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Abstract: Hydrogen sulfide is frequently met in natural waters, like mineral springs, but mostly it is
found in marine water with low renewal rate. The Black Sea has extremely high hydrogen sulfide
content. It can be utilized in different ways, but the most promising one is direct conversion into
electricity. This result can be attained by a sulfide-driven fuel cell (SDFC), converting sulfide to
sulfate thus releasing electric energy up to 24 GJ/t. One of the most important problems is the mass
transfer limitation on oxygen transfer in the cathode space of the fuel cell. This problem can be solved
using a gas diffusion electrode or highly efficient saturation by oxygen in an ejector of the Venturi
tube type. This work presents experimental data in laboratory-scale SDFC for sulfide conversion into
sulfate, sulfite and polysulfide releasing different amounts of electric energy. Two types of aeration
are tested: direct air blow and Venturi-tube ejector. Besides pure graphite, two catalysts, i.e., cobalt
spinel and zirconia-doped graphite were tested as anodes. Experiments were carried out at initial
sulfide concentrations from 50 to 300 mg/L. Sulfate, sulfite and thiosulfate ions were detected in
the outlet solutions from the fuel cell. The electrochemical results show good agreement with the
chemical analyses. Most of the results show attained high efficiencies of the fuel cell, i.e., up to
80%. The practical applications of this method can be extended for other purposes, like treatment of
polluted water together with utilization as energy.

Keywords: sulfide redox processes; fuel cell; aeration; Venturi tube

1. Introduction

Hydrogen sulfide is frequently found in nature. Its origin varies from natural mineral
water springs, through natural water ponds to industrial waste flows, e.g., oil desulfuriza-
tion processes. In all cases its presence in nature is not desirable and there are many efforts
to remove it both from natural ponds and industrial outflows.

There are efforts to remove hydrogen sulfide in a fuel cell process in liquid phase
where electricity is generated because of reduction of sulfide to elemental sulfur [1,2].
However, the latter is harmful for the fuel cell performance because of blocking the anode
and because it is poisonous for the catalysts used in the fuel cell [3]. Different oxidizer
except oxygen have been tested—cyanoferrate [4], bichromate [5] ferric ions [6]. However,
addition of chemicals is not admissible to the sensitive environment like the water of the
Black Sea. There are also data for sulfide removal in microbial fuel cells [7]. Our efforts are
to design a sulfide-driven fuel cell (SDFC) operating in aqueous medium and based on the
oxidation of sulfide to sulfate-generating electromotive driving force [8,9].

The principle of SDFC is shown in Figure 1. The electrode reactions are:

Anode: S2− + 4H2O − 8e− = SO4
2− + 8H+, Eo = 0.149 V (1)

Cathode: 2O2 + 8H+ + 8e− = 4H2O, Eo =1.229 V (2)
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for proton-mediated process and,

Anode:S2− + 6OH− − 6e− = SO2− + 3H2O; Eo = −0.61 V

and,
SO3

2−+2OH− − 2e− = SO4
2− + H2O, Eo= −0.90 V; Total: Eo = −0.68 V (3)

Cathode: 2O2 + 4H2O + 8e− = 8OH−; Eo = 0.401 V

when the redox process is accompanied by transfer of hydroxylic anion through the
membrane. In both cases the net reaction is:

S2− + 2O2 = SO4
2− (4)
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Figure 1. Principal sketch of sulfide driven fuel cell. (a) by proton transfer through the membrane;
(b) by hydroxylic anion transfer through the membrane.

The enthalpy of the latter reaction (4) is −774 kJ mole−1. For a reference, the enthalpy
of methane combustion is −890.8 kJ mole−1 and for hydrogen combustion −568.8 kJ mole−1.
The theoretical electromotive force of such a fuel cell element is 1.08 V. The final product is
sulfate ions in moderate concentration being compatible with the natural sea water.

Interest in this approach has been provoked by the enormous amount of hydrogen
sulfide accumulated in some natural bodies of water, the Black Sea in particular. The total
amount is estimated to 4.7 Gtons [10,11]. The annual increase is estimated to 20 mln tons
and its processing could produce up to 100 TWh electrical energy. It corresponds to a
continuously operating facility of 12,000 MW.

For a reference, the annual consumption of electrical energy in Bulgaria for the year
2015 was 37.8 TWh.

This attractive approach is restricted by the low concentration of sulfide in the Black
Sea water: it reaches 22 g m−3 at depths of 2200 m. The practical applications of such fuel
cells are also impeded by the high corrosion activity of sulfide. This requires the use of
non-corrosive plastic materials and electrodes resistant to sulfide corrosion. In the case
of working in natural conditions, no other supporting electrolyte except marine water is
acceptable. Only oxygen as electron acceptor in the cathode space is admissible.

This approach could be applied to oil desulfurization by absorption of gaseous hy-
drogen sulfide in alkaline solution and passing the latter through a sulfide-driven fuel
cell. Hence, the benefits of this approach is double: processing the waste streams and
energy production.
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A significant property of sulfur compounds is the broad variety of redox reactions that
may happen in aqueous media. Some of them are shown in Table 1, an excerpt from [12].
It is visible that different number of electrons are exchanged and different standard redox
potentials and electromotive forces will be generated. That is why the most preferred target
reactions, i.e., sulfide-to-sulfate oxidation with eight exchanged electrons must be achieved.

Table 1. Short excerpt of sulfide oxidation reactions.

No. Reversible Redox Anode Reactions
(Short Excerpt)

Number of
Exchanged Electrons

Standard Electrode
Potential (V), 25 ◦C

1 SO4
2− + H2O+ 2e = SO3

2− + 2OH− 2 −0.93
2 SO3

2− + 3H2O + 6e = S2− + 6OH− 6 −0.66
3 S2

2− + 2e = 2S2− 2 −0.524
4 S + 2e = S2− 2 −0.33
5 2SO4

2− + 4H++ 2e = S2O6
2− + 2H2O 2 −0.22

6 2H2SO3(aq) +H++2e = HS2O4− +2H2O 2 −0.082
7 S5

2− + 5H+ + 8e = 5HS− 2 0.003
8 S2O3

2− + 6H+ +8e = 2S2− + 3H2O 4 −0.006
9 HSO3

− + 5H+ + 4e = S +3H2O 4 0
10 S4

2− + 4H+ + 6e = 4HS 6 0.033
11 S3

2− + 3H+ + 4e = 3HS− 4 0.090
12 SO4

2− + 8H+ + 8e = S2− + 4H2O 8 0.149
13 SO3

2− + 6H++ 6e = S2− + 3H2O 6 0.231

The idea for the application of a sulfide-driven fuel cell is not new [5–9,13–16] but it is
of big importance for a simultaneous solution of environmental problems in the Black Sea
and as a green approach for carbon free energy.

The limitations on oxygen mass transfer rate in the cathode space and the low oxygen
concentration in marine water impose big problems on the fuel cell performance. It is
well known that the Venturi tube ejectors enable high mass transfer rates and good water
saturation with gases at very low energy demand [17]. It can be used for feeding the
cathode space saturated by oxygen solution. This study presents experimental results
on the performance of a sulfide-driven fuel cell supplied with oxygen after aeration by a
Venturi tube ejector of the solution feeding the cathode space. The results are compared to
those obtained through simple bubble aeration.

There are own data on the effect of cobalt spinel and zirconia tested as catalysts for
the sulfide redox processes.

2. Results and Discussion
2.1. Cycle Voltammetric Studies

Some of the results obtained with and without the catalyst are shown in Table 2.
A comparison between the data for the voltammetric curves obtained by Co-spinel catalyst
and by graphite electrodes without catalyst is shown in Figure 2 and Table 2. The plots
according to the Butler–Volmer equation, Equation (S1), show different exchange currents
and anodic reactions as well as anodic transfer coefficients for the two considered cases, see
Tables 2 and 3. The hysteresis of the data obtained without catalysts is almost negligible, i.e.,
reversible processes take place on the anode. The anode potentials when no electric current
flows are 0.221 and 0.236 V/S.H.E. for the forward and backward moves, respectively.

When carbon felt without catalyst was used as electrode, the oxidation of sulfide to
higher valence, i.e., S4+ (as sulfite) was detected.

When cobalt spinel was applied, the anode processes were clearly irreversible with a
large hysteresis. In this case the equilibrium anode potentials were −0.092 and 0.013 V/S.H.E.
The dominating anode processes were polysulfide formation as proven qualitatively.
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Table 2. Kinetic data obtained for the anode compartment, packed with granulated activated carbon at different tempera-
tures. Sulfide concentration 63 mg dm−3.

Temperature, ◦C Equilibrium Electrode Potential, V/S.H.E. Transfer Coefficient, α (-) Exchange Current i0, mA

8
0.031 0.28 0.29
−0.225 0.26 0.14

14
0.03 0.26 9.2

−0.235 0.26 1.5

20
0.041 0.11 3.2
−0.242 0.33 3.0

Table 3. Kinetic data obtained for the anode compartment, with carbon felt as electrode with and without embedded cobalt
spinel at different temperatures. Sulfide concentration 63 mg dm−3.

No Catalyst Cobalt Spinel Catalyst

T (◦C) Equilibrium Electrode
Potential (V/S.H.E.)

Transfer
Coefficient

α (-)

Exchange
Current i0

(mA)

Equilibrium Electrode
Potential (V/S.H.E.)

Transfer
Coefficient α

(-)

Exchange
Current i0

(mA)

6
- - - 0.0057 0.1 3.7
- - - −0.29 0.18 2.7

10
0.200 0.084 0.032 −0.014 0.070 1.9
0.235 0.18 0.071 −0.093 0.11 0.014

23
−0.107 0.17 1.44 - - -
−0.127 0.26 0.25 - - -

24
−0.086 0.13 3.6 0.092 0.11 3.45
0.218 0.17 2.9 −0.193 0.14 0.51
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Figure 2. Comparison of the voltammetric curves for carbon felt anode with cobalt spinel as catalyst
(•) and without it (o). Batch process. Temperature 10 ◦C; sulfide concentration 63 mg dm−3.

Better results were obtained when graphite without catalysts was used for both
electrodes. In these cases the transfer coefficients were somewhat higher than those for
anode doped with Co-spinel. Generally, the observed transfer coefficients are moderate,
lower than the best values expected around 0.5. A Butler-Volmer plot for batch experiments
with carbon felt as anode with and without cobalt spinel at 23 ◦C is shown in Figure S1.
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It must be noted that sulfide anions are aggressive toward metal cations, as cobalt is.
That is why there is a threat of the cobalt spinel-type catalyst being gradually destroyed
and removed after a few applications.

2.2. Polarization Curves

Polarization curves for three different sulfide concentrations, obtained in a fuel cell
using plane graphite electrodes with direct aeration and without catalysts are shown in
Figures 3 and 4. One can see that there is an optimal sulfide concentration, i.e., around
240 mg dm−3. The possible explanation is that above certain concentration values unde-
sired reactions take place in the bulk liquid competing the electrochemical processes on the
anode. For the concentration range from 55 to 265 mg dm−3 the estimated overpotential at
low current densities was less than 5 mV, i.e., the barrier losses were negligible.
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The polarization curve for a two fuel cell stack is shown in Figure S2. The open circuit
potential (OCP) for the stack is 1.28 V, i.e., it is 59% of the theoretical one. The OCPs for the
two separate fuel cells in the stack are 0.533 (49% efficiency) and 0.753 V (70% efficiency).
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Polarization curves for two different sulfide concentrations obtained in a fuel cell with
plane graphite electrodes and preliminary saturated water with oxygen by Venturi-type
ejector for continuous and batch mode of operation are shown in Figure 5a,b. The ohmic
resistance was around 1.6 Ω for a single fuel cell with practically no overpotential losses.
The cell efficiency (as open circuit potential) at continuous feed was 61% of the theoreti-
cal value.
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Figure 5. Polarization curve and power density dependence for a single fuel cell with preliminary
aeration in Venturi-tube ejector, feeding flow rate 1 dm3/h. (a) Continuous feed, sulfide concentration
190 mg dm−3; feeding flow rate 0.4 dm3/h. (b) Batch process, 260 mg dm−3.

The results for the polarization curves in Figures 3–5, Figure S2 show that there are
negligible voltage losses due to overpotential at low current densities with relatively high
fuel cell efficiencies, reaching 70% of the theoretical value. However, for practical purposes
it is necessary to reach higher current and power densities. This can be achieved by
reduction in the ohmic resistance in the anode compartment and of the membrane separator.

An important issue is the limitation to oxygen mass transfer rate, due to the low
saturation concentration and the saturation rate in the cathode compartment.
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2.3. Results on Fuel Cell Discharge at Different Aeration Modes
2.3.1. Direct Aeration

First, results on fuel cell discharge at direct aeration in the cathode space will be
considered. The fuel cell discharge was carried out both in batch and continuous modes.
In all cases the ohmic resistance of the load was equal or close to the internal fuel cell
resistance. Results for a two cell stack with direct aeration and continuous mode are shown
in Figure 6. The open circuit potential in the beginning was about 90% of the theoretical
value. Besides sulfide, thiosulfate was detected qualitatively in the inlet solution. In the
outlet solution only sulfate was detected.
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Figure 6. Time profile of cell voltage, open circuit potential (OCP) and electric current for a discharge
of a two fuel cell stack, aerated by direct aeration. Feeding flow rate for cathode compartments
1 dm−3/h each. Feeding sulfide concentration 77.1 mg dm−3. Feeding flow rate for anode compart-
ment 0.4 dm3/h each. Load resistance 10 Ω. Temperature 20 ◦C.

Calculations by the current Coulombic efficiency by Equation (S2) show that at direct
aeration only 26% of the sulfide was converted into sulfate by the electrochemical process.
The rest of the sulfide was depleted by chemical oxidation in the bulk. The process of sulfide
to sulfite oxidation in a bulk is an expected parasite reaction. If it is correct, the anode
reaction will be sulfite to sulfate oxidation involving two exchanged electrons. In this case
corresponding current efficiency will give over 100% yield of sulfate, which is not realistic.

2.3.2. Aeration by Venturi Tube Ejector

There is comparison of the sulfide conversion rates calculated by the Faraday’s law to
the analytically determined values for two types of aeration, shown in Figure 7. The advan-
tage of the aeration by ejector as aeration tool is obvious. As one can see, the most probable
anode reactions are those exchanging six or eight electrons, i.e., leading to oxidation of
sulfide to sulfite and sulfate.

The efficiencies of the anode reactions when six or eight electrons are exchanged are
reasonable and below 100% of the analytically determined ones. The values, calculated
for two and four exchanged electrons give values much higher than 100 of the analytically
determined values.

A result for fuel cell discharge with preliminary air saturation by Venturi-type ejector
is shown in Figure S3. The open circuit potential at the beginning is about 60% of the
theoretical thermodynamic value. The calculations by the Coulombic current efficiency,
cf. Equation (S2), show that the electrochemical anode process of sulfide to sulfate oxidation
was almost complete. The measured sulfide depletion rate corresponds to a conversion rate
of 11.9 mg/h for sulfide to sulfate conversion, whereas that determined by chemical analysis
was 12.8 mg/h. Hence, yield of 93% was achieved. The positive effect of the intensive
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preliminary aeration is evident. That is why one may draw a conclusion that the cathode
process of oxygen reduction and the corresponding transfer of protons (or hydroxylic
anions) through the separation membrane are rate-determining. Another possibility to
enhance the overall process is to use pure oxygen or oxygen enriched air. However, it will
be costly from a practical point of view.
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The results obtained for the sulfide driven fuel cell efficiency at preliminary aeration
by Venturi tube ejector are shown in Table S1. The calculations according the Faraday’s
law, Equation (S2), involving a different number of exchanged electrons and compared to
the determined ones are shown in Table S1. The number of exchanged electrons (2, 4, 6, 8)
corresponds to different reactions in Table 1. Experiment No. 1 is carried out with zirconia-
doped graphite as anode.

One can see that anode reactions (2, 10, 12) with the exchange of six and eight electrons
seem more probable because the calculated sulfide depletion rates for lower numbers
of exchanged electrons are higher than the analytically determined ones. There was
no polysulfide detected in the outlet stream for these experiments. Therefore, one can
conclude that in the considered cases more probable anode reactions for sulfide oxidation
are oxidation to sulfite (reaction 2) and sulfate (12) or the consecutive oxidation of sulfide to
sulfite and then to sulfate (consecutive reactions 1 and 2). The calculated current efficiencies
for the runs shown in Table S1 vary from 20 % to 93% for reaction 12 and from 30% to 92%
for reaction 2.

There are experiments where reactions involving exchange of two electrons also seem
realistic compared to the analytical data, see experiments 4, 7, 8 (Table S1). However, no
elemental sulfur nor polysulfide as products of the electrochemical reaction have been
detected in the outlet stream. That is why, the oxidation of sulfite to sulfate is more probable
in these cases. We expect that sulfite was obtained in a parasite reaction in the anodic
compartment of the fuel cell after partial oxidation of sulfide to sulfite. Evidence for this
explanation are the sulfite anions detected in the outlet stream together with sulfate. With
this explanation we can accept the high sulfide depletion rates in the case of reaction 1, i.e.,
above 80%.

In some cases the reaction 8, i.e., sulfide oxidation to thiosulfate seems probable,
cf. experiments 2–4, 7–9. However, thiosulfate were detected in the outlet stream for
experiments 7 and 8 only. Therefore, one can conclude that the dominating electrochemical
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reactions in the considered cases are reactions 2, 12 and the consecutive oxidation to sulfide
to sulfite and sulfate (reactions 1 and 2).

The experiment carried out with zirconia doped anode show reasonable results for
the sulfide depletion rate cf. Figure 8 and run 1 in Table S1. For the case of sulfide to sulfate
conversion (reaction 12) it is 70% of the analytically determined value and for the case
of reaction 2 (sulfide to sulfite oxidation) it is 92%. However, questionable is the catalyst
stability and the reproducibility of its properties in the aggressive sulfide media.
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Figure 8. Time profile of cell voltage, open circuit potential (OCP) and electric current for a discharge
of a single fuel cell aerated by Venturi tube ejector. Anode is doped by zirconia. Feeding flow rate
for cathode compartment 1 dm3/h. Feeding sulfide concentration 55.4 mg dm−3. Feeding flow rate
0.2 dm3 h−1. Load resistance 10 Ω. Temperature 20 ◦C.

There are some problems to be solved before thinking of practical applications for the
proposed fuel cell.

First, it is necessary to enhance the current and power densities ten times at least.
This could be attained in different ways: selection of separator with high ionic conductivity;
to test a fuel cell construction without membrane separator; to increase further the anode
active area using graphite particles, carbon felt, etc. There are some data in the literature
showing better current and power densities for such fuel cells, but with concentrated
solutions of sodium hydroxide as supporting electrolyte [16]. It is inadmissible from an
environmental point of view in our case. There are data in the literature for application of
metal electrodes, stabilized as sulfide catalysts [12]. Higher current and power densities
were attained −75 mA cm−2 and 23 mW cm−2 respectively. However, the resistibility of
the catalysts in sulfide-rich media is questionable.

Second, to enhance the conversion efficiency of sulfide to sulfate conversion. This could
be accomplished by improving fuel cell construction and coupling more cells in a consecu-
tively operation assembly.

Third, to prevent the parasite auto-oxidation of sulfide to sulfite in the anode compart-
ment. This could be achieved by purging the inlet solution by inert gas, e.g., nitrogen and
to operate under oxygen-free conditions. These conditions are available in practice when
pumping sea water from big depths where oxygen is lacking.

Fourth, to enhance the oxygen transfer rate in the cathode compartment. This could be
accomplished using pure oxygen or air enriched by oxygen. The Venturi tube ejector gives
the best opportunities for this purpose. Another option is to apply a catalyst to enhance
oxygen reduction, e.g., Wang et al. [18].

All these tasks are coupled and one or another solution will affect the overall goal:
to attain higher power densities for practical applications.
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3. Materials and Methods
3.1. Materials

The sulfide solutions were prepared by sodium sulfide nona-hydrate American Chem-
ical Society reagent grade, i.e., ≥98% (Sigma-Aldrich production, Darmstadt, Germany).
As supporting electrolyte a solution of NaCl (16 g dm−3) was used. The salt concentration
of the prepared solutions was close to the salinity of the natural Black Sea water. The initial
solution pH varied between 6.3 and 11.5 depending on the chosen sulfide concentration
from 10 to 250 mg dm−3.

Two catalysts were checked: one of spinel-type cobalt oxide and another of zirconia,
both embedded in an activated carbon matrix.

The catalysts were prepared from cobalt and zirconia acetate by pyrolysis of organic
carrier impregnated by acetate according to the procedure described in [19]. The deter-
mined specific area of the catalysts was 898 m2g−1 for carbon, doped by cobalt spinel and
781 m2g−1 for carbon doped by zirconia [20]. The X-ray diffraction (XRD) diagram of the
produced Co-spinel catalyst is shown in Figure S4.

The share of cobalt spinel in the preparation was 42.7%, and the rest was contamina-
tion containing iron oxides and cobalt oxides, coming from the natural carbon source of
the carrier.

3.2. Methods

The sketch of the experimental set-up is shown in Figure 9. The used fuel cell consists
of two plane parallel electrodes of sintered graphite separated by ion-exchange membrane.
The cell had an active area of 650 sq. cm. Two such cells were connected in series. They can
be used as a stack, consecutively or separately in an autonomous way. The energy-
dispersive X-ray (EDX) spectrum of the graphite plates showed contamination of silicon
only [9], see Figure S5. The slots between the electrodes and the membrane were 0.8 cm.
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When experiments with catalysts were carried out the anode compartment was packed
with the catalyst particles. Reference experiments with granulated activated carbon parti-
cles and carbon felt in the anode compartments of the fuel cell were carried out too.

In all cases the cathodic space was packed with granulated activated carbon particles
(a Fujikasui production, Tokyo, Japan, with specific area S = 680 m2g−1) to increase the
cathode surface.

The experiments consisted in measuring polarization curves under different conditions
and discharging the fuel cell assembly through ohmic resistance. During the polarization
and discharging experiments, the anode compartment was fed continuously by sulfide
solution with pre-set concentration and pH value.

Air was used as an oxidant. The reference system with direct aeration into the cathodic
space is shown in Figure 9a. When preliminary saturation with oxygen was applied the
supporting electrolyte fed to the cathodic compartment was saturated previously by oxygen
in the Venturi-tube ejector (see Figure 9b). Then, the oxygen-saturated solution was fed
into the cathode compartment. The water flow rate into the ejector was 151 dm3 h−1.
The experiments were carried out at direct aeration of the cathodic space with an air flow
rate 10 dm3 h−1.

Both batch and continuous processes were studied. In the case of batch processes the
agitation was accomplished by peristaltic pump. The same pump was used for feeding in
the continuous experiments.

3.3. Voltammetric Studies

The voltammetric studies were carried out manually with and without cobalt spinel as
the catalyst at different temperatures in a small-scale cylindrical fuel cell of 150 mL for the
cathode space and 100 mL for the anode one. The cathode space was filled by particles of
granulated activated carbon to enlarge the contact area. Carbon felt or granulated activated
carbon were chosen as the anode. The experiments with felt were carried out with and
without cobalt-spinel catalyst embedded within. The conduction contacts were graphite
rods of spectral purity. A Celgard 3501 separation membrane with an area of 7 sq.cm was
used. A sketch of this fuel cell is shown in Figure 10.
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The anode potential Ua was measured vs. saturated calomel electrode (SCE). For main-
tenance of constant anode potential, a potentiostat DECM (Budapest, Hungary) was used.
The electromotive force of the cell E = Uc − Ua and the current were also measured during
the experiments.

The equilibrium anode potentials Ueq when the electric current was zero were esti-
mated by the intercepts on the anode potential axis in the voltammetrric curves. Then the
overpotentials η = Ua − Ueq were calculated and plotted versus the measured electric
current. From these curves the exchange current i0 and the transfer coefficients αa and αc
were estimated using the generalized Butler–Volmer equation, Equation (S1).

3.4. Fuel Cell Discharge Experiments

These experiments were carried out both in batch and continuous modes, see Figure 9.
In the latter ones the sulfide solution was fed into the fuel cell (a single one or a stack) by a
peristaltic dosage pump. The flow rate of the feeding solutions were 0.2 or 0.4 dm3 h−1

for the different runs. In these studies, graphite was used for the electrodes, besides one
experiment when zirconia-doped carbon was used as anode. The generated electromotive
force E = U1 − U2 was discharged through a selected ohmic resistance equal or close to
the one of the fuel cell. The electric current, the cell tension and the open circuit potentials
were monitored during the runs. During the runs, samples from the feeding solution
and from the outlet stream were taken and analysed. The results of the analyses for the
sulfide oxidation were compared to the ones calculated from the current values according
to Faraday’s law, Equation (S2).

3.5. Analyses

Samples from the inlet solution in the fuel cell assembly and the outlet solution
were taken regularly. They were analyzed for sulfide, sulfite and sulfate ions. The pH
values of the feeding solutions and the outlet ones were measured by pH-meter. Sulfide
was analyzed quantitatively by photometry with N,N-dimethyl-n-phenylene-diamine in
the presence of Fe(III) giving methylene blue [21]. Sulfite was analyzed iodometrically.
Sulfate ions were analyzed turbidimetrically after addition of barium chloride (APHA).
The formation of polysulfides was checked qualitatively by acidification of the reaction
mixture and deposition of elemental sulfur. The presence of thiosulfate was checked
qualitatively by ferric chloride yielding an intensive purple complex.

The pH values of the feeds and the outlet streams from both compartments of the fuel
cell were measured in the samples taken.

4. Conclusions

Based on the presented experimental results the following conclusions can be drawn.

(1) It is possible to produce energy from hydrogen sulfide in marine water as a fuel.
Its enthalpy of combustion is comparable to methane and hydrogen. The proposed
approach enables direct production of electricity without intermediate processes, with
sulfate ions as a product. The latter is compatible with the marine environment and,
therefore, the method can be considered as waste-free.

(2) The main drawback of the proposed method is the low current and power densities
because of the low oxygen transfer rate and oxygen concentration in the cathode
space. Hence, oxygen reduction appears to be the rate-determining step in the overall
electrochemical process. This problem has to be solved by increasing oxygen partial
pressure in the air and by introducing a suitable catalyst for oxygen reduction.

(3) Another problem is due to the variety of reactions of sulfide oxidation. The present
data show that the oxidation of sulfide to sulfate in the bulk is successful but there are
parasite reactions of sulfide oxidation. Oxidation of sulfide to sulfite is also observed.
That is why the anodic process should be carried out under oxygen-free conditions.
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(4) The practical application of this process will be promoted if suitable catalysts for
selective sulfide to sulfate oxidation are developed and when the process of oxygen
reduction is enhanced properly.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11060694/s1, Figure S1, Butler-Volmer plot for carbon felt as anode with Co-spinel (�)
and without it (♦). Figure S2, Polarization curve and power density dependence for a two cell stack.
Continuous feed. Direct aeration. Figure S3, Time profile of cell voltage, open circuit potential (OCP)
and electric current for a discharge of single fuel cell aerated by Venturi tube ejector. Figure S4, X-ray
diffraction (XRD) diagram of the catalyst based on cobalt spinel. Figure S5, Energy-dispersive X-ray
(EDX) spectrum of the sintered graphite electrode. Table S1, Comparison of the results for sulfide
depletion rate with the calculated ones for different anode reactions.
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