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Abstract: Gadolinium oxide (Gd2O3) nanoparticles were prepared via the reaction of gadolinium
nitrate hexahydrate (Gd (NO3)3·6H2O) and ethylamine (C2H5NH2), and their surface morphology,
particle size, and properties were examined by using scanning electron microscopy, X-ray diffraction
(XRD), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet visible
(UV-vis) spectroscopy. The Gd2O3 nanoparticles were used as the photocatalyst for the degradation of
various azo dyes, such as methyl orange (MO), acid orange 7 (AO7), and acid yellow 23 (AY23) under
irradiation with UV light. The effect of the experimental parameters (initial concentration of azo
dyes, dosage of catalyst, and wavelength of UV light) on the photocatalytic properties of the Gd2O3

nanoparticles were investigated. At a constant H2O2 concentration, the photocatalytic degradation
efficiency of the Gd2O3 nanoparticles for various azo dyes was in the order: methyl orange > acid
orange 7 > acid yellow 23. The kinetics study showed that the photocatalytic degradation of azo dyes
was followed by a pseudo first-order reaction rate law.

Keywords: gadolinium oxide nanoparticles; photocatalytic activity; azo dyes; kinetics study

1. Introduction

The use of a metal oxide semiconductor photocatalyst is a common technique for the
degradation of organic pollutants [1,2]. The textile industry generates a lot of wastewater,
which contains a lot of dyes. Many contaminants in the ecosystem have been problematic
due to their stable chemical structure, posing various teratogenic, carcinogenic, and muta-
genic risks [3]. As a result, wastewater purification has always received a lot of interest
in the scientific field. The combined advanced oxidation process (AOP), which includes
heterogeneous photocatalysis and hydrogen peroxide, provides the synergistic effect for
degradation of organic dyes in wastewater [3–7]. The dye degradation mechanism of
the AOP involves the generation of hydroxyl radicals (·OH) and superoxide anion radi-
cals (·O2

−) [8–10]. Their radicals are unstable and can attack organic pollutants to make
harmless products.

Lanthanide compounds have been used in photocatalysis, owing to their unique
f -electronic configuration and bandgap energy. Rare earth elements have half-filled 4f -
shells with unpaired electrons and often exhibit an empty 5d shell. They are used in a
wide range of applications, such as fluorescent materials, high-resolution X-ray medical
imaging, ultraviolet (UV) detectors, catalysts, and dopants [11–16]. Owing to its high
chemical stability, UV absorption, and active photon-to-electron conversion, gadolinium
oxide (Gd2O3) is widely used as an n-type semiconductor photocatalyst [12,17,18].

Recently, several papers have been reported on photocatalytic degradation by using
lanthanide oxide nanoparticles [11,12,15,16]. However, there are still insufficient studies
available on the degradation of lanthanide oxide nanoparticles of organic pollutants.
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Gd2O3 nanoparticles can be used for the photocatalytic degradation of organic pol-
lutants and wastewater treatment, and, due to their high photocatalytic activity, they are
also used as an additional oxidizing agent along with other agents, such as hydrogen
peroxide [19–21].

In Gd2O3, the electrons in the valence band move to the conduction band under UV
irradiation [22]. Gadolinium oxide nanoparticles effectively produce free radicals and their
recombination with holes is avoided because of the presence of half-filled 4f orbitals and
an empty 5d shell, which often serve as trapping centers to prevent the combination of
carriers [23]. The ·OH radicals generated in water under UV irradiation are responsible for
the degradation of azo dyes [19]. The unique 4f orbitals/electrons of rare earth compounds
have magnetic, electrical, optical, phosphorus, and catalytic properties [17,24].

AOPs are based on the combination of strong oxidants with a catalyst and radiation;
the addition of hydrogen peroxide increases the rate [25]. The photocatalytic degradation
efficiency of organic dyes may be enhanced in combination with H2O2 and Gd2O3 nanopar-
ticles under UV irradiation. ln this study, we carried out photocatalytic degradation of
various organic dyes, such as methyl orange (MO), acid orange 7 (AO7), and acid yellow
23 (AY23) under different conditions using the Gd2O3 nanoparticles.

2. Results
2.1. Characterization of Gd2O3 Nanoparticles

For Gd2O3, the XRD peaks observed at 2θ = 28.64◦ correspond to the (222) plane
of the cubic phase (JCPDS 3-065-3181) [24], and those at 2θ = 20.14◦, 33.16◦, 47.64◦, and
56.53◦ correspond to the (211), (400), (440), and (622) planes, respectively, of the hexagonal
phase (Figure 1). The size of the synthesized Gd2O3 nanoparticles was calculated using the
Scherrer formula:

D =
Kλ

βcosθ
(1)

where D is the size of the crystallites, K is the Scherrer constant, λ is the X-ray wavelength,
β is the full width at half maximum (in radians) of the XRD peak, and θ is the Bragg angle.
The average crystallite size of the Gd2O3 nanoparticles was calculated to be 13.7 nm [24].
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Figure 1. XRD pattern of the synthesized Gd2O3 nanoparticles. 

XPS analysis determined the surface elemental composition and their ionic states. 
Figure 2a depicts the appearance of Gd 3d, Gd 4d, and O 1s elements of the Gd2O3 nano-

Figure 1. XRD pattern of the synthesized Gd2O3 nanoparticles.

XPS analysis determined the surface elemental composition and their ionic states.
Figure 2a depicts the appearance of Gd 3d, Gd 4d, and O 1s elements of the Gd2O3
nanoparticles in the XPS survey spectrum. The binding energy at 1187.9 and 1219.3 eV
corresponds to the Gd 3d5/2 and Gd 3d3/2, respectively, in Figure 2b [12,18]. Figure 2c
demonstrates that the binding energy at 142.2 eV and 147.8 eV were ascribed to the Gd
4d5/2 and Gd 4d3/2 spin-orbits, respectively. As for Figure 2d, the O 1s peak in the Gd2O3
nanoparticles displayed the binding energy at 531.7 eV [19].
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Figure 2. XPS spectra of the Gd2O3 nanoparticles (a) full scan survey spectrum, (b) Gd 3d, (c) Gd 4d 
and (d) O 1s. 

The Gd2O3 nanoparticles were investigated by FT-IR spectroscopy. The Gd2O3 nano-
particles show the characteristic peak at 547 cm−1 due to the banding vibration of Gd-O in 
the FT-IR spectroscopy in Figure 4b [23,24]. 

Figure 2. XPS spectra of the Gd2O3 nanoparticles (a) full scan survey spectrum, (b) Gd 3d, (c) Gd 4d
and (d) O 1s.

The SEM image of Gd2O3 in Figure 3a have a pine needle-like shape. The TEM image
of Gd2O3 in Figure 3b shows a rod shape with the length of 100−900 nm. Additionally, in
Figure 3c,d, the elemental compositions of the synthesized compounds were determined
by EDX mapping/elemental analysis. According to the EDX spectrum, the Gd2O3 nanopar-
ticles contained a gadolinium atom (Gd) of 34.31%, and an oxygen atom (O) of 65.69%, as
shown in Figure 3e [15,19].

The vibrational modes of Gd2O3 nanoparticles were observed by Raman spectroscopy
in Figure 4a. In the Raman spectrum, three peaks were observed: two at 313 and 443 cm−1,
corresponding to the Fg + Eg modes and the Fg mode, respectively, and most impor-
tantly, the prominent peak at 358 cm−1 is assigned to the Fg + Ag modes, which mainly
corresponds to the cubic phase of the Gd2O3 nanoparticles [26].
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Figure 3. Morphological analysis (a) SEM images and (b) TEM images of the Gd2O3 nanoparticles. Elemental analysis
(c) and (d) EDX mapping composition of the Gd2O3 nanoparticles, (e) EDX spectrum of the Gd2O3 nanoparticles, they are
kind of elements such as Gd, O.
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The Gd2O3 nanoparticles were investigated by FT-IR spectroscopy. The Gd2O3
nanoparticles show the characteristic peak at 547 cm−1 due to the banding vibration
of Gd-O in the FT-IR spectroscopy in Figure 4b [23,24].
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The absorbance peak of the Gd2O3 nanoparticles was observed at 228 nm in UV-vis
spectroscopy [27]. The optical bandgap energy (Eg) was estimated by the method proposed
by Tauc [17]. The optical band gap of Gd2O3 is determined by the following equation:

αhν = A
[
hν− Eg

]k (2)

where α is absorption coefficient, h is Plank constant, ν is light frequency, A is a characteristic
constant of the semiconductor, Eg is the apparent optical band gap of the material, and
k is a constant associated with electronic transition types (for direct allowed transition:
k = 1/2, for direct forbidden transitions: k =2/3, for indirect allowed transition: k =2, and
for indirect forbidden transitions: k = 3). According to the literature [23,27], gadolinium
oxide nanoparticles were characterized by a direct allowed electronic transition, so k = 1/2
was used. The value of Eg was evaluated by extrapolating the linear portion of the curve in
Figure 5b. This was found to be 5.04 eV for the Gd2O3 nanoparticles.
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Figure 5. (a) UV-vis spectrum and (b) Tauc’s plot for the bandgap energy of the Gd2O3 nanoparticles.

When aqueous solutions of azo dyes were irradiated by UV light without adding
a catalyst, the azo dye degradation process was very slow. The addition of the Gd2O3
nanoparticles, i.e., the catalyst, accelerated the azo dye degradation process.

The aqueous solution of MO containing the H2O2 and Gd2O3 nanoparticles showed
an absorbance peak at 480 nm (Figure 6a). During the photocatalytic degradation reac-
tion, no other absorbance peak was observed. The absorbance peak in the visible region
faded away after UV irradiation at 254 nm for 100 min. The absorption peak appeared
at 480 nm, and the intensity of this peak decreased with UV light irradiation. With time,
this peak shifted to a lower absorbance in the visible region. The MO showed a degra-
dation of 79.68% (Figure S1c) and 26.62% (Figure S1a) in the presence and absence of the
catalyst, respectively.
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Figure 7. Histograms of photocatalytic degradation efficiency of (a) MO, (b) AO7, and (c) AY23 
under different conditions after 100 min. (Experimental conditions: initial dye concentration: 0.042 
mM; photocatalyst concentration: 1.0 g/L; H2O2 concentration: 4.8M; wavelength of UV irradiation: 
254 nm). 

Figure 6. UV-vis absorption spectra of photocatalytic degradation of the azo dyes (a) MO, (b) AO7, and (c) AY23 by the
Gd2O3/H2O2/UV method for 100 min. (Experimental conditions: initial dye concentration: 0.042 mM; photocatalyst
concentration: 1.0 g/L; H2O2 concentration: 4.8M; wavelength of UV irradiation: 254 nm).

The absorbance peak of AO7 appeared at 485 nm (Figure 6b). After 100 min of UV
irradiation in the absence of the catalyst, only 6.11% (Figure S2a) of the AO7 dye was
degraded. On the other hand, a 79.92% (Figure S2c) degradation was achieved in the
presence of the Gd2O3 catalyst.

AY23 showed an absorption peak at 428 nm (Figure 6c). The AY23 was the active site
for an oxidative attack. The AY23 showed a degradation of 59.14% (Figure S3c) and 3.81%
(Figure S3a) in the presence and absence of Gd2O3 catalyst, respectively.

The adsorption of H2O2 onto Gd2O3 particles can modify their surface [28–30]. The
dye adsorption capacity on metal oxides is an important parameter for surface reactions;
it depends on the surface area and other surface-related parameters, such as the surface
density, pore size distribution, and morphology of the particle surface. If the adsorption of
dye molecules increases, the rate of photocatalytic degradation increases. The photocat-
alytic degradation efficiency of semiconductor oxides under UV irradiation is related to
the electronic band structure of the semiconductor.
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The histograms of photocatalytic degradation efficiency (MO, AO7, AY23) under vari-
ous conditions (UV/H2O2, H2O2/Gd2O3, UV/H2O2/Gd2O3, and UV/Gd2O3 for 100 min)
are shown in Figure 7. It can be observed from the spectra that the Gd2O3 nanoparticles
accelerated the degradation of the azo dyes. The photocatalytic degradation efficiency was
the highest when both Gd2O3 and H2O2 were used under UV irradiation conditions.
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mM; photocatalyst concentration: 1.0 g/L; H2O2 concentration: 4.8M; wavelength of UV irradiation: 
254 nm). 

Figure 7. Histograms of photocatalytic degradation efficiency of (a) MO, (b) AO7, and (c) AY23 under
different conditions after 100 min. (Experimental conditions: initial dye concentration: 0.042 mM;
photocatalyst concentration: 1.0 g/L; H2O2 concentration: 4.8M; wavelength of UV irradiation:
254 nm).

The photocatalytic degradation efficiency of azo dyes using Gd2O3 is calculated by
the following equation:

Photocatalytic degradation efficiency (%) =
(C0 − Ct)

C0
× 100 (3)

where C0 is the concentration of azo dye at the adsorption-desorption equilibrium in the
dark (t = 0) and Ct is the concentration of azo dye at reaction time t (min).

2.2. Mechanism of Photocatalytic Degradation of Azo Dyes by Gd2O3 Nanoparticles

Upon UV irradiation, the electrons in the valence band of the catalyst moved into the
conduction band. This resulted in the continuous generation of holes (h+) in the valence
band and electrons (e−) in the conduction band. The generation of electron-hole pairs
contributed to the activity of the photocatalyst. The holes with a high oxidative ability can
oxidize OH− to ·OH radicals. The holes in the valence band and electrons in the conduction
band were generated and combined with a hydroxide ion and oxygen to generate ·OH
and ·O2− radicals. The photocatalytic degradation of the organic dyes occurred on the
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surface of the catalyst. The ·OH and ·O2
− radicals act as oxidizing agents for azo dye

molecules [19].
The azo dye degradation mechanism under the UV/H2O2/Gd2O3 condition is as

follows (Figure 8) [12,15,19]:

Gd2O3 + hν → ecb
− + hvb

+ (4)

H2O2 + hν → 2·OH (5)

O2 + Gd2O3(ecb
−)→ ·O2

− (6)

H2O2 + Gd2O3(ecb
−)→ ·OH + OH− (7)

Gd2O3(hvb
+) + (H2O)→ ·OH + H− (8)

O2
− + H2O2 → ·OH + OH− + O2 (9)

Azo dye + ·OH→ Products of photocatalytic degradation (10)
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Figure 8. Mechanism of photocatalytic degradation of azo dyes by Gd2O3 nanoparticles.

The synergetic behavior is understandable considering the electron-capturing role
of the hydrogen peroxide as an external electron hole recombined with the gadolinium
oxide surface. However, it can also improve the hydroxyl radical introduction in the
reaction [6,31].

2.3. Kinetics Study for Photocatalytic Degradation of Azo Dyes

In a first-order reaction, the rate (ν) of the reaction

c[A]→ products (A is reactant: azo dye) (11)

the rate is expressed as follows:

ν = −dC
dt

= kt (12)

where c is the concentration of reactant A, k is the first-order rate constant, and t is time.
The rate depends on the concentration of the reactant A present at time, t. In photocatalytic
degradation of azo dyes, the integrated form of rate Equation (12) may be written as in
Equation (16). Separating variables of Equation (12) and taking an integral calculus,

ν = − 1
C

dC = kt (13)

− ln C = kt + Integration constant (14)

The value of the integration constant is determined when time is zero (t = 0) of the
following expression:

− ln C0 = Integration constant (at t = 0) (15)
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Therefore, by Equations (14) and (15), we can obtain Equation (16) [32].

ln
C
C0

= −kt (16)

where C0 is the concentration of the reactant (azo dye) at an initial time, t = 0, C is the
concentration of the reactant (azo dye) at a specific time t, and k is the first-order rate
constant [33]. The linear behavior of the curves confirms that the photocatalytic degradation
of azo dyes, which were MO, AO7, and AY23, followed a pseudo first-order reaction rate
law. As it can be observed from Figure 9, the values of R2 (coefficient of determination) for
the pseudo first-order reaction kinetics were (a) 0.99888, (b) 0.99867, (c) 0.99555.
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Figure 9. Kinetic study of the photocatalytic degradation of the azo dyes (a) MO, (b) AO7, (c) AY23 by the oxidation process.
(Experimental conditions: initial dye concentration 0.042 mM; wavelength of UV irradiation: 254 nm; H2O2 concentration:
4.8 M; photocatalyst concentration: 1.0 g/L.).
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2.4. Effect of Gd2O3 Nanoparticle Dose for Photocatalytic Degradation of Azo Dyes

The effect of the Gd2O3 dose on the photocatalytic degradation of azo dyes was
investigated. An increase in the dose of the catalyst increased the photocatalytic efficiency
and generated a large number of electron-hole pairs. A large number of hydroxyl radicals
were available for azo dye degradation. Under the same conditions, the photocatalytic
degradation of MO by Gd2O3 nanoparticles improved the reaction rate constant from
−0.00379 to−0.02855 min−1 by increasing the catalyst dose from 0 to 1.5 g/L after a 100 min
degradation reaction. Under the same conditions, the photocatalytic degradation of AO7 by
Gd2O3 nanoparticles improved the reaction rate constant from−0.00060 to−0.02454 min−1

by increasing the catalyst dose from 0 to 1.5 g/L after a 100 min degradation reaction. The
photocatalytic degradation of AY23 by Gd2O3 nanoparticles improved the reaction rate
constant from−0.00030 to−0.03712 min−1 by increasing the catalyst dose from 0 to 1.5 g/L
after a 100 min degradation reaction. The photocatalytic degradation rate and removal% of
the aqueous azo dye solution increased when the catalyst dose also increased. Under the
same conditions, the degradation rate of azo dyes increased when the adsorption of the
dye molecules on the catalyst surface was increased (Figure 10, Table 1).
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nanoparticles in the presence of H2O2 at pH 5.5. (Experimental conditions: initial dye concentration 0.042 mM; wavelength
of UV irradiation: 254 nm; H2O2 concentration: 4.8 M; photocatalyst concentration: 0–1.5 g/L.).
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Table 1. Reaction rate constant (k) and photocatalytic degradation efficiencies (%) of Gd2O3 nanoparticles for the degradation
of the azo dyes MO, AO7, AY23 in the presence of H2O2 at different catalyst doses.

Azo Dye Dose of Catalyst (g/L) Reaction Rate Constant k
(min−1)

Photocatalytic Degradation
Efficiency (%)

Methyl Orange

0 −0.00379 23.62
0.5 −0.00821 55.03
1 −0.01615 79.68

1.5 −0.02855 93.14

Acid Orange 7

0 −0.00060 6.11
0.5 −0.00831 57.48
1 −0.01617 79.91

1.5 −0.02454 91.57

Acid Yellow 23

0 −0.00030 3.81
0.5 −0.00229 21.11
1 −0.00874 59.14

1.5 −0.03712 88.97

Experimental conditions: initial dye concentration 0.042 mM; wavelength of UV irradiation: 254 nm; H2O2 concentration: 4.8 M;
photocatalyst concentration: 0–1.5 g/L.

2.5. Effect of Initial Dye Concentration on the Photocatalytic Degradation of Azo Dyes

The effect of the initial azo dye concentration on the photocatalytic degradation of
azo dyes was investigated. The photocatalytic degradation experiments were carried out
at different azo dye concentrations and at a constant H2O2 concentration. The initial azo
dye concentration varied from 0.042 to 0.126 mM. At high initial dye concentrations, the
path length of the photons entering the solution decreased and the number of ·OH radicals
generated in the solution also decreased (Figure 11, Table 2).

Table 2. Reaction rate constant (k) and photocatalytic degradation efficiencies (%) of Gd2O3 nanoparticles for the degradation
of the azo dyes MO, AO7, AY23 in the presence of H2O2 at different initial dye concentrations.

Azo Dye Initial Concentration (mM) Reaction Rate Constant k
(min−1)

Photocatalytic Degradation
Efficiency (%)

Methyl Orange
0.042 −0.01615 79.68
0.084 −0.01214 69.75
0.126 −0.00854 57.28

Acid Orange 7
0.042 −0.01617 79.91
0.084 −0.01379 74.14
0.126 −0.01089 65.56

Acid Yellow 23
0.042 −0.00874 59.14
0.084 −0.00176 16.67
0.126 −0.00090 8.92

Experimental conditions: initial dye concentration 0.042–0.126 mM; wavelength of UV irradiation: 254 nm; H2O2 concentration: 4.8 M;
photocatalyst concentration: 1.0 g/L.
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Figure 11. Effect of initial dye concentration on the photocatalytic degradation of the azo dyes: (a) MO, (b) AO7, and
(c) AY23 by Gd2O3 nanoparticles in the presence of H2O2 at pH 5.5. (Experimental conditions: initial dye concentration
0.042-0.126 mM; wavelength of UV irradiation: 254 nm; H2O2 concentration: 4.8 M; photocatalyst concentration: 1.0 g/L.).

2.6. Effect of UV Light Wavelength on Azo Dye for Photocatalytic Degradation

In the presence of the Gd2O3 photocatalyst, UV irradiation at 365 nm (UV-A) caused
higher degradation of the azo dyes than that at 254 nm (UV-C) with reduced energy
consumption. For the same amount of photocatalyst, the photocatalytic degradation
efficiency of MO, AO7, and AY23 obtained with UV-A radiation was higher than that
obtained with UV-C [25,34,35]. This can be attributed to the higher generation rate of
·OH radicals and, consequently, the higher reaction rates at 365 nm [36]. UV-A photons
penetrate much deeper into the solution and degrade a large number of dye molecules
on the surface of Gd2O3 [37]. It was found that the percentage of absorbance for UV light
increased significantly in the UV-A and visible regions, which favored the photocatalytic
performance of the catalyst (Figure 12, Table 3) [38].
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Table 3. Reaction rate constant (k) and photocatalytic degradation efficiencies (%) of Gd2O3 nanoparticles for the degradation
of the azo dyes MO, AO7, AY23 in the presence of H2O2 at different UV wavelengths.

Azo Dye Wavelength of UV Lamp
(nm)

Reaction Rate Constant k
(min−1)

Photocatalytic Degradation
Efficiency (%)

Methyl Orange 254 −0.01615 79.68
365 −0.02427 90.9

Acid Orange 7 254 −0.01617 79.91
365 −0.02389 81.05

Acid Yellow 23
254 −0.00874 59.14
365 −0.00986 63.49

Experimental conditions: initial dye concentration 0.042 mM; wavelength of UV irradiation: 254 nm or 365 nm; H2O2 concentration: 4.8 M;
photocatalyst concentration: 1.0 g/L.
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2.7. Reusability of Gd2O3 Nanoperticles as Photocatalyst for Degradation of MO

The recyclability of the photocatalyst is a significant factor in its industrial applica-
tion [39,40]. The recyclability of the Gd2O3 nanoparticles was studied by repeating the
experiment five times for the photocatalytic degradation of MO solution (Figure 13). The
recyclability of the Gd2O3 photocatalyst demonstrates a little decrease in the photodegrada-
tion of MO dye solution for each cycle, but no apparent Gd2O3 photocatalyst deactivation
after five cycles [2,18]. This is because, after the photocatalytic degradation of MO dye, the
photocatalyst was rinsed with distilled water, but a little bit of the MO dye remained on
the photocatalyst’s surface. As a result, the reusability of photocatalyst efficiency for the
MO dye degradation was reduced, as shown in Figure 13.
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3. Materials and Methods
3.1. Materials

Methyl orange (MO), acid orange 7 (AO7), acid yellow 23 (AY23), gadolinium nitrate
hexahydrate (Gd(NO3)3·6H2O), ethylamine (C2H5NH2), and hydrogen peroxide (H2O2,
30%, w/w) were purchased from YAKURI PURE CHEMICAL, Tokyo, Japan), Sigma-
Aldrich (St. Louis, MO, USA), Merck (KGaA, Darmstadt, Germany), and DAEJUNG
CHEMICALS (Siheung, Korea). All of the chemicals were used as received, without
further purification.

3.2. Methods

The photocatalytic degradation of the azo dyes was carried out using a UV lamp
(4 W, 254 nm; 4 W, 365 nm) and was confirmed by ultraviolet-visible (UV-Vis) spectroscopy
(Shimazu UV-1601 PC, Tokyo, Japan). The morphology of the catalyst was observed
by using scanning electron microscopy (SEM, JEOL Ltd., JSM-6510, Tokyo, Japan) at an
acceleration voltage of 10 kV. The vibrational state of the catalyst was investigated by
Raman spectroscopy at 532 nm wavelength (BWTEK i-Raman Plus, Newark, DE, USA).
Fourier-transform infrared (FT-IR) spectroscopy (Thermo Scientific Nicolet iS10, Madison,
WI USA) was used to obtain information on the functional groups in the catalyst. The
surface elemental composition and their ionic states was analyzed using X-ray photoelec-
tron spectroscopy (XPS) (NEXSA, Thermo Fisher Scientific USA). The crystal structures
and average crystallite size of the catalysts were analyzed using powder XRD (Bruker,
D8 Advance, Karlsruhe, Germany). The morphology and elemental composition of the
catalyst were measured using a transmission electron microscope (TEM) (NEO ARM, JEOL,
Japan) with energy dispersive X-ray spectroscopy (EDX), respectively.

3.2.1. Synthesis of Gd2O3 Nanoparticles

The Gd2O3 nanoparticles were synthesized using the following hydrothermal pro-
cedure. First, 0.5 mL of C2H5NH2 was added slowly to a beaker containing an aqueous
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solution of 0.08 M Gd(NO3)3·6H2O under a vigorous stirring solution. The white precip-
itate solution obtained was heated at 120 ◦C for 12 h in an oven. The resulting mixture
solution was centrifuged several times and then washed with deionized water to obtain
gadolinium hydroxide, which was dried at 80 ◦C in an oven. Gd(OH)3 was annealed in an
electric furnace at 700 ◦C for 4 h in an Ar atmosphere to obtain Gd2O3 [24].

3.2.2. Photocatalytic Activity of Gd2O3 Nanoparticles for Degradation of Azo Dyes Such as
MO, AO7, and AY23

Stock dye solutions were prepared using 2 mM of the azo dye powders. Next, 0.5 g/L
of Gd2O3 was used for the photocatalytic degradation of each 0.042–0.126 mM azo dye
aqueous solution containing H2O2. The pH of the dye solutions was fixed at 5.5.

The solution was stirred with a magnetic bar for 30 min in the absence of light to attain
an adsorption-desorption equilibrium between the dye molecules and the catalyst.

The photocatalytic degradation process was monitored by using UV-vis spectroscopy.
Equation (3) was used to calculate the percentage of photocatalytic degradation of azo dyes.
Additionally, the reaction kinetics and factors affecting the photocatalytic degradation of
azo dyes were examined.

3.2.3. Photocatalytic Activity of Degradation of Azo Dyes Uner UV Irradiation at 254 nm
and 365 nm

The photocatalytic degradation of MO, AO7, and AY23 by Gd2O3 nanoparticles was
carried out in aqueous dye solutions under UV irradiation at 254 nm and 365 nm. The
initial concentration of azo dye solutions was 0.042 mM and the initial H2O2 concentration
was 4.8 M. The Gd2O3 nanoparticles were added to the azo dye solutions, which were
irradiated with UV light (output power: 4 W–254 nm, 4 W–365 nm) for 10, 20, 30, and
100 min.

3.2.4. Reusability of Gd2O3 Nanoperticles as Photocatalyst for Degradation of MO

The photocatalytic degradation of MO with Gd2O3 nanoparticles was performed by
repeating the experiments five times. The photocatalytic experiment was carried out under
the following conditions: a 0.042 mM initial MO concentration; a 4.8 M H2O2 concentra-
tion; a 1.0 g/L photocatalyst dose; and a 100 min reaction time. After the photocatalytic
degradation of MO using the Gd2O3 nanoparticles as a catalyst, the photocatalyst of the
Gd2O3 nanoparticles was separated from the reaction mixture by centrifugation, washed
with distilled water, and dried in an oven. Experiments on recycling were also carried
out under the same conditions. To compensate for the catalyst loss during the washing
process, a constant amount of catalyst concentration was maintained in each cycle test, and
numerous degradation tests were conducted simultaneously at each recycle test, resulting
in adequate catalysts being collected.

4. Conclusions

Under UV light irradiation, photocatalytic degradation of azo dyes such as MO, AO7,
and AY23 was conducted in aqueous solutions with the Gd2O3 nanoparticles and H2O2.
The generation of ·OH and ·O2

– radicals, which can oxidize the azo dye molecules, causes
photocatalytic degradation of the azo dyes on the catalyst surface. The degradation rate
of the azo dyes increased when the initial dye concentration decreased and when the
catalyst dose increased. For the degradation of azo dyes, the photocatalytic effectiveness
of the Gd2O3 nanoparticles declined in the following order: MO > AO7 > AY23. The
photocatalytic degradation of the azo dye solutions under UV irradiation at 365 nm was
higher than that under UV irradiation at 254 nm and was found to follow the pseudo
first-order reaction rate law. The photocatalytic degradation of azo dye aqueous solutions
was increased by increasing the UV irradiation time. More hydroxyl radicals are generated
when Gd2O3/H2O2/UV light is combined, which improves the photocatalytic degradation
of azo dyes. The reusability results demonstrate a small decrease in photocatalytic degra-
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dation of the azo dye solution for each cycle, with no apparent decrease in photocatalytic
degradation after five cycles, demonstrating the stability of the Gd2O3 nanoparticles.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11060742/s1, Figure S1: UV-vis absorption spectra of photocatalytic degradation of the
MO dye (a) UV/H2O2 (b) H2O2/Gd2O3 (c) UV/H2O2/Gd2O3 (d) UV/Gd2O3 methods within the
time period of 100 min. (Experimental conditions: initial dye concentration 0.042 mM; wavelength
of UV irradiation: 254 nm; H2O2 concentration: 500 mM; photocatalyst concentration: 1.0 g/L.),
Figure S2: UV-vis absorption spectra of photocatalytic degradation of the AO7 dye (a) UV/H2O2
(b) H2O2/Gd2O3 (c) UV/H2O2/Gd2O3 (d) UV/Gd2O3 methods within the time period of 100 min.
(Experimental conditions: initial dye concentration 0.042 mM; wavelength of UV irradiation: 254 nm;
H2O2 concentration: 500 mM; photocatalyst concentration: 1.0 g/L.), Figure S3: UV-vis absorp-
tion spectra of photocatalytic degradation of the AY23 dye (a) UV/H2O2 (b) H2O2/Gd2O3 (c)
UV/H2O2/Gd2O3 (d) UV/Gd2O3 methods within the time period of 100 min. (Experimental condi-
tions: initial dye concentration 0.042 mM; wavelength of UV irradiation: 254 nm; H2O2 concentration:
500 mM; photocatalyst concentration: 1.0 g/L.), Figure S4: UV-vis absorption spectra of the (a) MO,
(b) AO7, (c) AY23 under 254 nm irradiation and (d) MO, (e) AO7, (f) AY23 under 365 nm irradiation
within the time period of 100 min. (Experimental conditions: initial dye concentration 0.042 mM.)
Figure S5: UV-vis absorption spectra of photocatalytic degradation of the (a) MO, (b) AO7, (c) AY23
by UV/H2O2 methods under 254 nm irradiation and (d) MO, (e) AO7, (f) AY23 under 365 nm
irradiation within the time period of 100 min. (Experimental conditions: initial dye concentration
0.042 mM; H2O2 concentration: 4.8 M)
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