 3H),
7.49–7.06 (m, 6H), 3.73 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 147.01, 146.07, 142.99, 134.34
(2C), 131.64, 129.95 (2C), 129.12 (2C), 128.18, 127.94, 127.13 (2C), 124.19 (2C), 117.50, 31.36.
EI-MS m/z (%): 341 (10), 340 (37), 339 (35), 338 (100), 308 (15), 292 (40). ESI-MS (+): m/z
(%) = 340 (100), 342 (37) [M+H]+. C18H14ClN3O2 (339.78): calcd. C, 63.63; H, 4.15; N, 12.37;
found C, 63.65; H, 4.14; N, 12.38.

3.3.15. (E)-5-(3-Fluoro-4-methoxyphenyl)-2-(4-methoxystyryl)-1-methyl-1H-imidazole (3p)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1d with
2b (entry 16, Table 2), was purified by flash chromatography on silica gel with a mixture
of CH2Cl2 and MeOH (97/3) to give 3p (94.7 mg, 56% yield) as beige solid: m.p. = 70 ◦C.
1H NMR (200 MHz, CDCl3): δ 7.67 (d, 1H, J = 15.6 Hz), 7.53–7.49 (m, 2H), 7.27 (s, 1H),
7.14–6.76 (m, 7H), 3.94(s, 3H), 3.84(s, 3H), 3.65 (s, 3H). 13C NMR (50 MHz, CDCl3): δ 160.11,
150.73 (d, 1C, J = 393.0 Hz), 147.90 (d, 1C, J = 10.6 Hz), 133.82, 133.11, 129.29, 128.43 (2C),
126.82, 125.09 (d, 1C, J = 3.3 Hz), 122.63 (d, 1C, J = 7.2 Hz), 116.69 (d, 1C, J = 19.03 Hz),
114.48 (2C), 113.77 (d, 1C, J = 2.42 Hz), 110.77, 56.51, 55.52, 31.44. EI-MS m/z (%): 338 (38),
337 (100), 322 (10), 169 (5). ESI-MS (+): m/z (%) = 339 (100) [M+H]+. C20H19FN2O2 (338.38):
calcd. C, 70.99; H, 5.66; N, 8.28; found C, 70.89; H, 5.67; N, 8.29.

3.3.16. (E)-2-(4-Methoxystyryl)-1-methyl-5-(4-nitrophenyl)-1H-imidazole (3q)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1e with
2b (entry 17, Table 2), was purified by flash chromatography on silica gel with a mixture of
CH2Cl2 and MeOH (97/3) to give 3q (54.5 mg, 30% yield) as red solid: m.p. = 190–192 ◦C.
1H NMR (200 MHz, CDCl3): δ 8.33–8.29 (m, 2H), 7.65 (d, 1H, J = 15.8 Hz), 7.60–7.45 (m,4H),
7.30–7.26 (m, 2H), 6.94–6.90 (m, 2H), 6.83 (d, 1H, J = 15.8 Hz), 3.84(s, 3H), 3.75 (s, 3H). 13C
NMR (50 MHz, CDCl3) δ 160.20, 149.27, 146.74, 136.53, 134.23, 132.26, 130.28, 129.11, 128.43
(2C), 128.34 (2C), 124.34 (2C), 114.37 (2C), 110.91, 55.51, 31.86. EI-MS m/z (%): 335 (33),
334 (100), 304 (22), 288 (32). ESI-MS (+): m/z (%) = 336 (100) [M+H]+C19H17N3O3 (335.36):
calcd. C, 68.05; H, 5.11; N, 12.53; found C, 68.11; H, 5.12; N, 12.55.

3.3.17. (E)-5-(Benzo[d][1,3]dioxol-5-yl)-2-(4-methoxystyryl)-1-methyl-1H-imidazole (3r)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 1f with
2b (entry 18, Table 2), was purified by flash chromatography on silica gel with a mixture
of CH2Cl2 and MeOH (98/2) to give 3r (54.5 mg, 52% yield) as pale red wax. 1H NMR
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(200 MHz, CDCl3): δ 7.58 (d, 1H, J = 15.8 Hz), 7.51–7.47 (m, 2H), 7.07 (s, 1H), 6.93–6.76 (m,
8H), 6.01 (s, 2H), 3.83(s, 3H), 3.63 (s, 3H). 13C NMR (50 MHz, CDCl3) δ 160.04, 148.09, 147.75,
146.84, 134.18, 133.10, 129.55, 128.37 (2C), 127.11, 123.69, 122.93, 114.40 (2C), 111.38,109.47,
108.82, 101.55, 55.56, 31.42. EI-MS m/z (%): 334 (38), 333 (100), 318 (4), 290 (6). ESI-MS (+):
m/z (%) = 335 (100) [M+H]+. C20H18N2O3 (334.38): calcd. C, 71.84; H, 5.43; N, 8.38; found
C, 71.88; H, 5.44; N, 8.37.

3.3.18. (E)-1-Methyl-2-styryl-1H-benzo[d]imidazole (8)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 6 with 2a
(Scheme 5), was purified by flash chromatography on silica gel with a mixture of CH2Cl2
and AcOEt (99/1) to give 8 (101.8 mg, 87% yield) as beige solid: m.p. 118–120 ◦C, lit [51].
mp 119–121 ◦C. 1H NMR (200 MHz, CDCl3): δ 7.97 (d, 1H, J = 15.9 Hz), 7.83–7.72 (m,
1H), 7.65–7.58 (m, 2H) 7.47–7.19 (m, 6H), 7.09 (d, 1H, J = 15.9 Hz), 3.83(s, 3H). 13C NMR
(50 MHz, CDCl3) δ 150.91, 143.02, 137.02, 135.91, 128.97, 128.78 (2C), 127.17 (2C), 122.52
(2C), 119.12, 112.90 (2C), 109.17, 29.52. EI-MS m/z (%): 234 (36), 233 (100), 219 (7), 218 (19),
117 (7). ESI-MS (+): m/z (%) = 235 (100) [M+H]+. C16H14N2 (234.30): calcd. C, 82.02; H,
6.02; N, 11.96; found C, 82.11; H, 6.03; N, 12.00.

3.3.19. (E)-2-Styryl-1H-benzo[d]imidazole (9)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 7 with 2a
(Scheme 5), was purified by flash chromatography on silica gel with a mixture of toluene
and AcOEt (50/50) to give 9 (70.0 mg, 64% yield) as white solid: m.p. 195–197 ◦C; lit.[52]
mp 195 ◦C. 1H NMR (400 MHz, CDCl3+DMSO-d6): δ 7.71 (d, 1H, J = 16.5 Hz), 7.60 (br, 2H),
7.51–7.47 (m, 2H), 7.36–7.25 (m, 4H), 7.24–7.15 (m, 3H). 13C NMR (100 MHz, CDCl3+DMSO-
d6): δ 151.37, 135.89, 134.96, 128.71 (3C), 128.67 (2C), 126.88 (3C), 122.39 (3C), 117.21. EI-MS
m/z (%): 220 (32), 219 (100), 218 (14), 109 (7). ESI-MS (+): m/z (%) = 221 (100) [M+H]+.
C15H12N2 (220.28): calcd. C, 81.79; H, 5.49; N, 12.72; found C, 81.84; H, 5.50; N, 12.75.
The NMR spectroscopic data of this compound were in agreement with those previously
reported [52].

3.3.20. (E)-2-Styrylbenzo[d]oxazole (11)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 10 with
2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of toluene
and AcOEt (95/5) to give 11 (33.2 mg, 30% yield) as brown solid: m.p. 84–86 ◦C, lit.[53]
mp 86–88 ◦C.1H NMR (200 MHz, CDCl3): δ 7.78 (d, 1H, J = 16.4 Hz), 7.73–7.65 (m, 1H),
7.62–7.48 (m, 3H), 7.45–7.28 (m, 6H), 7.07 (d, 1H, J = 16.4 Hz).13C NMR (50 MHz, CDCl3) δ
162.79, 150.42, 142.23, 139.54, 135.20, 129.86, 129.81, 129.05, 128.19, 127.64, 125.30, 124.59,
119.95, 114.02, 110.42. EI-MS m/z (%): 221 (33), 220 (100), 191 (7), 165 (3). ESI-MS (+): m/z
(%) = 222 (100) [M+H]+. C15H11NO (221.26): calcd. C, 81.43; H, 5.01; N, 6.33; found C,
81.35; H, 5.02; N, 6.35. The NMR spectroscopic data of this compound were in agreement
with those previously reported [53].

3.3.21. (E)-1-Methyl-4,5-diphenyl-2-styryl-1H-imidazole (13)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 12 with
2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of toluene
and AcOEt (93/7) to give 13 (89.0 mg, 55% yield) as orange glassy solid: m.p. 65–69 ◦C.
1H NMR (400 MHz, CDCl3): δ 7.76 (d, 1H, J = 15.9 Hz), 7.60–7.56 (m, 2H), 7.54–7.50 (m,
2H), 7.48–7.41 (m, 3H), 7.40–7.26 (m, 5H), 7.24–7.16 (m, 2H), 7.00 (d, 1H, J = 15.9 Hz),
3.53 (s, 3H).13C NMR (100 MHz, CDCl3): δ 145.50, 138.56, 136.96, 134.75, 133.00, 131.02
(2C), 130.22, 129.10 (2C), 128.87 (2C), 128.68, 128.29, 128.22(2C), 127.22 (2C), 126.94 (2C),
126.54, 113.86, 31.13. EI-MS m/z (%): 336 (50), 335 (100), 319 (10), 165 (5). ESI-MS (+):
m/z (%) = 337 (100) [M+H]+. C24H20N2 (336.44): calcd. C, 85.68; H, 5.99; N, 8.33; found C,
85.76; H, 6.01; N, 8.35. The NMR spectroscopic data of this compound were in agreement
with those previously reported [54].
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3.3.22. (E)-4,5-Diphenyl-2-styryl-1H-imidazole (15)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 14 with
2a (Scheme 5), was purified by flash chromatography on silica gel with a mixture of CH2Cl2
and MeOH (95/5) to give 15 (59.6 mg, 36% yield) as orange solid: m.p. 120–122 ◦C. 1H
NMR (400 MHz, CDCl3): δ 7.47–7.40 (m, 4H), 7.38–7.32 (m, 2H), 7.30–7.20 (m, 10H), 7.00 (d,
1H, J = 16.6 Hz).13C NMR (100 MHz, CDCl3): δ 145.10, 135.93, 133.64, 132.02, 131.34, 128.92,
128.89 (2C), 128.81, 128.76 (5C), 128.07 (6C), 127.06 (2C), 114.44. EI-MS m/z (%): 322 (50),
321 (100), 165 (10), 115 (5). ESI-MS (+): m/z (%) = 323 (100) [M+H]+. C23H18N2 (322.41)
calcd. C, 85.68; H, 5.63; N, 8.69; found C, 85.78; H, 5.62; N, 8.70. The NMR spectroscopic
data of this compound were in agreement with those previously reported [55].

3.3.23. (E)-5-(4-Methoxyphenyl)-1,2-dimethyl-4-styryl-1H-imidazole (17)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 16 with
2a (Scheme 6), was purified by flash chromatography on silica gel with a mixture of CH2Cl2
and MeOH (96/4) to give 17 (76.0 mg, 50% yield) as orange solid: m.p. 39–40 ◦C. 1HNMR
(400 MHz, C6D6): δ 8.00 (d, J = 15.8 Hz, 1H), 7.38–7.39 (m, 2H), 7.25 (d, J = 15.8 Hz, 1H),
7.05–7.10 (m, 4H), 6.95–6.99 (m, 1H), 6.81–6.84 (m, 2H), 3.35 (s, 3H), 2.62 (s, 3H), 2.08 (s, 3H).
13CNMR (400 MHz, C6D6): δ 159.93, 144.93, 139.15, 136.43, 131.91 (2C), 131.02, 128.77 (2C),
126.99, 126.64, 126.55 (2C); 123.16, 120.90, 114.53 (2C), 54.90, 30.33, 13.49. EI-MS (m/z): 304
(100), 303 (95), 288 (5), 249 (15), 152 (6), 56 (11). ESI-MS (+): m/z (%) = 305 (100) [M+H]+.
C20H20N2O (304.39): calcd. C, 78.92; H, 6.62; N, 9.20; found C, 79.01; H, 6.63; N, 9.22.

3.3.24. (E)-1-Methyl-2-styryl-1H-imidazole (19)

The crude reaction product, which was obtained by Pd-catalyzed reaction of 18 with
2a (Scheme 7), was purified by flash chromatography on silica gel with a mixture of CH2Cl2
and MeOH (93:7) as eluent to give Y (83 mg, 45%) as a light brown oil. 1H NMR (400 MHz,
CDCl3) δ 7.59 (d, 1H, J = 16.08 Hz), 7.42–7.26 (m, 5H), 7.11 (s, 1H), 6.90 (s,1H), 6.85 (d, 1H,
J = 16.06), 3.68 (s, 3H). EI-MS m/z (%) =184 (25), 183 (100), 168 (12), 128 (5), 115 (7). ESI-MS
(+): m/z (%) = 185 (100) [M+H]+. The NMR spectroscopic data of this compound were in
agreement with those previously reported [37].

4. Conclusions

In this work, we developed a simple and efficient Pd(II)/Cu(II)-promoted dehydro-
genative alkenylation of 5-arylimidazoles, 4,5-diphenylimidazole, benzimidazoles and
benzoxazole with functionalized styrenes. Starting from a preliminary screening of the role
of oxidant, catalyst precursors, solvents, and reaction temperature on the efficiency and
selectivity of the alkenylation of 5-(4-methoxyphenyl)-1,2-dimethyl-1H-imidazole (1a) with
styrene (2a) we were able to identify reaction conditions suitable for the simple preparation
of several 2-alkenyl-substituted azoles. We believe that our findings may represent an im-
portant clue for late-stage functionalization protocols [56–58] involving imidazoles, because
no pre-activation of the reactive bonds is required. Further studies on the application of
this interesting methodology to the synthesis of new heteroaromatic organic fluorophores
are underway.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11070762/s1: 1H and 13C NMR spectra of all the new compounds.
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