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Abstract: Technological development after the industrial revolution has improved the quality of
human life, but global energy consumption continues to increase due to population growth and
the development of fossil fuels. Therefore, numerous studies have been conducted to develop
sustainable long-term and renewable alternative energy sources. The anodic electrode, which is one
of the two-electrode system components, is an essential element for effective energy production. In
general, precious metal-based electrocatalysts show high OER reactions from the anodic electrode,
but it is difficult to scale up due to their low abundance and high cost. To overcome these problems,
transition metal-based anodic electrodes, which exhibit advantages with respect to their low cost
and high catalytic activities, are in the spotlight nowadays. Among them, stainless steel is a material
with a high ratio of transition metal components, i.e., Fe, Ni, and Cr, and has excellent corrosion
resistance and low cost. However, stainless steel shows low electrochemical performance due to its
slow sluggish kinetics and lack of active sites. In this study, we fabricated surface modified electrodes
by two methods: (i) anodization and (ii) hydrogen peroxide (H2O2) immersion treatments. As a
result of comparing the two methods, the change of the electrode surface and the electrochemical
properties were not confirmed in the H2O2 immersion method. On the other hand, the porous
electrode (PE) fabricated through electrochemical anodization shows a low charge transfer resistance
(Rct) and high OER activity due to its large surface area compared to the conventional electrode (CE).
These results confirm that the synthesis process of H2O2 immersion is an unsuitable method for
surface modification. In contrast, the PE fabricated by anodization can increase the OER activity by
providing high adsorption of reactants through surface modification.

Keywords: electrocatalyst; oxygen evolution reaction; electrochemical anodization; stainless steel;
surface modification

1. Introduction

As the first and second industrial revolutions took place, technological development
through scientific innovation improved the quality of life, but worldwide energy consumption
continues to increase due to population growth and the exploitation of fossil fuels [1–3]. Espe-
cially, most advanced technologies rely on fossil fuels, i.e., coal, natural gas, and petroleum,
leading to an increase in atmospheric carbon dioxide (CO2) concentration and polluting the
global environment, which has a severe impact on the global ecosystem [4–6]. To regulate
these problems, numerous climate laws have been enacted and enforced worldwide to
reduce energy consumption and CO2 emissions. Also, many people have a craving for
long-term sustainable and renewable energy sources [2,7]. Therefore, various studies have
been conducted to develop sustainable and renewable energy resources, such as alkaline
water electrolysis [8,9], fuel cells [10,11], and metal–air batteries [12]. These technologies
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are commonly composed of a two-electrode system, and among them, the performance of
an anodic electrode is an essential factor for effective energy production.

In the anodic electrode, this part proceeds with the oxygen evolution reaction (OER,
2H2O (l)→ 4e− + 4H+ (aq) + O2 (g)) or oxidation of some chemical fuel, and the efficiency
is affected by the OER kinetics of the electrode. In general, OER is a four electron–proton
coupled reaction, and a high overpotential is required to overcome the kinetic barrier of
OER [13–15]. Accordingly, various materials have been used to improve OER kinetics
and stability of electrode, among which precious metal-based electrocatalysts showed
excellent activity [13,14]. However, precious metal-based electrocatalysts are not practical
for large-scale application and even restrict the development of electrochemical anodic
electrodes due to low abundance and high price. Therefore, low cost and effective OER
catalysts are essential for renewable energy sources. These alternative catalysts are being
published through various studies [14–16]. Particularly, transition metal-based anodic
electrodes, such as metal oxides [17], metal hydroxides [18], metal phosphides [19], and
metal phosphates [20], exhibit advantages concerning their low cost and high catalytic
activities. However, all candidates for transition metal-based electrocatalysts have inherent
corrosion and oxidation susceptibility, limiting their use as OER anodic electrodes [14,21].

Stainless steel, composed of an alloy of transition metal, i.e., iron (Fe), nickel (Ni),
and chromium (Cr), is an attractive material to use as a substrate for energy storage and
electrocatalysis due to its excellent corrosion resistance and low cost [22–24]. However,
stainless steel has low electrochemical performance due to its sluggish kinetics and lack
of active sites [22,23,25]. Therefore, various strategies have been reported to enhance the
properties of stainless steel-based anode for OER, for example, sulfurization treatment [26],
cathodization treatment [27] of stainless steel foil and stainless steel fiber felt [28]. Our
previous study also fabricated a novel porous electrode (PE) with a large surface area
and low electrochemical resistance via the electrochemical anodization technique [29–33].
The anodization process has the advantage of being simple and easy to manufacture
compared to other earlier reported technologies [34,35], which improves the electrochemical
properties of stainless steel-based electrodes and is also suitable for mass production.

With an easy and simple process, the inventor Kou-Tsair SU reported the novel
method of the porous layer through a 2011 US patent [36]. According to the patent, it is
possible to make a porous electrode with a charge layer formed on the surface as well as
a porous layer by immersion in a hydrogen peroxide (H2O2) solution. In this study, we
investigated the synthesis process of this patent by attempting to reproduce their porous
electrode soaked in H2O2 solution (hydrogen peroxide immersion electrode, HIE) and
analyzed its physical and electrochemical characteristics with the PE. The electrochemical
anodization and H2O2 immersion methods were set up as shown in Figure 1. Additionally,
we compared the electrochemical OER activities of the PE and HIE to determine which
method is more effective.
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Figure 1. Schematic illustrations showing (a) electrochemical anodization setup used in preparing
the PE and (b) hydrogen peroxide (H2O2) immersion setup used in preparing the HIE.



Catalysts 2021, 11, 717 3 of 9

2. Results
2.1. Surface Morphology

Figure S1 shows the surface morphologies of the unprocessed conventional electrode
(CE) and silicon-coated conventional electrode (Si-CE) obtained using a field emission
scanning electron microscope (FE-SEM). Compared to the CE, which shows a smooth
surface (Figure S1a), the PE, anodized using 0.3 wt.% NH4F and 2.0 vol.% DI water in
ethylene glycol electrolyte, has a distinct micro/nano-scale porous structure on the surface,
as shown in Figure 2a. Additionally, the cross-sectional image of the PE shows that the
pores are conical in shape, with a width of 0.81–1.92 µm and a depth of 0.51–1.33 µm
(Figure 2b). However, the electrode treatment with 10% concentration of H2O2 shows a
similar surface appearance to the conventional electrode (Figure 2c). As claimed in the
patent, the micropores on the surface of the processed electrode are not evident in the 10%
concentrated hydrogen peroxide immersion electrode (10%-HIE) sample.

Catalysts 2021, 11, x FOR PEER REVIEW 3 of 9 
 

 

 
Figure 1. Schematic illustrations showing (a) electrochemical anodization setup used in preparing 
the PE and (b) hydrogen peroxide (H2O2) immersion setup used in preparing the HIE. 

2. Results 
2.1. Surface Morphology 

Figure S1 shows the surface morphologies of the unprocessed conventional electrode 
(CE) and silicon-coated conventional electrode (Si-CE) obtained using a field emission 
scanning electron microscope (FE-SEM). Compared to the CE, which shows a smooth sur-
face (Figure S1a), the PE, anodized using 0.3 wt.% NH4F and 2.0 vol.% DI water in ethylene 
glycol electrolyte, has a distinct micro/nano-scale porous structure on the surface, as 
shown in Figure 2a. Additionally, the cross-sectional image of the PE shows that the pores 
are conical in shape, with a width of 0.81–1.92 µm and a depth of 0.51–1.33 µm (Figure 
2b). However, the electrode treatment with 10% concentration of H2O2 shows a similar 
surface appearance to the conventional electrode (Figure 2c). As claimed in the patent, the 
micropores on the surface of the processed electrode are not evident in the 10% concen-
trated hydrogen peroxide immersion electrode (10%-HIE) sample. 

 

Figure 2. FE-SEM images of (a) porous electrode (PE), (b) cross-section of PE, (c) conventional
electrode processed in 10% H2O2 immersion (10%-HIE) and (d) silicon-coated conventional electrode
in 10% H2O2 immersion (Si-10%-HIE). Insets of (a,c,d) show electrode tips.

The synthesis method of HIEs was also conducted with varying concentrations of
hydrogen peroxide solution, as shown in Figure S2. The possible pore production on the
surface of the electrodes was investigated in N% H2O2 immersion (N = 10, 15, 20, 25 and
28%). Similar surface characteristics were observed at different concentrations, showing a
negligible effect of the H2O2 solution to produce pores on the surface of the electrodes.

We further confirmed it by applying the same method as the synthesis process of
HIEs to the silicon-coated conventional electrode (Si-CE). Compared to the 10%-HIE, the
same concentration of H2O2 immersion silicon-coated electrode (10%-Si-HIE) does not
show any pores on the surface and has almost similar smooth surfaces as the CE, as
shown in Figure 2d. However, the 10%-Si-HIE has white spots on the surface, which is
suggested to be caused by the dissolution of the silicon coating [37]. This chemical reaction
is also observed when the silicon-coated conventional electrodes are processed in varying
concentrations of H2O2 solution (Figure S3).
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2.2. Electrichemical Characteristics

Electrochemical impedance spectroscopy (EIS) was used to investigate the electrical
characteristics of CE, PE, N%-HIE and N%-Si-HIE electrode materials. Figure 3 shows the
fitted Nyquist plots corresponding to EIS results for CEs, PEs, N%-HIEs and N%-Si-HIEs
in saline solution. The curves exhibit the impedance of the working electrode attributed
to the interaction of the charge transfer resistance (Rct) and constant phase element (CPE)
at the working electrode and electrolyte interface. It can be observed that the PE has a
relatively smaller curve radius than the CE, which means that electrons flow with minimal
resistance due to the low Rct between the working electrode interface and the saline
solution. However, N%-HIEs and N%-Si-HIEs have larger curve radius than PE, and tend
to decrease Rct with increasing concentration, but there is no significant change in charge
resistance properties.
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Figure 3. Fitted Nyquist plots corresponding to EIS results for (a) N%-HIE and (b) N%-Si-HIE as compared to CE and PE in
saline solution (N = 10, 15, 20, 25 and 28%). Data obtained at 300 mHz–300 kHz, V = 30 mV.

2.3. Electrochemical Measurements for Oxygen Evolution Reaction (OER) Activity

The electrocatalytic activities of stainless steel electrodes were studied in alkaline
solution for OER. To evaluate catalytic performance, linear sweep voltammetry (LSV) is
usually performed in alkaline solution by applying over the thermodynamic potential of
OER (>1.23 V vs. RHE) [38–40]. Figure 4a shows the polarization curves for the OER of the
CE, PE, 28%-HIE, and 28%-Si-HIE. As the result, the PE shows the highest current density
compared to the other stainless steel electrodes. However, the 28%-HIE and 28%-Si-HIE
exhibit relatively low current density and electrochemical OER activity compared to the
PE. Additionally, the 28%-HIE has a similar current density to the CE. Especially, for the
28%-Si-HIE, the current density is the lowest in the high applied voltage range, which is
related to the high Rct due to the silicon coating on the electrode surface. Figure 4b shows
the Tafel plots of various stainless steel electrodes. The PE has the smallest Tafel slope
value of 67.6 mV dec−1, suggesting the best catalytic electrochemical OER performance
compared to other stainless steel-based electrodes. The other stainless steel electrodes show
similar Tafel slopes, implying their similar OER kinetics.
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3. Discussion
3.1. Discussion of H2O2 Immersion Electrodes (HIEs) Based on Patent

The patent provided schematic drawings and an electron microscope photograph of
the porous electrode surface in Figures S4 and S5. As described by the patent document, the
electrode portion (11) has an electrode body (111) surrouded by a microporous layer and
covered by a charge layer (Figure S4a). The porous layer (112), as schematically illustrated
in Figure S4b, was formed by 20–1000 nm sized micropores (113) with a thickness of
50–5000 nm and a negative charge layer (114) suggested to be formed by hydroxyl groups
(OH−) [36].

The electron microscope image of the porous electrode, wherein the specks of light-
colored spots were claimed to be the micropores, and the dark background is the electrode
body, is shown in Figure S5. The patent invention stated that the pore diameters could be in
nanoscale after processing [36]. However, the patent inventor has not disclosed adequate
information on the image parameters, such as the magnification or scale of the photograph.
Thus, the actual measurements of the micropores are still indeterminate.

In addition, the patent invention asserted that a negative charge layer formed on
the surface of the electrode has a dielectronic constant measured in the range of 2 to
110 F m−1 [36]. According to the patent, the negative charge layer provides increased
electrochemical reaction because of the surface potential difference on the electrode portion.

3.2. Discussion of Results

The PE, which was fabricated through electrochemical anodization, clearly shows the
hierarchical micro/nano-scale pores on the surface of the electrode (Figure 2a,b), which is
the same as previously reported [29–33]. In addition, due to the large surface area of the PE,
it has low electrochemical impedance and Rct, as shown in Figure 3, which can cause high
adsorption and electrochemical reaction with reactants on the electrode surface. Thus, the
PE shows a higher current density and lower Tafel slope of electrochemical OER activity
in Figure 4, which is suitable for improving the OER performance of stainless steel-based
electrodes through the anodization process.

Meanwhile, in Figure 2c and Figure S2, N%-HIE samples (N = 10, 15, 20, 25 and 28%)
show a more similar surface morphology to the unprocessed CE; that is, they do not show
a noticeable porous structure. The analysis shows that the fabrication method discussed
by the patent is not reproducible of pore production on the surface of the electrode. In
addition, since the description of the stainless steel electrode used in the patent was
insufficient, the possibility of producing a porous structure on the surface of a Si-CE was
also tested using the fabrication method for the patent. Figure 2d and Figure S3 show
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that the N%-Si-HIE samples have not shown pores on their surface after processing in
H2O2 solution, and only white spots caused by the dissolution of the silicon coating are
present on the electrode surface [37]. Moreover, as the result of the EIS analysis, the HIE
and Si-HIE samples do not show the significant change in the electrochemical impedance
and Rct (Figure 3), which does not clearly explain the electron transfer properties of the
negative charge layer on the surface described in the patent [36,41]. Therefore, the HIE
and Si-HIE samples exhibit low current density and a high Tafel slope of electrochemical
OER activity in Figure 4, suggesting that the H2O2 immersion process is not befitting for
improving the OER performance.

4. Materials and Methods
4.1. Preparation of Porous Electrodes (PEs)

Conventional stainless steel type 304 (SUS304) electrodes (6.0 cm in length, 0.03 cm in
diameter, and without silicon oil coating), see Figure S1a, were obtained from Dong bang
Acupuncture Inc., Boryeongsi, Korea. Before anodization, the electrodes were consecutively
cleaned with acetone, ethanol, and deionized (DI) water. Anodization of SUS304 electrodes
was performed using a two-electrode cell, with the electrode as the anode and carbon paper
(Carbon and Fuel cell (CNL), SGL 39BC, Seoul, Korea, 5 cm × 1 cm × 0.325 mm) as the
cathode, see Figure 1a. Anodization was carried out for an hour at 30 V, using an electrolyte
comprised of 0.3 wt.% (weight percent) NH4F (98%, American Chemical Society (ACS)
reagent, Sigma-Aldrich, St. Louis, MO, USA) and 2.0 vol.% (volume percent) DI water in
ethylene glycol (Extra Pure, Daejung, Siheung-si, Korea). After anodization, the electrode
was successively rinsed with acetone, ethanol, and DI water and dried in a flowing stream
of nitrogen.

4.2. Preparation of H2O2 Immersion Electrodes (HIEs) and H2O2 Immersion Silicon-Coated
Electrodes (Si-HIEs)

This method was adopted from US patent 2011/0245856A1 [36]. Two types of conven-
tional stainless steel type 304 (SUS304) electrodes (6.0 cm length, 0.03 cm diameter, with and
without silicon oil coating), see Figure S1, were obtained from Dong bang Acupuncture Inc.,
Boryeongsi, Korea. Before surface modification, the electrodes were sequentially cleaned
with acetone, ethanol and finally rinsed with DI water. Then, the surface of the SUS304
electrode was modified by immersing the electrode in H2O2 solution (Extra pure grade,
Duksan, Seoul, Korea), as shown in Figure 1b. This immersion process was carried out for
10 h, using different N% concentration (N = 10, 15, 20, 25, and 28%) H2O2 solution. After
this, the electrodes were dried in a flowing stream of nitrogen.

4.3. Characterization of Electrode Samples

Surface morphologies were evaluated using a Field Emission Scanning Electron Mi-
croscope (FE-SEM, Hitachi S-4800, Tokyo, Japan) operating at 3 kV, 10 µA. Electrochem-
ical impedance spectroscopy (EIS) spectra were obtained using a VSP potentiostat (Bio
Logic, Seyssinet-Pariset, France) three-electrode workstation with platinum (Pt) wire as
the counter electrode, Ag/AgCl electrode as the reference electrode and test samples (PEs,
HIEs, and Si-PEs) as the working electrode. The above-mentioned three electrodes were
immersed in saline solution (0.9 g NaCl in 100mL DI water) purchased from JW-Pharma,
Seoul, Korea. The EC Lab software was used to operate the system from 300 mHz to
300 kHz.

4.4. Electrochemical Measurements for Oxygen Evolution Reaction (OER) Activity

The oxygen evolution reaction activity was measured by linear sweep voltammetry
(LSV) using 1M KOH (85%, Extra Pure, Daejung, Siheung-si, Korea). Linear sweep voltam-
metry was conducted in a conventional three-electrode system using VSP potentiostat
(Bio Logic, Seyssinet-Pariset, France) with a scan rate of 5 mV s−1. A saturated calomel
electrode (SCE) was used as a reference electrode, and Pt wire served as a counter electrode.
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The working electrodes were CE, PE, 28%-HIE, and 28%-Si-HIE as prepared. The catalytic
activity for OER is evaluated from +0.35 to +0.75 V vs. SCE. This potential range value
versus saturated calomel reference electrode was converted to the potential value versus
reversible hydrogen electrode according to Equation (1) [42].

ERHE = ESCE + 0.244 + 0.0591× pH (1)

The Tafel plot is modeled by the empirical Tafel Equation (2). Where η is the overpo-
tential, a is the intercept relative to the exchange current density, b is the Tafel slope, and j
is the current density [43].

η = a + b× logj (2)

5. Conclusions

We reproduced and analyzed two surface modification processes: electrochemical
anodization and the H2O2 immersion process. The PE fabricated through anodization has
a uniform porous structure, which allows it to have a high surface area and electrochemical
properties. In particular, the large surface area through the porous structure of PE can in-
duce high adsorption between the reactant and the electrode surface during OER, resulting
in high OER activity. However, the HIE and Si-HIE through the H2O2 immersion process
claimed in the patent do not show any surface change, low electrochemical properties and
OER activity. These results show that the content claimed by the patent is different, and
suggest it is necessary to objectively check the facts of the data presented in the patent and
paper. We hope that this paper will encourage researchers to explore further advances in
electrocatalysis and electrode materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11060717/s1, Figure S1: Surface and electrode tip FE-SEM images of (a) conventional
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Acupuncture Inc., Boryeongsi, Korea, Figure S2. Surface and electrode tip FE-SEM images of con-
ventional electrodes processed in (a) 15%, (b) 20%, (c) 25% and (d) 28% H2O2 immersion (N%-HIEs),
Figure S3. Surface and electrode tip FE-SEM images of silicon-coated conventional electrodes pro-
cessed in (a) 15%, (b) 20%, (c) 25% and (d) 28% H2O2 immersion (N%-Si-HIEs), Figure S4: Detailed
description drawings of the patent in (a) sectional view of the structure of the porous electrode and
(b) magnified view of the porous layer, Figure S5: Scanning electron microscope (SEM, JEOL, JSM
6500, 15 kV acceleration voltage, 9.63 × 10−5 Pa vacuum) image of the porous electrode surface
replicated from the patent document.
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